Standardisation of Terminology Used for Yield Strength Standards

Object of Amendment

Rules for the Survey and Construction of Steel Ships Parts K and M Guidance for the Survey and Construction of Steel Ships Part K

Reason for Amendment

Standards for mechanical properties of metallic materials and welded joints are specified in Parts K and M of the Rules for the Survey and Construction of Steel Ships. In addition, methods for determining yield strength values through tensile tests according to whether yield phenomena exist, and tables related to yield strength standards are specified.

The aforementioned tables, however, are not standardised, and various terms, such as "yield stress", "yield point, "proof stress" or "proof strength", are used to describe "yield strength".

Accordingly, relevant requirements are amended to standardise the terminology used for yield strength standards.

Outline of the Amendment

The main details of this amendment are as follows:

- (1) Amends relevant requirements to, in principle, refer to standards for the yield strength of metallic materials and welded joints as "yield point or proof stress".
- (2) Amends relevant requirements for metallic materials for which it is clear that the yield strength is measured by 0.2 % proof stress to refer to standards for yield strength as "proof stress".

Effective Date and Application

Effective date of this draft amendment is [the date of establishment].

An asterisk (*) after the title of a requirement indicates that there is also relevant information in the corresponding Guidance. ID:DH24-11

Amended	Original	Remarks
RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS	RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS	
Part K MATERIALS	Part KMATERIALS	
Chapter 2 TEST SPECIMENS AND MECHANICAL TESTING PROCEDURES	Chapter 2 TEST SPECIMENS AND MECHANICAL TESTING PROCEDURES	
2.3 Mechanical Testing Procedures	2.3 Mechanical Testing Procedures	
 2.3.1 Tensile Test 1 The value of yield <u>point</u> is to be measured at the first peak obtained during yielding. 	 2.3.1 Tensile Test 1 The value of yield <u>stress</u> is to be measured at the first peak obtained during yielding. 	Amend to standardise the terminology used for yield strength standards.
2 When no well-defined yield phenomena exist, the proof stress is to be the strength of the 0.2% permanent elongation except where otherwise specified.	2 When no well-defined yield phenomena exist, the proof stress is to be the strength of the 0.2% permanent elongation.	Amend to manage the case measuring proof stress by the strength of the 1.0% permanent
3 Where the value of yield <u>point</u> or proof stress is measured at tensile test, the test is to be carried out with an elastic stress rate, $2\sim20N/mm^2$ per sec, for a material of which modulus of longitudinal elasticity is less than $150000N/mm^2$ and, $6\sim60N/mm^2$ per sec, for a material of which modulus of longitudinal elasticity is not less than $150000N/mm^2$. (-4 is omitted.)	3 Where the value of yield <u>stress</u> or proof stress is measured at tensile test, the test is to be carried out with an elastic stress rate, $2\sim20N/mm^2$ per sec, for a material of which modulus of longitudinal elasticity is less than $150000N/mm^2$ and, $6\sim60N/mm^2$ per sec, for a material of which modulus of longitudinal elasticity is not less than $150000N/mm^2$. (-4 is omitted.)	elongation. Amend to standardise the terminology used for yield strength standards.

Amended	Original	Remarks
Chapter 3 ROLLED STEELS	Chapter 3 ROLLED STEELS	
3.8 High Strength Rolled Steels for Offshore Structures	3.8 High Strength Rolled Steels for Offshore Structures	
3.8.11 Marking Steels which have satisfactorily complied with the required tests are to be marked with identification mark in	3.8.11 Marking Steels which have satisfactorily complied with the required tests are to be marked with identification mark in	Amend to standardise the terminology used for yield strength standards.
accordance with the requirements in 1.5.1. In addition, for steels to which the requirements given in the provisions to Notes (5) and (6) in Table K3.30 have been applied, "- <i>YP</i> [new yield point or proof stress value] <i>M</i> " is to be suffixed to	accordance with the requirements in 1.5.1. In addition, for steels to which the requirements given in the provisions to Notes (5) and (6) in Table K3.30 have been applied, "- YP [new yield point or proof stress value] M " is to be suffixed to	yield strength standards.
the marking in cases where the yield point <u>or proof</u> stress value is changed, and "- <i>TS</i> [new tensile point value] <i>M</i> " is to be suffixed to the marking in cases where the tensile point value is changed. (Example: <i>KA</i> 620- <i>YP</i> 620 <i>M</i> - <i>TS</i> 700 <i>M</i>)	the marking in cases where the yield point (proof stress) value is changed, and "-TS [new tensile point value] M" is to be suffixed to the marking in cases where the tensile point value is changed. (Example: KA620-YP620M-TS700M)	

	Ar	Amended Or				riginal		Remarks
	Chapter 4	STEEL PIPES	5	С	hapter 4	STEEL PIPES		
4.4 H	leaders			4.4 Header	rs			
4.4.5	Mechanical Proj	perties		4.4.5 Mee	chanical Proper	·ties		
			Table K4.24	Tensile Test				
	Grade	Symbol	Yield point or proof stress (N/mm ²)	Tensile strength (N/mm ²)	Elongation (%) $(L = 5.65\sqrt{A})$	Reduction of area(%)		
	Grade 1	KBH-1	205 min.	410 min.	24 min.	38 min.		
	Grade 2	KBH-2	225 min.	450 min.	23 min.	40 min.		
	Grade 3	KBH-3	205 min.	380 min.	22 min.	40 min.		
	Grade 4	KBH-4	205 min.	410 min.	21 min.	40 min.		
	Grade 5	KBH-5	205 min.	410 min.	21 min.	40 min.		
	Grade 6	KBH-6	205 min.	410 min.	21 min.	40 min.		1 4
	tensile strength are	ns are taken at right angle to be as given in the abo Table. The value of reduc	ove Table and the eld	ongation is to take the	value reduced by 5%			nd to standardise erminology used for strength standards.

		Ame					Original	n neid Strength	Remarks
5.6 Sj		apter 5 l or Nodula	CASTING		5.6 Sp	Chapter heroidal or N	5 CASTIN		
5.6.3	Kinds				5.6.3	Kinds			
	_		Table K5.10	Kinds and Me	chanical Proper	ties of Iron ca	stings	_	Amend to standardise
				Tensile test		In	npact test		the terminology used for
		Material grade	Tensile strength (<i>N/mm</i> ²)	Proof strenrthstress ⁽²⁾ (N/mm ²)	Elongation (%) ($L = 5.65\sqrt{A}$)	Testing temperature (°C)	Minimum mean absorbed energy (J)		yield strength standards.
		KFCD37	360	235	17		—		
	_	KFCD40	390	255	12	—	—		
		KFCD45	440	285	10	—	-		
	_	KFCD50	490	325	7	_			
	-	KFCD60	590	370	3		_		
	-	KFCD70	680	420	2	—	—		
	=	KFCD80	780	480	2	_	_		
	-	KFCD36S	350	220	22	20	17(14) ⁽³⁾		
		KFCD41S	400	250	18	20	14 (11) ⁽³⁾	l	
		No (1) (2) (3)	The standards gives Where the test sat discretion of the The proof streng When the absorb value than the sp	mple cast integral Society. t <u>hstress</u> required in ed energy of two o ecified minimum n	-	ed, the standards a or reference. s among a set of te v or when the absor	pplied are left to the st specimens is less in rbed energy of a single		

	Amended				0	riginal	6	Remarks
5.7 Stair	nless Steel Propo	eller Castings		5.7 Stai	inless Steel Prop	eller Castings		
5.7.5 N	Aechanical Prop	oerties		5.7.5	Mechanical Proj	perties		
		- -	Table K5.13 Me	Lechanical Prop	erties			Clarify the requirement
			Tensile	e test	-	Impact test ⁽³⁾		for measuring the proof
	Grade	0.2% pProof stress (N/mm ²)	Tensile strength (<i>N/mm</i> ²)	Elongation ($L = 5 d$) (%)	Reduction of area (%)	Minimum mean absorbed energy(J)		stress by the strength of the 1.0% permanent elongation.
	KSCSP1	440 min.	590 min.	15 min. ⁽⁴⁾	30 min.	20		
	KSCSP2	550 min.	750 min.	15 min. ⁽⁴⁾	35 min.	30	_	
	KSCSP3	540 min.	760 min.	15 min. ⁽⁴⁾	35 min.	30		
	KSCSP4	180 min. ⁽²⁾	440 min.	30 min.	40 min.	20		
	Not	es:						
	(1)	-	-		ns cut from propeller c	-		
		-	n separately-cast samp	ples, the requirem	ents are to be deemed	l appropriate by the		
		Society.						
	(2)				on may be considered a			
			-	-	ot less than 205 N/mm ²			
	(3)	-		-	class notation. The to 5.4 is to be referred to.	-		
	(4)	-	7		tion is not to be less that			

		nended	1 (Orig	jinal	8	Remarks
Chapt	er 8 AL	UMINIUM A	ALLOYS	Chapte	er 8 ALU	MINIUM AL	LOYS	
8.1 Alumi	nium Alloy P	lates and Extr	uded Shapes	8.1 Alumir	nium Alloy Plat	tes and Extrud	ed Shapes	
8.1.5 Me	chanical Proj	perties*		8.1.5 Mee	chanical Prope	rties*		
	Table	K8.3(a) Tempe	r Conditions and M	Iechanical Proper	ties ⁽¹⁾ (Rolled P	roducts)		Amend to standardise
		T			Tensile test			the terminology used for
	Material grade	Temper condition ⁽²⁾	Thickness t (mm)	Proof strengthstress (N/mm ²)	Tensile strength (<i>N/mm</i> ²)	Elongation(%) ⁽³⁾ ($L = 5.65 \sqrt{A}$)		yield strength standards.
			<i>t</i> ≤50	125 min.	275~350	14 min.		
			50 <t≤80< td=""><td>120~195</td><td>275~345</td><td>14</td><td></td><td></td></t≤80<>	120~195	275~345	14		
	0	0	80 <t≤100< td=""><td>110</td><td>265 min.</td><td>14 min.</td><td></td><td></td></t≤100<>	110	265 min.	14 min.		
		0	100 <t≤120< td=""><td>110 min.</td><td>260 min.</td><td>12</td><td></td><td></td></t≤120<>	110 min.	260 min.	12		
			120≤t≤160	105 min.	255 min.	12 min.		
	5083P		160 <t≤200< td=""><td>100 min.</td><td>250 min.</td><td>10 min.</td><td></td><td></td></t≤200<>	100 min.	250 min.	10 min.		
		H111		125	275~350	14 min.		
		H112	<i>t</i> ≤50	125 min	275 min.	10		
		H116		215 min.	305 min.	10 min.		
		1/201	<i>t</i> ≤50	215~295	305~385	10 min.		
		H321	50 <t≤80< td=""><td>200~295</td><td>285~380</td><td>9 min.</td><td></td><td></td></t≤80<>	200~295	285~380	9 min.		
		0		145	200	17		
	5202.0	H111		145 min.	290 min.	17 min.		
	5383P	H116	<i>t</i> ≤50	220	205	10		
		H321		220 min.	305 min.	10 min.		
		0	50	1(0 min	220	24		
		H111	<i>t</i> ≤50	160 min.	330 min.	24 min.		
	50500	11116	<i>t</i> ≤20	270 min.	370 min.			
	5059P	H116	20< <i>t</i> ≤50	260 min.	360 min.	10		
		1/201	<i>t</i> ≤20	270 min.	370 min.	10 min.		
		H321	20< <i>t</i> ≤50	260 min.	360 min.			
	5086P	О <i>H</i> 111	<i>t</i> ≤50	95 min.	240~305	14 min.		
	20001	H112	<i>t</i> ≤12.5	125 min.	250 min.			

Amended-Original Requirements Comparison Table (Standardisation of Terminology Used for Yield Strength Standards)

Α	Amended			Orig	inal	Remar
		12.5< <i>t</i> ≤50	105 min.	240 min.		
	H116	<i>t</i> ≤50	195 min.	275 min.	9 min.	
575 A D	0		80	190~240	17	
5754P	H111	<i>t</i> ≤50	80 min.	190 - 240	17 min.	
	0	<i>t</i> ≤6.3	130~205	290~365	—	
		<i>t</i> ≤30	230 min.	315 min.		
	H116	30< <i>t</i> ≤40	215 min.	305 min.	10 min.	
5456P		40< <i>t</i> ≤50	200 min.	285 min.		
		<i>t</i> ≤12.5	230~315	315~405	—	
	H321	12.5< <i>t</i> ≤40	215~305	305~385	10	
		40< <i>t</i> ≤50	200~295	285~370	10 min.	
6061P	<i>T</i> 6	<i>t</i> ≤6.5	245 min.	295 min.	—	

Table K	(8.3(b) Temper)	Conditions and M	lechanical Proper	ties ⁽¹⁾ (Extruded	Shapes)
Material grade	Temper condition ⁽²⁾	Thickness t (mm)	Proof strengthstress (N/mm ²)	Tensile test Tensile strength (N/mm ²)	
		<i>t</i> ≤50	110 min.	270~350	
	0	50< <i>t</i> ≤130	110 min.	275~355	
5083 <i>S</i>	H111		165 min.	275 min.	10 min.
	H112	<i>t</i> ≤50	110 min.	270 min.	
5383 <i>S</i>	0 H111	<i>t</i> ≤50	145 min.	290 min.	17 min.
	H112		190 min.	310 min.	13 min.
5059 <i>S</i>	H112	<i>t</i> ≤50	200 min.	330 min.	10 min.
	0		95 min.	240~315	12 min.
5086 <i>S</i>	H111	<i>t</i> ≤50	145 min.	250 min.	10 min
	H112		95 min.	240 min.	10 min.
	Τ5	<i>t</i> ≤50	215 min.	260 min.	8 min.
6005 <i>AS</i>	76	3 <t≤10< td=""><td>213 mm.</td><td>200 mm.</td><td></td></t≤10<>	213 mm.	200 mm.	
	10	10< <i>t</i> ≤50	200 min.	250 min.	6 min.
6061 <i>S</i>	Т6	<i>t</i> ≤50	240 min.	260 min.	8 min.
	Τ5	<i>t</i> ≤50	230 min.	270 min.	6 min.
6082 <i>S</i>	TC	3 <t≤5< td=""><td>250 min.</td><td>290 min.</td><td></td></t≤5<>	250 min.	290 min.	
	<i>T</i> 6	5 <t≤50< td=""><td>260 min.</td><td>310 min.</td><td>17 min. 13 min. 10 min. 12 min. 10 min. 8 min. 6 min. 8 min.</td></t≤50<>	260 min.	310 min.	17 min. 13 min. 10 min. 12 min. 10 min. 8 min. 6 min. 8 min.

the terminology used for yield strength standards.

Amended-Original Requirements Cor	mparison Table (Standardisation	n of Terminology Used for	Yield Strength Standards)
i interiaca original receancing cos	inpulison ruole (Standardisation		riera Strength Standards)

Amended	Original	Remarks				
Notes:						
(1) Aluminium alloy may be subject to any other	standards in lieu of the requirements given in this Table where					
they are approved by the Society.						
(2) Indication symbols used in temper condition	ion are as follows. Furthermore, although the mechanical					
	are the same, a separate notation is used to indicate that their					
qualities are different.						
O : Annealing						
H111 : Work hardened						
H112 : As manufacturing process						
H116: Work hardened	nod					
H321 : Stabilizing treatment after work harde T5 : Artificial age hardening treatment after	r elevated temperature working and succeeding cooling					
T6 : Artificial age hardening treatment after $T6$						
с с	ble applies to the tensile test using the proportional specimen					
	nore than 12.5 mm. Where test specimens other than the					
	sile test or thickness of aluminium alloys is not more than 12.5					
<i>mm</i> , the standards for elongation is subject to						
8.1.12 Marking	8.1.12 Marking					
2 In case of aluminum alloys applied to other standards	2 In case of aluminum alloys applied to other standards	Amend to standardise				
in accordance with the provision of Note (1) of Table K8.3,	in accordance with the provision of Note (1) of Table K8.3,	the terminology used for yield strength standards.				
"-YP", altered value and "M" where proof stress is altered or	- <i>YP</i> ", altered value and " <i>M</i> " where proof <u>stress</u> is altered or "- <i>YP</i> ", altered value and " <i>M</i> " where proof <u>strength</u> is altered					
"-TS", altered value and "M" where tensile strength is to be	or "- <i>TS</i> ", altered value and " <i>M</i> " where tensile strength is to be					
put subsequent to the mark specified in -1, for example,	put subsequent to the mark specified in -1, for example,					
"6005 <i>AS</i> - <i>T</i> 5- <i>M</i> - <i>YP</i> 200 <i>M</i> ".	"6005 <i>AS</i> - <i>T</i> 5- <i>M</i> - <i>YP</i> 200 <i>M</i> ".					

	0	Amended				Original		Remarks
8.2 Al	luminium Allo	oy Pipes		8.2	2 Aluminium	Alloy Pipes		
8.2.5	Mechanical	Properties*		8.2	2.5 Mechan	ical Properties	5*	
	Т	able K8.7(a) 🛛	Temper Condition	s and Mechan	ical Properties ⁽	1) (Extruded pi	pes)	Amend to standard
					Tens	sile test		the terminology used
	Material grade	Temper condition ⁽²⁾	Thickness t (mm)	Sectional area (<i>cm</i> ²)	Proof strengthstress (N/mm ²)	Tensile strength (N/mm ²)	Elongation(%) (L = 50)	yield strength standard
	5083 <i>TE</i>	0	<i>t</i> ≤25	200 max.	110 min.	275~355	14 min.	
	, 	<i>O</i> : Annealing Table K8.7(b)	Temper Conditio	ns and Mecha		s ⁽¹⁾ (Drawn pipe	es)	Amend to standard the terminology used
			tion ⁽²⁾ Thickness	t (mm) streng	thstress	-	ation(%) = 50)	yield strength standard
	508	3TD (0.6≤t≤	110) min. 275	~355 14	min.	
		Notes:						
			ium alloy seamless pipe		-	ds in lieu of the req	uirements	
		(2) Indication	this Table where they a on symbols used in tem					
		O : Ann	ealing					

Original Remarks Amended **RULES FOR THE SURVEY AND RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS CONSTRUCTION OF STEEL SHIPS** Part M WELDING Part M WELDING Chapter 4 WELDING PROCEDURE AND Chapter 4 WELDING PROCEDURE AND **RELATED SPECIFICATIONS RELATED SPECIFICATIONS** 4.2 Tests for Butt Welded Joints 4.2 Tests for Butt Welded Joints 4.2.5 **Tensile Tests* Tensile Tests*** 4.2.5 Table M4.7 Tensile Test Requirements for Butt Welded Joint Amend to standardise the terminology used for Tensile test yield strength standards. Kind of test assembly Grade of test assembly Tensile strength 0.2 % pProof stress (N/mm^2) (N/mm^2) 590 min. (1) 375 min. $L91^{(7)}$ 630 min. ⁽²⁾ ____ Rolled steels for low KL9N53, KL9N60 temperature service 660 min. (1) 410 min. (1) L92⁽⁷⁾ 670 min. (2) ____ L91⁽⁷⁾ Steel pipes for low 630 min. ____ KLP9 $L92^{(7)}$ temperature service 670 min. ____ 5086P-H112 (4) 240 min. ____ 5086*P*-*H*116 5083*P*-*H*116 275 min. _____ 5083P-H321 Aluminium alloys (3) 5383*P*-*H*116 _____ 5383*P*-*H*321 290 min. 5456P-H116 (6) 5456*P*-*H*321 ⁽⁶⁾

	Amended		Original	Remarks
	5059 <i>P-H</i> 116 5059 <i>P-H</i> 321	330 min.	_	
	5086 <i>S</i> - <i>H</i> 111	240 min.		
	5383 <i>S</i> - <i>H</i> 112	290 min.		
	6061 <i>P</i> - <i>T</i> 6			
	6005 <i>AS</i> - <i>T</i> 5 ⁽⁵⁾ ,6005 <i>AS</i> - <i>T</i> 6 ⁽⁵⁾	170		
	6061 <i>S</i> - <i>T</i> 6 ⁽⁵⁾	170 min.	_	
	6082 <i>S</i> - <i>T</i> 5 ⁽⁵⁾ ,6082 <i>S</i> - <i>T</i> 6 ⁽⁵⁾			
	 For test specimens in longitudinal direction For test specimen in transverse direction Grades of aluminium alloys have indication For test assembly thickness not more than 12 See Notes (13) of Table M4.6. When the thickness is 40 mm or less. The symbols for the welding consumables lis M6.12 and Table M6.21, and have same mar and KSWL91) 	2.5 mm ted above indicate the materials specif		
Chapter 6	WELDING CONSUMABLES	Chapter 6 WE	LDING CONSUMABL	ES
	for Manual Arc Welding for Mild and le Steels and Steels for Low Temperature		anual Arc Welding for M s and Steels for Low Temp	
3 The tensile elongation of each requirements in T electrodes. Where exceeded, special c of the electrode, tak	ted Metal Tensile Test strength, yield point <u>or proof stress</u> , and h test specimen are to comply with the Table M6.5 appropriate to the kind of the upper limit of tensile strength is consideration will be given to the approval king the other mechanical properties shown and the chemical composition of deposited ration.	test specimen are to comp M6.5 appropriate to the killimit of tensile strength is e be given to the approval mechanical properties sh	n, yield point and elongation oly with the requirements i ind of electrodes. Where the exceeded, special consideration of the electrode, taking the	in Table the terminology used for ne upper yield strength standards. tion will he other and the

Amended		Original			
Table M6.5 Tensile Test	Requirements for Deposi	airements for Deposited Metal			
Grade of electrode Tensile Streng		Elongation (%)		the terminology used for yield strength standards.	
(<i>N/mm</i> ²)	(<i>N/mm</i> ²)				
KMW1					
<u>KMW2</u> 400~560	305 min.				
KMW3					
KMW52					
<i>KMW</i> 53 490~660	375 min.	22 min.			
KMW54		22 11111.			
<i>KMW</i> 52 <i>Y</i> 40					
<u>KMW53Y40</u> 510~690	400 min.				
KMW54Y40	400 mm.				
<i>KMW</i> 55 <i>Y</i> 40					
<i>KMW</i> 63 <i>Y</i> 47 570~720	460 min.	19 min.			
KMWL1 400~560	305 min.	22 min.			
KMWL2 440~610	345 min.				
<i>KMWL</i> 3 490~660	375 min.	21 min.			
<i>KMWL</i> 91 590 min.	375 ⁽¹⁾ min.	25 min.			
<i>KMWL</i> 92 660 min.	410 ⁽¹⁾ min.				
Note: (1) 0.2% proof stress 6.3 Automatic Welding Consumables for Mild Ste High Tensile Steels and Steels for Low Temperat Service		c Welding Consumable ile Steels and Steels for	-		
 6.3.6 Deposited Metal Tensile Test with Multi-Technique 2 The tensile strength, yield point or proof stress, elongation of the deposited metal are to pass the requirements specified in Table M6.17 according to the grade of autom welding consumables. However, welding consumables who are the strength of the strength	and 2 The tensile ents deposited metal ar natic M6.17 according	ited Metal Tensile Tes que e strength, yield point ar e to pass the requirement g to the grade of a wever, welding consuma	d elongation of the s specified in Table automatic welding	Amend to standardise the terminology used for yield strength standards.	

Amended-Original Requirements Cor	nparison Table	(Standardisation of Terminology	Used for Yield Strength Standards)
8	1		0 /

0	Amended			Remarks		
tensile strength exceeds	the upper limit of the	e requirements	strength exceeds t	e requirements may pass		
may pass the tests by give	11	1	e	to other mechanical		
	properties and chemical composition of the deposited metal.			-	of the deposited metal.	
r - r			properties and end			
_	Table M6.17	Tensile Test Req	uirements for Depo	sited Metal	_	Amend to standardis
	Grade of welding	Tensile strength	Yield point <u>or</u> proof stress	Elongation (%)		the terminology used fo yield strength standards.
	consumable	(<i>N/mm</i> ²)	(N/mm^2)			
	KAW1					
	KAW2	$400 \sim 560$	305 min.			
Ļ	KAW3					
	KAW51					
	KAW52	490~660	375 min.			
	KAW53			22 min.		
	KAW54					
	KAW52Y40					
	KAW53Y40	510~690	400 min.			
	KAW54Y40					
	KAW55Y40	570 700		10	4	
	KAW63Y47	570~720	460 min.	19 min.	4	
	KAWL1	400~560	305 min.			
ŀ	KAWL2 KAWL3	<u>440~610</u> 490~660	345 min.	21	-	
ŀ	KAWL3 KAWL91	590 min.	375 min. 375 ⁽¹⁾ min.	21 min. 25 min.		
	KAWL91 KAWL92		$410^{(1)}$ min.	23 mm.		
L		660 min.	$410^{(-)}$ min.		J	
	Note: (1) 0.2% pro	of stress				
	(1) 0.270 pro	01 50 655				
6.4 Semi-automatic	Welding Consuma	bles for Mild	6.4 Semi-auto	omatic Welding C	Consumables for Mild	
	ensile Steels and S			0	s and Steels for Low	
Temperature Se				ure Service		
1			1			
6.4.6 Deposited M	etal Tensile Test		6.4.6 Depos	ited Metal Tensile	Test	
2 The tensile stren	gth, yield point or p	roof stress, and	2 The tensile	e strength, yield poin	nt and elongation of each	
elongation of each test	specimens are to co	mply with the	test specimens are	the terminology used for		

Amended-Original Requirements Com	parison Table (Standardisation	of Terminology Used for	r Yield Strength Standards)
	T		

Amended		Original				Remarks
requirements in Table M6.24 appropriate to the welding consumables. Where the upper limit or strength is exceeded, special consideration will be give approval of the semi-automatic welding consumable the other mechanical properties shown in the test re the chemical composition of deposited metric consideration.	f tensile ven to the es, taking sults and	the upp consider automati propertie	ppropriate to the l er limit of tens ation will be given ic welding consu- es shown in the tion of deposited	yield strength standards.		
Table M6.24 Tensil	e Test Requ	irements	for Deposited M	letal		Amend to standardise
Grade of welding consumable	Tensile Str	rength	Yield point <u>or</u> proof stress (N/mm ²)	Elongation (%)		the terminology used for yield strength standards.
KSW1	(11/11/11	<i>i</i>)	(17/11/11)			
KSW2	400~5	~560 305 min.				
KSW3						
KSW51						
KSW52	490~660		~660 375 min.			
KSW53				22 min.		
KSW54						
<i>KSW</i> 52 <i>Y</i> 40						
KSW53Y40	510~6	590	400 min.			
KSW54Y40	510 0		400 mm.			
KSW55Y40						
KSW63Y47	570~7	720	460 min.	19 min.		
KSWL1	400~5		305 min.	22 min.		
KSWL2	440~6		345 min.			
KSWL3	490~6		375 min.	21 min.		
KSWL91	590 mi	in.	375 ⁽¹⁾ min.	25 min.		
KSWL92	660 mi	in.	410 ⁽¹⁾ min.			
Note:						
(1) 0.2% proof stress						

	Amended			Original		Remarks
6.5 Electro-slag	and Electro-gas Welding C	consumables 6	.5 Electro-slag a	and Electro-gas W	elding Consumables	
6.5.6 Tensile T 3 Tensile stren to comply with the re the grade of welding or proof stress, an specimen U1A are to M6.33 according to the upper limit of consideration will b consumables, taking		2 <i>A</i> or <i>U2B</i> is according to h, yield point gitudinal test ents in Table the welding the welding give ties in the test	.5.6 Tensile Te	Amend to standardise the terminology used for yield strength standards.		
	Table M6.33 Longitudin Grade of welding consumable Tensile Street (N/mm ²)			Elongation (%)]	Amend to standardise the terminology used for yield strength standards.
	KEW1 KEW2 KEW3	400~560	(<i>N/mm</i> ²) 305 min.			
	KEW51 KEW52 490~66 KEW53 KEW54			22 min.		
	KEW52Y40 KEW53Y40 KEW54Y40 KEW55Y40	510~690	400 min.			

460 min.

19 min.

570~720

KEW63Y47

Amended	Original	Remarks
6.6 One Side Automatic Welding Consumables for Mild Steels, High Tensile Steels and Steels for Low Temperature Service	6.6 One Side Automatic Welding Consumables for Mild Steels, High Tensile Steels and Steels for Low Temperature Service	
 6.6.6 Butt Weld Test with One-run and Multi-run Technique 3 Tensile strength of U2A or U2B test specimen is to be as given in Table M6.19 of 6.3.8 according to the grades of one side automatic welding consumables. Tensile strength, yield point or proof stress, and elongation of U1A longitudinal tensile test specimens are to be as given in Table M6.17 of 6.3.8 according to the grades of one side automatic welding consumables. Where the upper limit of tensile 	 6.6.6 Butt Weld Test with One-run and Multi-run Technique 3 Tensile strength of U2A or U2B test specimen is to be as given in Table M6.19 of 6.3.8 according to the grades of one side automatic welding consumables. Tensile strength, yielding point and elongation of U1A longitudinal tensile test specimens are to be as given in Table M6.17 of 6.3.8 according to the grades of one side automatic welding consumables. Where the upper limit of tensile strength is 	Amend to standardise the terminology used for yield strength standards.
strength is exceeded, special consideration will be given to the approval of the welding consumables, taking the other mechanical properties shown in the test results and the chemical composition of deposited metal into consideration.	exceeded, special consideration will be given to the approval of the welding consumables, taking the other mechanical properties shown in the test results and the chemical composition of deposited metal into consideration.	

Amended-Original Requirements Comparison Table (Standardisation of Terminology Used for Yield Strength Standards)

		Amended			Original				Remarks
6.7 W	0			6.7	7 Welding Co	1			
6.7.7				6.7	7.7 Deposit				
		Table N	16.48 Tensile	Test Requireme	ents for Deposi	ted Metal			Amend to standardise
	Electrode for manual arcTIG and MIG weldingFlux wire for semi-automaticSubmerge weldingweldingconsumableweldingconsumable				Tensile strength (N/mm ²)	0.2% pProof stress (N/mm ²)	Elongation (%)		the terminology used for yield strength standards.
	KD308	KY308	<i>KW</i> 308	KU308	550 min.	225 min.	35 min.		
	KD308L	KY 3 08L	KW308L	KU308L	510 min.	205 min.	35 min.		
	KD308N2	KY 30 8N2	KW308N2	-	690 min.	375 min.	25 min.		
	KD309	KY309	KW309	KU309	550 min.	225 min.	30 min.		
	KD309L	KY 309 L	KW309L	KU309L	510 min.	205 min.	30 min.		
	KD309Mo	КҮ 309 Мо	KW309Mo	КU309Мо	550 min.	225 min.	30 min.		
	KD309MoL	-	KW309MoL	-	510 min.	205 min.	30 ⁽¹⁾ min.		
	KD310	KY310	<i>KW</i> 310	KU310	550 min.	225 min.	30 min.		
	-	KY310S	-	-	550 min.	225 min.	30 min.		
	KD310Mo	-	-	-	550 min.	225 min.	30 min.		
	KD316	KY316	<i>KW</i> 316	KU316	550 min.	225 min.	30 min.		
	KD316L	KY 3 16L	KW316L	KU316L	510 min.	205 min.	35 min.		
	KD317	KY317	<i>KW</i> 317	KU317	550 min.	225 min.	30 min.		
	KD317L	KY317L	<i>KW</i> 317 <i>L</i>	KU317L	510 min.	205 min.	30 min.		
	-	KY321	-	-	550 min.	225 min.	30 min.		
	KD329J1	-	-	-	590 min.	390 min.	15 min.		
	KD329J4L	KY 32 9J4L	KW329J4L	-	690 min.	450 min.	15 min.		
	KD2209	KY2209	KW2209	-	690 min.	450 min.	15 min.		
	KD347	KY347	<i>KW</i> 347	KU347	550 min.	225 min.	30 min.		

Amended	Original	Remarks
6.9 Welding Consumables for High Strength Rolled	6.9 Welding Consumables for High Strength Rolled	
Steels for Offshore Structures	Steels for Offshore Structures	
6.9.6 Deposited Metal Tensile Test	6.9.6 Deposited Metal Tensile Test	
2 The tensile strength, yield point or proof stress, and	2 The tensile strength, yield point (or proof stress) and	Amend to standardise
elongation of each test specimen are to comply with the	elongation of each test specimen are to comply with the	the terminology used for
requirements specified in Table M6.60 according to the grade	requirements specified in Table M6.60 according to the grade	yield strength standards.
of the welding consumables.	of the welding consumables.	

Amended					nal	Remarks		
	GUIDANCE FOR THE SURVEY AND				GUIDANCE FOR THE SURVEY AND			
CONSTRUCTIO	N OF ST	FEEL SHII	PS	CONSTI	RUCTION	OF STEEL SHIPS		
Part K MATERIALS					Part K MA'	ΓERIALS		
Annex K1.1.1-2 SEAMLESS FOR		DANCE FO EEL DRUM		Annex K SEAMLI		GUIDANCE FOR ED STEEL DRUMS		
1.3 Mechanical Proper	ties				cal Properties	5		
		1	Table 2 Tensi			_	Amend to standardise	
	Grade	Yield point <u>or</u> proof stress (N/mm ²)	Tensile strength (<i>N/mm</i> ²)	Elongation (%) (L =5D)	Reduction of area (%)		the terminology used for yield strength standards.	
	KSFB 42	205 min.	410 min.	24 min.	38 min.			
	KSFB 53	255 min.	520 min.	22 min.	40 min.			
		EFFECTI	VE DATE ANI	D APPLICATIO	N			
1. Effective date of the	his amend	ment is [the d	ate of establish	nment].				