Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1)

Object of Amendment

Rules for the Survey and Construction of Steel Ships Parts A and C

Reason for Amendment

In response to its recent comprehensive revision of Part C of the Rules, the Society has received various feedback, including requests for clarification and suggestions for improvement, from relevant industry members. After reviewing this feedback, the Society decided to incorporate some of the suggestions it received and amend relevant requirements accordingly.

Outline of Amendment

- (1) Clarifies for which decks the notation of "HELIDK" may be affixed and clarifies the scope of evaluation of structural members subject to helicopter loads.
- (2) Specifies that the old Part C may still be applied to the hull structure requirements for ships whose length L_c is less than 200 *m* and for which the date of contract for construction is before 1 January 2028.
- (3) Specifies the loads acting on enclosed decks in accommodation spaces or navigation bridges and specifies associated minimum thickness requirements.
- (4) Revises the criteria for fatigue strength assessments of longitudinal end connections.
- (5) Specifies simplified assessments of stress due to relative displacement in fatigue strength assessments at the longitudinal end connections of the transverse bulkheads of container carriers
- (6) Revises requirements for steel coil loads and strength assessments with respect to multitiered loading.
- (7) Clarifies the application of minimum thickness requirements for PCC and Ro-Ro ships.
- (8) Clarifies some definitions and corrects typographical errors.

Effective Date and Application

Amendments other than (4), (5) and (6):

Effective date of this draft amendment is the date of establishment.

Amendments (4), (5) and (6):

- 1. This draft amendment applies to ships for which the date of contract for construction is on or after the date 6 months from the date of establishment.
- 2. Notwithstanding the provision of preceding 1, this draft amendment may apply, upon request, to ships for which the date of contract for construction is before the effective date.

ID: DH23-08

An asterisk (*) after the title of a requirement indicates that there is also relevant information in the corresponding Guidance.

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amend		
Amended	Original	Remarks
RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS	RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS	Clarifies for which decks the notation "HELIDK" may be affixed.
Part A GENERAL RULES	Part A GENERAL RULES	
Chapter 1 GENERAL	Chapter 1 GENERAL	
1.2 Class Notations	1.2 Class Notations	
1.2.4 Hull Construction and Equipment, etc.* 29 For ships with helidecks as defined in 3.2.26, Part R and subject to the provisions of 10.4.6, Part 1, Part C, the notation of " <i>HELIDK</i> " is affixed to the Classification Characters.	 1.2.4 Hull Construction and Equipment, etc.* 29 For ships <u>strengthened for helidecks deemed as</u> appropriate by the Society, in accordance with the provisions of 10.4.6, Part 1, Part C, the notation of "<i>HELIDK</i>" is affixed to the Classification Characters. 	
EFFECTIVE DATE AND APPLICATION1. Effective date of this draft amendment is [the date of establishment].		

() 1.

(Amendment related to Part C of the Rules 1	for Survey and Construction of Steel Ships (2024 Amer	ndment 1))
Amended	Original	Remarks
RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS	RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS	Extends application of old Part C.
Part C HULL CONSTRUCTION AND EQUIPMENT	Part C HULL CONSTRUCTION AND EQUIPMENT	
Part 1 GENERAL HULL REQUIREMENTS	Part 1 GENERAL HULL REQUIREMENTS	
Chapter 1 GENERAL	Chapter 1 GENERAL	
1.1 General	1.1 General	
1.1.2 Application	1.1.2 Application	
 1.1.2.1 General 1 The requirements in Part C apply to ships constructed of welded steel structures, composed of stiffened plate panels, having a length L (as defined in 2.1.2, Part A) of not less than 90 m, and intended for unrestricted service. However, the hull structure requirements for ships complying with either the following (1) or (2) may be in accordance with those specified in Part C of the Rules for the Survey and Construction of Steel Ships applied to ships for which the date of contract for construction was before 1 July 2023 (hereinafter referred to as "Old Part C") may be applied. (1) Sister ships of ships subject to Old Part C for which 	 1.1.2.1 General 1 The requirements in Part C apply to ships constructed of welded steel structures, composed of stiffened plate panels, having a length L (as defined in 2.1.2, Part A) of not less than 90 m, and intended for unrestricted service. 	

Amended	Original	Remarks
the date of contract for construction was before 1		
January 2025		
(2) Ships for which the date of contract for construction		
is before 1 January 2028 and whose length L _c is less		
<u>than 200 <i>m</i>.</u>		
When Old Part C is applied, "Advanced Structural Rules"		
(abbreviated to ASR) defined in 1.2.1-4, Part A is not to be		
affixed.		
2 Hull construction, equipment and scantlings of ships	2 Hull construction, equipment and scantlings of ships	
to be classed for restricted service may be appropriately	to be classed for restricted service may be appropriately	
modified depending on the condition of service in accordance	modified depending on the condition of service in accordance	
with Annex 1.1 "Special Requirements for Restricted	with Annex 1.1 "Special Requirements for Restricted	
Service".	Service".	

	Amended	Original	Remarks
4.4 Lo	Chapter 4 bads to be Considered in Local Strength	LOADS	Clarifies definitions of test water head corresponding to ballast duct
4.4.3	Testing Condition		
	Table 4.4.3-2 Design Testir	ng Water Head Height z_{ST}	
	Compartment	Z _{ST}	
	(Omit	tted)	
	Cargo oil tanks	$z_{ST} = \max(z_{top} + h_{air}, z_{top} + 2.4, z_{top} + z_{PV})^{(3)}$	
	(Omit	ted)	
	Ballast ducts	$z_{ST} = \max(z_{bp}, z_{PV})$	
	Fuel oil tanks	$z_{ST} = \max(z_{top} + h_{air}, z_{top} + 2.4, z_{top} + z_{PV}, z_{bd})^{(3)}$	
	Cargo tanks of ships carrying dangerous chemicals in $\mathrm{bulk}^{(2)}$	$z_{ST} = \max(z_{top} + 2.4, z_{top} + z_{PV})^{(3)}$	
	(Omit	.ted)	
	Notes: z_{top} : Z coordinate of the top of tank (m) (the highest point of the target z_{bd} : Z coordinate of the bulkhead deck (m) z_{PRV} : Z coordinate of the test water head (m) corresponding to the est z_{PV} : Height of the test water head (m) corresponding to the design z_{hc} : Z coordinate of the top of hatch coaming (m) z_c : Z coordinate of the top of chain pipe (m) z_{bp} : Z coordinate of the test water head (m) corresponding to maxim h_{air} : Height of the air pipe or overflow pipe (m) above the top of top of the top of the top of top of the top of the top of top	setting of pressure relief valve vapour pressure mum pressure of ballast pump	

Amended	Original	Remarks
Loads to be Considered in Strength Assessment by	Cargo Hold Analysis	
Testing Condition		
Table 4.6.4-2 Design Test	ting Water Head Height z_{ST}	
Compartment	Z _{ST}	
(On	nitted)	
Cargo oil tanks	$z_{ST} = \max(z_{top} + h_{air}, z_{top} + 2.4, z_{top} + z_{PV})^{(3)}$	
(On	nitted)	
Ballast ducts	$z_{ST} = \max(z_{bp}, z_{PV})$	
Fuel oil tanks	$z_{ST} = \max(z_{top} + h_{air}, z_{top} + 2.4, z_{top} + z_{PV}, z_{bd})^{(3)}$	
Cargo tanks of ships carrying dangerous chemicals in bulk ⁽²⁾	$z_{ST} = \max(z_{top} + 2.4, z_{top} + z_{PV})^{(3)}$	
(On	nitted)	
Notes: z_{top} : Z coordinate of the top of tank (m) (highest point of tank ex- z_{bd} : Z coordinate of the bulkhead deck (m) z_{PRV} : Z coordinate of the test water head (m) corresponding to the		
z_{PV} : Height of the test water head (<i>m</i>) corresponding to the design z_{hc} : Z coordinate (<i>m</i>) at the top of the hatch coaming z_c : Z coordinate (<i>m</i>) at the top of chain pipe		
z_c : Z coordinate (<i>m</i>) at the top of chain pipe z_{bp} : Z coordinate of the test water head (<i>m</i>) corresponding to ma h_{air} : Height of the air pipe or overflow pipe (<i>m</i>) above the top of		
(On	nitted)	

6	for Survey and Construction of Steel Ships (2024 Amer	ndment 1))
Amended	Original	Remarks
4.8 Loads to be Considered in Additional Structural Requirements	4.8 Loads to be Considered in Additional Structural Requirements	ation of structural
4.8.3 Helicopter Load	4.8.3 Helicopter Load	members subject to helicopter loads
4.8.3.1 The helicopter loads acting on helicopter decks and <u>helicopter landing area are</u> to be in accordance with 3.2.7-1(1) , Part P .	4.8.3.1 The helicopter load acting on helicopter decks and <u>hatch covers also used as helicopter decks is</u> to be in accordance with 3.2.7-1(1) , Part P .	
4.9 Loads to be Considered in Structures other than Cargo Region	4.9 Loads to be Considered in Structures other than Cargo Region	enclosed decks in
4.9.1 General	4.9.1 General	accom-modation or navigation spaces
 4.9.1.1 General 1 Loads to be considered in the requirements for structures outside cargo region in Chapter 11 are to be as specified in this 4.9. 2 Loads in the maximum load condition are to be in accordance with 4.9.2. 	 4.9.1.1 General 1 Loads to be considered in the requirements for structures outside cargo region in Chapter 11 are to be as specified in this 4.9. 2 Loads in the maximum load condition are to be in accordance with 4.9.2. 	
4.9.2 Maximum Load Condition	4.9.2 Maximum Load Condition	
 4.9.2.1 General 1 Green sea pressure acting on the superstructure end bulkheads and boundary walls of deckhouse is to be in accordance with 4.9.2.2. 2 Loads acting on the superstructure above the freeboard deck, deck of the deckhouse, etc. are to be in accordance with 	 4.9.2.1 General 1 Green sea pressure acting on the superstructure end bulkheads and boundary walls of deckhouse is to be in accordance with 4.9.2.2. 2 Loads acting on the superstructure above the freeboard deck, deck of the deckhouse, etc. are to be in accordance with 	

7/50

Amended	Original	Remarks
 4.9.2.3. 4.9.2.2 Green Sea Pressure Acting on Superstructure End Bulkheads and Boundary Walls of Deckhouse 1 Green sea pressure P_{GW} (kN/m²) acting on the superstructure end bulkhead and boundary walls of the deckhouse is to be in accordance with the following (1) and (2). ((1) and (2) are omitted.) 4.9.2.3 Green Sea Pressure and Vertical Bending Moment Acting on Superstructure, Deckhouse Deck, Etc. in way of Freeboard Deck Green sea pressure specified in 4.4.2 and 4.5.2 is to be considered. 	 4.9.2.3. 4.9.2.2 Green Sea Pressure Acting on Superstructure End Bulkheads and Boundary Walls of Deckhouse 1 Green sea pressure P_{GW} (kN/m²) acting on the superstructure end bulkhead and boundary walls of the deckhouse is to be in accordance with the following (1) and (2). ((1) and (2) are omitted.) 4.9.2.3 Green Sea Pressure and Vertical Bending Moment Acting on Superstructure, Deckhouse Deck, Etc. in way of Freeboard Deck Green sea pressure specified in 4.4.2 and 4.5.2 is to be considered. 	
4.9.2.4 Pressure Acting on Superstructure Decks and Tops of Deckhouses in Accommodation or Navigation Spaces On the first and second enclosed superstructure decks and tops of deckhouses in accommodation or navigation spaces above the freeboard deck, the pressure is to be 12.8 (kN/m ²).	(Newly added)	

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

	for Survey and Construction of Steel Ships (2024 Amen	//
Amended	Original	Remarks
Chapter 9FATIGUESymbolsFor symbols not specified in this Chapter, refer to 1.4. T_{FD} : Fatigue design life (years) specified by the designer, but not to be taken less than 25 years.9.1General	Chapter 9FATIGUESymbolsFor symbols not specified in this Chapter, refer to 1.4. T_{DF} :Fatigue design life (years) specified by the designer,but not to be taken less than 25 years.9.1General	Clarifies definitions by specifying reference to be made to $9.5.4.2$ Corrects typographical error: Not T_{DF} but T_{FD}
9.1.2 Application of Fatigue Strength Assessment	9.1.2 Application of Fatigue Strength Assessment	
9.1.2.1 General 1 This Chapter provides the requirements for fatigue strength assessment of hot spots specified in 9.2 assuming an operating period equal to the fatigue design life T_{FD} of the ship. (-2 to -4 are omitted.)	9.1.2.1 General 1 This Chapter provides the requirements for fatigue strength assessment of hot spots specified in 9.2 assuming an operating period equal to the fatigue design life T_{DF} of the ship. (-2 to -4 are omitted.)	
9.1.4 Assumptions	9.1.4 Assumptions	
 9.1.4.1 General The following assumptions (1) to (9) are made in the fatigue strength assessment specified in this Chapter. (1) A linear cumulative damage model (i.e. Miner's rule) given in 9.5.5 is used in the calculation of fatigue damage. (2) Fatigue design life <u>T_{FD}</u> is taken not less than 25 years. ((3) to (9) are omitted.)	 9.1.4.1 General The following assumptions (1) to (9) are made in the fatigue strength assessment specified in this Chapter. (1) A linear cumulative damage model (i.e. Miner's rule) given in 9.5.5 is used in the calculation of fatigue damage. (2) Fatigue design life <u>T_{DF}</u> is taken not less than 25 <i>years</i>. ((3) to (9) are omitted.)	

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

Amended	Original	Remarks
9.5 Fatigue Strength Assessment	9.5 Fatigue Strength Assessment	
Symbols	Symbols	
For symbols not specified in this 9.5, refer to 1.4.	For symbols not specified in this 9.5, refer to 1.4.	
(<i>i</i>) Suffix which denotes wave condition <i>HM</i> , <i>FM</i> , <i>BR-P</i> ,	(<i>i</i>) Suffix which denotes wave condition <i>HM</i> , <i>FM</i> , <i>BR-P</i> ,	
<i>BR-S</i> , <i>BP-P</i> or <i>BP-S</i> specified in 4.7.2.2 :	<i>BR-S</i> , <i>BP-P</i> or <i>BP-S</i> specified in 4.7.2.2 :	
"i1" denotes wave condition HM-1, FM-1, BR-1P,	"i1" denotes wave condition HM-1, FM-1, BR-1P,	
<i>BR</i> -1 <i>S</i> , <i>BP</i> -1 <i>P</i> or <i>BP</i> -1 <i>S</i>	<i>BR</i> -1 <i>S</i> , <i>BP</i> -1 <i>P</i> or <i>BP</i> -1 <i>S</i>	
"i2" denotes wave conditions HM-2, FM-2, BR-2P,	"i2" denotes wave conditions HM-2, FM-2, BR-2P,	
<i>BR-2S</i> , <i>BP-2P</i> or <i>BP-2S</i>	<i>BR-2S</i> , <i>BP-2P</i> or <i>BP-2S</i>	
(<i>j</i>) Suffix which denotes loading condition	(<i>j</i>) Suffix which denotes loading condition	
T_D : Design life, to be taken as 25 years	T_D : Design life, to be taken as 25 years	
T_{FD} : Fatigue design life, not to be taken less than 25 years	T_{DF} : Fatigue design life, not to be taken less than 25 years	
(Omitted)	(Omitted)	
9.5.2 Reference Stress for Fatigue Strength Assessment	9.5.2 Reference Stress for Fatigue Strength Assessment	
9.5.2.2 Equivalent Stress Range	9.5.2.2 Equivalent Stress Range	
The equivalent stress range $\Delta \sigma_{eq,(j)}$ (N/mm ²)	The equivalent stress range $\Delta \sigma_{eq,(j)} (N/mm^2)$	
corresponding to the stress range $\Delta \sigma_{hs,(j)}$ (<i>N/mm²</i>) in each	corresponding to the stress range $\Delta \sigma_{hs,(j)}$ (N/mm ²) in each	
loading condition is to be obtained from the following	loading condition is to be obtained from the following	
formula:	formula:	
$\Delta \sigma_{eq,(j)} = \Delta \sigma_{hs,(j)}^{\frac{3}{4}} \sigma_{max,(j)}^{\frac{1}{4}}$	$\Delta \sigma_{eq,(j)} = \Delta \sigma_{hs,(j)}^{\frac{3}{4}} \sigma_{max,(j)}^{\frac{1}{4}}$	
$\Delta \sigma_{hs,(j)} = \Delta \sigma_{hs,(j)} \sigma_{max,(j)}$ $\Delta \sigma_{hs,(j)}$: Hot spot stress range (<i>N/mm²</i>) for loading	$\Delta\sigma_{eq,(j)} = \Delta\sigma_{hs,(j)} \sigma_{max,(j)}$ $\Delta\sigma_{hs,(j)}$: Hot spot stress range (<i>N/mm²</i>) for loading	
$\Delta O_{hs,(j)}$. Hot spot success range (<i>ivinin</i>) for roading condition (<i>j</i>) (See 9.5.4.2)	$\Delta o_{hs,(j)}$. Not spot stress range (<i>ivinin</i>) for loading condition (<i>j</i>)	
$\sigma_{max,(j)}$: Maximum hot spot stress (N/mm ²) for	$\sigma_{max,(j)}$: Maximum hot spot stress (N/mm ²) for	
loading condition (j) taken as follows. Where	loading condition (j) taken as follows. Where	
$\Delta \sigma_{hs,(j)}$ is greater than $2\sigma_Y$, $\sigma_{max,(j)}$ is to be	$\Delta \sigma_{hs,(j)}$ is greater than $2\sigma_Y$, $\sigma_{max,(j)}$ is to be	

10/50

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))		
Amended Amended	Original	Remarks
$\frac{\Delta\sigma_{hs,(j)}/2:}{(\text{Omitted})}$	$\Delta \sigma_{hs,(j)}/2$: (Omitted)	
9.5.4.2 Cumulative Fatigue Damage	9.5.4.2 Cumulative Fatigue Damage	
1 The cumulative fatigue damage is to be calculated from the following formula:	1 The cumulative fatigue damage is to be calculated from the following formula:	
$D = f_{vib} \cdot \sum_{j} \alpha_{(j)} \cdot D_{(j)}$	$D = f_{vib} \cdot \sum_{j} \alpha_{(j)} \cdot D_{(j)}$	
(Omitted)	(Omitted)	
$D_{(j)}$: Cumulative fatigue damage for the fatigue	$D_{(j)}$: Cumulative fatigue damage for the fatigue	
design life for loading condition (j) calculated by	design life for loading condition (<i>j</i>) calculated by	
the following formula: T T T	the following formula: T T T	
$D_{(j)} = \frac{\overline{T_{FD}} - \overline{T_C}}{\underline{T_{FD}}} D_{air,(j)} + \frac{\overline{T_C}}{\underline{T_{FD}}} D_{cor,(j)}$	$D_{(j)} = \frac{\overline{T_{DF}} - \overline{T_C}}{\underline{T_{DF}}} D_{air,(j)} + \frac{\overline{T_C}}{\underline{T_{DF}}} D_{cor,(j)}$	
T_C : Time in corrosive environment according to Table 9.5.4-1.	T_C : Time in corrosive environment according to Table 9.5.4-1.	
$D_{air,(j)}$: Cumulative fatigue damage in the in-air	$D_{air,(j)}$: Cumulative fatigue damage in the in-air	
environment for the fatigue design life for	environment for the fatigue design life for	
loading condition (<i>j</i>). $D_{cor,(j)}$:Cumulative fatigue damage in the	loading condition (<i>j</i>). $D_{cor,(j)}$:Cumulative fatigue damage in the	
$D_{cor,(j)}$. Consider the fatigue damage in the corrosive environment for the fatigue design life for loading condition (j).	$D_{cor,(j)}$. Considering a contract of the fatigue design life for loading condition (j).	
Where:	Where:	
$D_{air,(j)}$ and $D_{cor,(j)}$ are calculated by the	$D_{air,(j)}$ and $D_{cor,(j)}$ are calculated by the	
following procedure:	following procedure:	
$D_{air,(j)} = \sum_{k=1}^{K} \frac{N_{FD}}{N_{air}(\overline{\Delta\sigma}_{eq(j),k})} \cdot P_{k(j)}$	$D_{air,(j)} = \sum_{k=1}^{K} \frac{N_{FD}}{N_{air}(\overline{\Delta\sigma}_{eq(j),k})} \cdot P_{k(j)}$	

(Amendment related to Part C of the Rules)	for Survey and Construction of Steel Ships (2024 Amer	(diffent 1))
Amended	Original	Remarks
$D_{cor,(j)} = \sum_{k=1}^{K} \frac{N_{FD}}{N_{cor}(\overline{\Delta\sigma_{eq(j),k}})} \cdot P_{k(j)}$ (Omitted) $\overline{\Delta\sigma_{eq(j),k}}$: Equivalent stress range (N/mm ²) corresponding to the hot spot stress range $\Delta\sigma_{hs,(j)} = \overline{\Delta\sigma_{(j)k}}$ for loading condition (j) according to 9.5.2.2. Where $\overline{\Delta\sigma_{(j)k}}$ is as follows: (Omitted) N_{FD} : Total number of cycles in the fatigue design life T_{FD} . $N_{FD} = \frac{60 \times 60 \times 24 \times 365.25}{4 \log L_c} \cdot f_D \cdot T_{FD}$ f_D : Ship's operation rate, taken as 0.85	$D_{cor,(j)} = \sum_{k=1}^{K} \frac{N_{FD}}{N_{cor}(\overline{\Delta\sigma}_{eq(j),k})} \cdot P_{k(j)}$ (Omitted) $\overline{\Delta\sigma}_{eq(j),k} : \text{ Equivalent stress range } (N/mm^2)$ corresponding to the hot spot stress range $\Delta\sigma_{hs,(j)} = \overline{\Delta\sigma}_{(j)k}$ for loading condition (j) according to 9.5.2.2. Where $\overline{\Delta\sigma}_{(j)k}$ is as follows: (Omitted) N_{FD} : Total number of cycles in the fatigue design life T_{FD} . $N_{FD} = \frac{60 \times 60 \times 24 \times 365.25}{4 \log L_c} \cdot f_D \cdot \frac{T_{DF}}{T_{DF}}$ f_D : Ship's operation rate, taken as 0.85	
K: Not less than 300	K: Not less than 300	
9.5.5 Fatigue Strength Assessment Criterion	9.5.5 Fatigue Strength Assessment Criterion	Revises criteria for fatigue strength assessments of
9.5.5.1 Fatigue Strength Assessment Criterion The fatigue strength assessment criterion (acceptance criterion) is to be as follows: $\underline{\eta \cdot \eta_l^3 \cdot D \le 1.0}$	9.5.5.1 Fatigue Strength Assessment Criterion The fatigue strength assessment criterion (acceptance criterion) is to be as follows: $\underline{\eta \cdot D \leq 1.0}$	longitudinal end connec- tions.
 D: Fatigue damage obtained from 9.5.4.2 η: Correction factor of fatigue damage based on fatigue load used in the assessment, as given in Table 9.5.5-1. η₁: Correction factor of fatigue damage, as given in the followings: (1) As given in the following (a) and (b) for 	$D_{::}$ Fatigue damage obtained from 9.5.4.2 $\eta_{::}$ Correction factor of fatigue damage based on fatigue load used in the assessment, as given in table 9.5.5-1.	

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

Amended	Original	Remarks
<u>longitudinal end connections:</u> (a) 1.44 for side longitudinals installed		
<u>(a) 1.44 for side longitudinals instance</u> between $0.3T_{SC}$ and T_{SC}		
(b) 1.0 for longitudinals other than above (2) 1.0 for connections of platings and girders		
and the free edge of the base material		

(Amendment related to Part C of the Rules)	for Survey and Construction of Steel Ships (2024 Amer	idment ())
Amended	Original	Remarks
Chapter 10 ADDITIONAL STRUCTURAL REQUIREMENTS 10.4 Deck Structure	Chapter 10 ADDITIONAL STRUCTURAL REQUIREMENTS 10.4 Deck Structure	Clarifies scope of evalu- ation of structural members subject to helicopter loads
10.4.6 Decks <u>Subject to Helicopter Loads</u>	10.4.6 <u>Helicopter</u> Decks	
10.4.6.1 Application This 10.4.6 is to be applied to helicopter decks <u>as</u> defined in 3.2.26, Part R and <u>helicopter landing areas as</u> defined in 3.2.55, Part R.	10.4.6.1 Application This 10.4.6 is to be applied to helicopter decks and <u>hatch covers which are also used as helicopter decks of ships</u> <u>that the class notation "<i>HELIDK</i>" is affixed to classification <u>characters</u>.</u>	
10.4.6.2 Longitudinals and Beams of Decks Subject to <u>Helicopter Loads</u> The section modul <u>i</u> of the longitudinals and beams of <u>a deck subject to helicopter loads are</u> not to be less than that obtained by the following formula: $C_{safety} \frac{M}{\sigma_Y} \times 10^3 (cm^3)$	10.4.6.2 Longitudinals and Beams of <u>Helicopter</u> Decks The section modul <u>us</u> of the longitudinals and beams of <u>a helicopter deck is</u> not to be less than that obtained by the following formula: $C_{safety} \frac{M}{\sigma_Y} \times 10^3 (cm^3)$	
 σ_Y: Specified minimum yield stress (N/mm²) C_{safety}: Safety factor taken as 1.25. M: Maximum bending moment (kN-m) acting on the longitudinals and beams. This value is to be the value of (1) or (2) below, whichever is greater. However, this value is to be specified in (1) when l₁ ≥ l. (1) When a load of helicopter acts (See Fig. 10.4.6-1(a)) 	 σ_Y: Specified minimum yield stress (N/mm²) C_{safety}: Safety factor taken as 1.25. M: Maximum bending moment (kN-m) acting on the longitudinals and beams. This value is to be the value of (1) or (2) below, whichever is greater. However, this value is to be specified in (1) when ℓ₁ ≥ ℓ. (1) When a load of helicopter acts (See Fig. 10.4.6-1(a)) 	

No.	Construction of Steel Ships (2024 Amen	
Amended	Original	Remarks
$M = \frac{7P\ell}{2}$	$M = \frac{7P\ell}{40}$	
$M = \frac{\pi r}{40}$	$M = \frac{1}{40}$	
(2) When two loads of helicopter act (See Fig.	(2) When two loads of helicopter act (See Fig.	
10.4.6-1(b))	10.4.6-1(b))	
$M = \frac{P(\ell - \ell_1)(7\ell - 3\ell_1)}{20\ell}$	$M = \frac{P(\ell - \ell_1)(7\ell - 3\ell_1)}{20\ell}$	
$M = \frac{20\ell}{20\ell}$	$M = \frac{20\ell}{20\ell}$	
P: Load of helicopter (kN) (See 4.8.3.1)	P: Load of helicopter (kN) (See 4.8.3.1)	
ℓ : Spacing of longitudinals and beams (<i>m</i>)	ℓ : Spacing of longitudinals and beams (<i>m</i>)	
ℓ_1 : Distance (m) between loads of	ℓ_1 : Distance (m) between loads of	
helicopter P acting on longitudinals and	helicopter P acting on longitudinals and	
beams	beams	
10.4.6.3 Thickness of Deck Plates <u>Subject to Helicopter</u>	10.4.6.3 Thickness of <u>Helicopter</u> Deck Plates	
Loads		
The thickness of the deck plate subject to helicopter	The thickness of the <u>helicopter</u> deck plate is to be	
<u>loads</u> is to be according to either the following (1) or (2).	according to either the following (1) or (2).	
(1) Where the centre-to-centre distance of the helicopter	(1) Where the centre-to-centre distance of the helicopter	
loads in the panel is not less than $2S + 0.3$.	loads in the panel is not less than $2S + 0.3$.	
2S = 0.3	25 0.2	
$C_{1} = \frac{2S - 0.3}{2S + 0.3} \cdot P \times 10^{3} (mm)$	$C \sqrt{\frac{2S - 0.3}{2S + 0.3}} \cdot P \times 10^3 (mm)$	
$\sqrt{25+0.3}$	$\sqrt{2S+0.3}$	
<i>C</i> : Coefficient according to the following formula:	<i>C</i> : Coefficient according to the following formula:	
1 Couldiand	1 Grandensed	
$C = \frac{1}{2} \sqrt{\frac{C_{coll}C_{load}}{\sigma_Y}}$	$C = \frac{1}{2} \sqrt{\frac{C_{coll} C_{load}}{\sigma_Y}}$	
	N	
C_{coll} : Safety coefficient for plastic	C_{coll} : Safety coefficient for plastic	
collapse of the plate to be taken as 1.7.	collapse of the plate to be taken as 1.7.	
<i>C_{load}</i> : Safety coefficient for dynamic	Cload: Safety coefficient for dynamic	
effect of ship motion to be taken as 1.2.	effect of ship motion to be taken as 1.2.	
S: Spacing (m) of longitudinals and beams	S: Spacing (m) of longitudinals and beams	

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

Amended	Original	Remarks
P: Load (kN) of helicopter (See 4.8.3.1) (2) Where the centre-to-centre distance of the helicopter loads in the panel is less than $2S + 0.3$ (See Fig. 10.4.6-2) $C\sqrt{\frac{2S-0.3}{2S+0.3+e}} \cdot 2P \times 10^3$ (mm) C, S, P: As specified in (1) above. e: Centre-to-centre distance (m) of the helicopter loads in the panel (See Fig. 10.4.6-2)	P: Load (kN) of helicopter (See 4.8.3.1) (2) Where the centre-to-centre distance of the helicopter loads in the panel is less than $2S + 0.3$ (See Fig. 10.4.6-2) $C\sqrt{\frac{2S-0.3}{2S+0.3+e}} \cdot 2P \times 10^3$ (mm) C, S, P: As specified in (1) above. e: Centre-to-centre distance (m) of the helicopter loads in the panel (See Fig. 10.4.6-2)	
Chapter 11 STRUCTURES OUTSIDE CARGO REGION 11.3 Superstructures and Deckhouses 11.3.1 General	Chapter 11 STRUCTURES OUTSIDE CARGO REGION 11.3 Superstructures and Deckhouses 11.3.1 General	Specifies minimum thick-ness requirements for enclosed decks in accom-modation or navigation spaces
 11.3.1.1 Scantlings of Plates, Stiffeners and Primary Supporting Members 1 Unless specifically specified in this 11.3, the scantlings of plates, stiffeners and primary supporting members are to be in accordance with 6.3.2, 6.4.2 and 7.2. 2 The thicknesses (gross scantlings) of the first and second enclosed superstructure decks and tops of deckhouses in accommodation or navigation spaces above the freeboard deck are to be not less than 5.5 mm. 	 11.3.1.1 Scantlings of Plates, Stiffeners and Primary Supporting Members Unless specifically specified in this 11.3, the scantlings of plates, stiffeners and primary supporting members are to be in accordance with 6.3.2, 6.4.2 and 7.2. (Newly added) 	

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

Original Amended Remarks **EQUIPMENT EQUIPMENT** Chapter 14 Chapter 14 Clarifies scope of evaluof ation structural members subject to 14.6 Hatch Cover 14.6 Hatch Cover helicopter loads 14.6.2 General Requirement 14.6.2 General Requirement 14.6.2.1 General 14.6.2.1 General Primary supporting members and secondary stiffeners Primary supporting members and secondary stiffeners 1 1 of hatch covers are to be continuous over the breadth and of hatch covers are to be continuous over the breadth and length of hatch covers. When this is impractical, appropriate length of hatch covers. When this is impractical, appropriate arrangements are to be adopted to ensure sufficient load arrangements are to be adopted to ensure sufficient load carrying capacity and sniped end connections are not to be carrying capacity and sniped end connections are not to be allowed. allowed. The spacing of primary supporting members parallel The spacing of primary supporting members parallel 2 2 to the direction of secondary stiffeners is not to exceed 1/3 of to the direction of secondary stiffeners is not to exceed 1/3 of the span of the primary supporting members. When strength the span of the primary supporting members. When strength calculation is carried out by finite element method, this calculation is carried out by finite element method, this requirement is not applied. requirement is not applied. Secondary stiffeners of hatch coamings are to be Secondary stiffeners of hatch coamings are to be 3 3 continuous over the breadth and length of said hatch continuous over the breadth and length of said hatch coamings. coamings. 4 Where hatch covers are subject to helicopter loads, 4 Where hatch covers serve as helicopter decks, it is to they are to comply with the requirements in 10.4.6. comply with the requirements in 10.4.6.

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))		
Amended	Original	Remarks
Part 2-1 CONTAINER CARRIERS Chapter 4 LOADS	Part 2-1 CONTAINER CARRIERS Chapter 4 LOADS	Clarifies definitions of some of the parameters used for fatigue strength assessments of container carriers
4.6 Loads to be Considered in Fatigue	4.6 Loads to be Considered in Fatigue	
4.6.3 Loads to be Considered in Torsional Fatigue Strength Assessment by Whole Ship Analysis	4.6.3 Loads to be Considered in Torsional Fatigue Strength Assessment by Whole Ship Analysis	
4.6.3.1 Loading Conditions 1 In assessing fatigue strength, loading conditions to be considered in which the most important stress state that acts on the hull for a long period of time are to be selected. 2 As a loading condition corresponding to the loading condition of -1 above for typical container carriers, only the condition where the container cargo is loaded almost homogeneously in each cargo hold is to be considered. In this case, the draught is the value obtained by multiplying the scantling draught by 0.82. 3 The values obtained from Table 4.6.3-1 may be used for the metacentric height <i>GM</i> (<i>m</i>), the height of the centre of gravity of the ship Z_G (<i>m</i>) and the radius of gyration K_{xx} (<i>m</i>) in the loading conditions specified in -2 above.	 4.6.3.1 Loading Conditions 1 In assessing fatigue strength, loading conditions to be considered in which the most important stress state that acts on the hull for a long period of time are to be selected. 2 The requirements of 4.6.3.2 specify the loads corresponding to the loading condition of -1 above in general container carriers. It is assumed that the container cargo is loaded almost homogeneously in each cargo hold, and the draught is the value obtained by multiplying the scantling draught by 0.82. (Newly added) 	
4.6.3.2 Hull Girder Loads 1 Vertical still water bending moment M_{SV} is to be calculated in accordance with the following formula. $M_{SV} = C_{F_SV} M_{SV_max}$	4.6.3.2 Hull Girder Loads 1 Vertical still water bending moment M_{SV} is to be calculated in accordance with the following formula. $M_{SV} = C_{F_{SV}} M_{SV_{max}}$	

Amended	Original	Remarks
		Kelliarks
$C_{F_{SV}}$: Coefficient considering the effects of the	C_{F_SV} : Coefficient considering the effects of the	
loading condition, to be taken as 0.8.	loading condition, to be taken as 0.8.	
M_{SV_max} : Permissible maximum vertical still	M_{SV_max} : Permissible maximum vertical still	
water bending moment (kN-m) specified in	water bending moment $(kN-m)$ specified in	
4.2.2.2	4.2.2.2	
2 The vertical wave bending moment M_{WV-h} (kN-m)	2 The vertical wave bending moment M_{WV-h} (kN-m)	
in the hogging condition and the vertical wave bending	in the hogging condition and the vertical wave bending	
moment M_{WV-s} (kN-m) in the sagging condition are to be in	moment M_{WV-s} (kN-m) in the sagging condition are to be in	
accordance with Table 4.6.3-2.	accordance with Table 4.6.3-1.	
3 The horizontal wave bending moments M_{WH1} and	3 The horizontal wave bending moments M_{WH1} and	
M_{WH2} (kN-m) are to be in accordance with Table 4.6.3-3.	M_{WH2} (kN-m) are to be in accordance with Table 4.6.3-2.	
4 The wave torsional moments M_{WT1} and M_{WT2} (kN-	4 The wave torsional moments M_{WT1} and M_{WT2} (kN-	
<i>m</i>) are to be in accordance with Table 4.6.3- $\frac{4}{2}$.	m) are to be in accordance with Table 4.6.3- $\underline{3}$.	
m) are to be in accordance with Table 1.0.0 <u>1</u> .		
Table 4.6.3-2 Vertical Wave Bending Moments M_{WV-h} and	Table 4.6.3- <u>1</u> Vertical Wave Bending Moments M_{WV-h} and	
M_{WV-s}	M_{WV-s}	
(Omitted)	(Omitted)	
Table 4.6.3-3 Horizontal Wave Bending Moments M_{WH1}	Table 4.6.3-2 Horizontal Wave Bending Moments M_{WH1}	
and M_{WH2}	and M_{WH2}	
(Omitted)	(Omitted)	
Table 4.6.3- <u>4</u> Wave Torsional Moments M_{WT1} and M_{WT2}	Table 4.6.3-3 Wave Torsional Moments M_{WT1} and M_{WT2}	
(Omitted)	(Omitted)	

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

(Amendment related to Part C of the R	ules for Survey and Construction of Steel Ships (2024 Amer	(dment 1))
Amended	Original	Remarks
Table 4.6.3-1 Sim	blified Formulae for Parameters	Clarifies definitions of
<u>Loading condition</u> T_{-} (m) <u>centre c</u>	nate at the f gravityMetacentric height $GM(m)$ Radius of gyration $ip z_G(m)$ $K_{xx} (m)$	the parameters used for fatigue strength assessments of container
$ \begin{array}{c} \underline{Container \ cargo} \\ \underline{homogeneously} \\ \underline{loaded \ condition} \end{array} \qquad \underline{0.82T_{SC}} \qquad \underline{0.25} $	$\frac{B}{C_{B_LC}} \qquad \frac{T_{LC}}{2} + \frac{B^2}{T_{LC}C_{B_LC}} \frac{3C_{W_LC} - 1}{24} - z_G}{0.38B}$	carriers
4.6.4 Loads to be Considered in Fatigue Stre Assessment by Simplified Stress Analysis Finite Element Analysis Using Pa Structural Model	and Assessment by Simplified Stress Analysis and	Clarifies definitions of the parameters used for fatigue strength assessments of container carriers
 4.6.4.1 Loading Conditions In assessing fatigue strength, loading conditions considered the most important stress state that acts on the for a long period of time are to be selected. <u>As a loading condition</u> corresponding to the load condition of -1 above for typical container carriers, onle condition where the container cargo is loaded all homogeneously in each cargo hold is to be considered. In case, the draught is the value obtained by multiplying scantling draught by 0.82. <u>The values obtained from Table 4.6.3-1 may be for the metacentric height <i>GM</i> (<i>m</i>), the height of the centric gravity of the ship <i>Z_G</i> (<i>m</i>) and the radius of gyration (<i>m</i>) in the loading conditions specified in -2 above.</u> 	 considered the most important stress state that acts on the hull for a long period of time are to be selected. 2 The requirements of 4.6.4.2, 4.6.4.3 and 4.6.4.4 are the loads corresponding to the loading condition of -1 above in general container carriers. It is assumed that the container cargo is loaded almost homogeneously in each cargo hold, and the draught is the value obtained by multiplying the scantling draught by 0.82. (Newly added) 	

Amended	Original	Remarks
(Deleted)	4.6.4.2 External Pressure due to SeawaterIn applying 4.7.2.4, Part 1, the draught T_{LC} (m) is tobe the value obtained by multiplying the scantling draught by0.82.	
(Deleted)	 <u>4.6.4.3 Internal Pressure due to Ballast, Container</u> <u>Cargo, Etc.</u> When calculating the acceleration in applying 4.7.2.5, <u>Part 1 and 4.7.2.7, Part 1, various parameters such as the</u> metacentric height <i>GM</i> are to be determined based on the loading condition specified in 4.6.4.1-2. 	
 4.6.4.2 Hull Girder Loads Vertical still water bending moment M_{SV} is to be in accordance with the requirements of 4.6.3.2-1 instead of the requirements of 4.7.2.10, Part 1. The vertical wave bending moment in hogging condition M_{WV-h} (kN-m) and vertical wave bending moment M_{WV-s} (kN-m) in sagging condition are to be determined in accordance with the requirements of 4.6.3.2-2 instead of the requirements of 4.7.2.10, Part 1. When calculating the horizontal bending moment M_{WH}, it is necessary to apply 4.7.2.10, Part_1 and use the value obtained by multiplying the structural draught T_{LC} (m) 	4.6.4.4 Hull Girder Loads 1 Vertical still water bending moment M_{SV} is to be in accordance with the requirements of 4.6.3.2-1 instead of the requirements of 4.7.2.10, Part 1. 2 The vertical wave bending moment in hogging condition M_{WV-h} (kN - m) and vertical wave bending moment M_{WV-s} (kN - m) in sagging condition are to be determined in accordance with the requirements of 4.6.3.2-2 instead of the requirements of 4.7.2.10, Part 1. 3 When calculating the horizontal bending moment M_{WH} , it is necessary to apply 4.7.2.10, Part1 and use the value obtained by multiplying the structural draught T_{LC} (m) by	

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

Amended	Original	Remarks
Chapter 9 FATIGUE	Chapter 9 FATIGUE	Correct typographical error: Not T_{DF} but T_{FD}
9.1 General	9.1 General	
9.1.2 Assumptions	9.1.2 Assumptions	
 9.1.2.1 Assumptions The following assumptions (1) to (9) are made in the fatigue strength assessment. (1) A linear cumulative damage model (i.e. Miner's rule) given in 9.5.4, Part 1 is used in the calculation of fatigue damage. (2) Fatigue design life <u>T_{FD}</u> is taken not less than 25 years. ((3) to (9) are omitted.)	 9.1.2.1 Assumptions The following assumptions (1) to (9) are made in the fatigue strength assessment. (1) A linear cumulative damage model (i.e. Miner's rule) given in 9.5.4, Part 1 is used in the calculation of fatigue damage. (2) Fatigue design life <u>T_{DF}</u> is taken not less than 25 <i>years</i>. ((3) to (9) are omitted.)	
9.3 Fatigue Strength Assessment of Longitudinal End Connections 9.3.1 General 9.3.1.1 The end geometries of web stiffeners in way of the end connections of side longitudinals installed between 0.82Tsc and Tsc are to be maintained as that of the side longitudinal just below 0.82Tsc.	(Newly added)	Revises criteria for fatigue strength assessments of lon- gitudinal end connections

Amended		Original	Remarks
9.3.2 Loading Conditions and Fract Considered 9.3.2.1 1 Standard loading conditions and fractions and fractions and fractions and fractions and fractions of time other to be considered in cases where conditions and fractions of time other to the conditions and fractions of the conditions and fractions and fractic and fractions and fractions and fractions and	actions of time are opriate combination onsidering loading han those given in	(Newly added)	Clarifies definitions of the parameters used for fatigue strength assessments of container carriers
Loading condition	$\frac{\text{Fraction of time}}{\alpha_{(j)}}$		
Container cargo homogeneously loaded condition <u>1</u> (Ballast tank fully loaded condition)	<u>50 %</u>		
Container cargo homogeneously loaded condition 2 (Ballast tank empty condition)	<u>50 %</u>		
9.3.3 Simplified Assessment of the Displacement at Ends of Tran		(Newly added)	Specifiessimplifiedassess-mentsofduetorela-tive
9.3.3.1 1 Instead of directly considering the s displacement specified in 9.3.5, Part 1, 1 damage calculated not considering the str	nultiplying fatigue		displacement in fatigue strength assessments at the longitudinal end connec-tions of the transverse bulk-heads of

e	for Survey and Construction of Steel Ships (2024 Amer	ndment 1))
Amended	Original	Remarks
 displacement by three may be allowed. However, in the case of side longitudinals, it is assumed that soft-shaped backing brackets are fitted. 2 If the requirement specified in -1 above is not followed, the effect of stress due to relative displacement specified in 9.3.5, Part 1 is to be considered using finite element analysis. 		container carriers
9. <u>4</u> Torsional Fatigue Strength Assessment	9.3 Torsional Fatigue Strength Assessment	Changes numbering due
9. <u>4</u> .1 General	9. <u>3</u> .1 General	to the addition of 9.3
 9.<u>4</u>.1.1 General The requirements of the evaluation method for hot spot stresses of plate and girder joints and the free edge of base materials by very fine finite element analysis of torsional fatigue strength assessment is specified in 9.<u>4</u>. The hot spot stress takes into account structural discontinuities due to the structural details of joints but does not consider local stress concentrations due to the presence of welds. 9.<u>4</u>.1.2 Confirmation of Calculation Method and Accuracy of Analysis (Omitted) 	 9.<u>3</u>.1.1 General The requirements of the evaluation method for hot spot stresses of plate and girder joints and the free edge of base materials by very fine finite element analysis of torsional fatigue strength assessment is specified in 9.<u>3</u>. The hot spot stress takes into account structural discontinuities due to the structural details of joints but does not consider local stress concentrations due to the presence of welds. 9.<u>3</u>.1.2 Confirmation of Calculation Method and Accuracy of Analysis (Omitted) 	
9. <u>4</u> .1.3 Strength Assessment Based on Advanced Analysis In the application of 9. <u>4</u> , the strength assessment based on an advanced analysis, such as direct load analysis, may be	 9.3.1.3 Strength Assessment Based on Advanced Analysis In the application of 9.3, the strength assessment based on an advanced analysis, such as direct load analysis, may be 	

24/50

Amended	Original	Remarks
		Kennarks
conducted when deemed appropriate by the Society. However,	conducted when deemed appropriate by the Society. However,	
when the hot spot stress is calculated from the stress obtained	when the hot spot stress is calculated from the stress obtained	
by the analysis, no other methods than those specified in 9.4	by the analysis, no other methods than those specified in 9.3	
are to be adopted.	are to be adopted.	
9. <u>4</u> .1.4 Types of Hot Spot Stress	9. <u>3</u> .1.4 Types of Hot Spot Stress	
(Omitted)	(Omitted)	
9. <u>4</u> .1.5 Evaluation Procedure	9. <u>3</u> .1.5 Evaluation Procedure	
The procedures for the fatigue strength assessment are	The procedures for the fatigue strength assessment are	
to be in accordance with the following (1) to (4): (See Fig.	to be in accordance with the following (1) to (4): (See Fig.	
9. <u>4</u> .1-1)	9. <u>3</u> .1-1)	
(Omitted)	(Omitted)	
Fig. 9. <u>4</u> .1-1Evaluation Procedure	Fig. 9. <u>3</u> .1-1 Evaluation Procedure	
(Omitted)	(Omitted)	
9. <u>4</u> .2 Finite Element Method	9. <u>3</u> .2 Finite Element Method	
9. <u>4</u> .2.1 General	9. <u>3</u> .2.1 General	
(Omitted)	(Omitted)	
(*******)	(*******)	
9. <u>4</u> .2.2 Extent of Model	9. <u>3</u> .2.2 Extent of Model	
(Omitted)	(Omitted)	
9. <u>4</u> .2.3 Members to be Modelled, Element Types, Mesh	9. <u>3</u> .2.3 Members to be Modelled, Element Types, Mesh	
Size, and Notes on Modelling	Size, and Notes on Modelling	
Members to be modelled, element types, mesh size,	Members to be modelled, element types, mesh size,	
and notes on modelling are shown in 9.4.2.3, Part 1, 9.4.2.4,	and notes on modelling are shown in 9.4.2.3, Part 1, 9.4.2.4,	
Part 1, 9.4.2.7, Part 1 and 9.4.2.8, Part 1, respectively.	Part 1,9.4.2.7, Part 1 and 9.4.2.8, Part 1, respectively.	

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

Amended	Original	Remarks
 9.4.2.4 Corrosion Model (Omitted) 9.4.3 Modelling Procedure 9.4.3.1 Modelling Procedure (Omitted) 9.4.4 Boundary Conditions and Load Conditions 	 9.3.2.4 Corrosion Model (Omitted) 9.3.3 Modelling Procedure 9.3.3.1 Modelling Procedure (Omitted) 9.3.4 Boundary Conditions and Load Conditions 	
 9.4.4.1 Boundary Conditions (-1 to -3 are omitted.) 4 The standard boundary conditions are in accordance with the following (1) to (3): (1) The boundary conditions for the standard torsional moment are as shown in Fig. 9.4.4-1. (2) The boundary conditions for the standard vertical bending moment are as shown in Fig. 9.4.4-2. (3) The boundary conditions for the standard horizontal bending moment are as shown in Fig. 9.4.4-3. Fig. 9.4.4-1Boundary Conditions of Torsional Moment (Omitted) Fig. 9.4.4-2Boundary Conditions of Vertical Bending Moments and Load Conditions (Omitted) 	 9.<u>3</u>.4.1 Boundary Conditions (-1 to -3 are omitted.) 4 The standard boundary conditions are in accordance with the following (1) to (3): (1) The boundary conditions for the standard torsional moment are as shown in Fig. 9.<u>3</u>.4-1. (2) The boundary conditions for the standard vertical bending moment are as shown in Fig. 9.<u>3</u>.4-2. (3) The boundary conditions for the standard horizontal bending moment are as shown in Fig. 9.<u>3</u>.4-3. Fig. 9.<u>3</u>.4-1Boundary Conditions of Torsional Moment (Omitted) Fig. 9.<u>3</u>.4-2Boundary Conditions of Vertical Bending Moments and Load Conditions (Omitted) 	

	Amended		Original	Remarks
	Fig. 9. <u>4</u> .4-3Boundary Conditions of Horizontal Bending Moments and Load Conditions (Omitted)		9. <u>3</u> .4-3Boundary Conditions of Horizontal Bending Moments and Load Conditions (Omitted)	
9. <u>4</u> .4	4.2 Load Conditions (Omitted)	9. <u>3</u> . 1	4.2 Load Conditions (Omitted)	
2	(Omitted)	2	(Omitted) (Omitted)	
2 3	Torsional moments are to be applied to structural	2 3	Torsional moments are to be applied to structural	
	s in accordance with the following (1) to (3):		s in accordance with the following (1) to (3):	
(1)	Torsional moments acting on hull girders are to be	(1)	Torsional moments acting on hull girders are to be	
(1)	applied to structural models as a series of bulkhead	(1)	applied to structural models as a series of bulkhead	
	torsional moments resulting in a stepped curve. An		torsional moments resulting in a stepped curve. An	
	approximated torsional step moment curve is shown		approximated torsional step moment curve is shown	
(2)	in Fig. 9. <u>4</u> .4-4.	(2)	in Fig. 9. <u>3</u> .4-4.	
(2)	Torsional moments applied to bulkheads are the net	(2)	Torsional moments applied to bulkheads are the net	
	change in torsional moment over the effective range of the bulkhead. The effective range of a bulkhead is		change in torsional moment over the effective range of the bulkhead. The effective range of a bulkhead is	
	the distance between the midpoints of the two		the distance between the midpoints of the two	
	adjacent bulkheads. The torsional moments at		adjacent bulkheads. The torsional moments at	
	bulkhead $i(kN-m)$ are specified as the following		bulkhead $i(kN-m)$ are specified as the following	
	formulae: (See Fig. 9.4.4-5)		formulae: (See Fig. 9. <u>3</u> .4-5)	
	$\delta M_{WT1i} = M_{WT1} _{\frac{1}{2}(X_i + X_{i+1})} - M_{WT1} _{\frac{1}{2}(X_{i-1} + X_i)}$		$\delta M_{WT1i} = M_{WT1} _{\frac{1}{2}(X_i + X_{i+1})} - M_{WT1} _{\frac{1}{2}(X_{i-1} + X_i)}$	
	$\delta M_{WT2i} = M_{WT2} \Big _{\frac{1}{2}(X_i + X_{i+1})}^2 - M_{WT2} \Big _{\frac{1}{2}(X_{i-1} + X_i)}^2$		$\delta M_{WT2i} = M_{WT2} \Big _{\frac{1}{2}(X_i + X_{i+1})}^2 - M_{WT2} \Big _{\frac{1}{2}(X_{i-1} + X_i)}^2$	
	X_i : X-coordinate of bulkhead i		X_i : X-coordinate of bulkhead i	
(3)	Torsional moments for bulkheads are to be	(3)	Torsional moments for bulkheads are to be	
	reproduced by two equivalent shear forces on each		reproduced by two equivalent shear forces on each	
	side. An example of a method for applying shear force		side. An example of a method for applying shear force	

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

Amended	Original	Remarks		
is shown in Fig. 9. <u>4</u> .4-6.	is shown in Fig. 9. <u>3</u> .4-6.			
4 When analysing the vertical and horizontal bending	4 When analysing the vertical and horizontal bending			
moments applied, a method applying unit moments is to be	moments applied, a method applying unit moments is to be			
used as the standard. Stresses corresponding to the moments	used as the standard. Stresses corresponding to the moments			
prescribed in 4.6.3.2 are to be calculated based on the stresses	prescribed in 4.6.3.2 are to be calculated based on the stresses			
obtained through structural analysis with unit moments	obtained through structural analysis with unit moments			
applied. (<i>See</i> Fig.9. <u>4</u> .4-2 and Fig.9. <u>4</u> .4-3)	applied. (<i>See</i> Fig.9. <u>3</u> .4-2 and Fig.9. <u>3</u> .4-3)			
Fig. 9. <u>4</u> .4-4Torsional Moments Acting on Hull Girders (Approximated Step Curve) (Omitted)	Fig. 9. <u>3</u> .4-4Torsional Moments Acting on Hull Girders (Approximated Step Curve) (Omitted)			
Fig. 9. <u>4</u> .4-5Torsional Moment Applied to Bulkhead <i>i</i> (Omitted)	Fig. 9. <u>3</u> .4-5Torsional Moment Applied to Bulkhead <i>i</i> (Omitted)			
Fig. 9. <u>4</u> .4-6Torsional Moment Reproduction Due to Shear	Fig. 9. <u>3</u> .4-6Torsional Moment Reproduction Due to Shear			
Force	Force			
(Omitted)	(Omitted)			
9. <u>4</u> .5 Hot Spot Stresses	9. <u>3</u> .5 Hot Spot Stresses			
9. <u>4</u> .5.1 Resultant Stress Range and Mean Stress	9. <u>3</u> .5.1 Resultant Stress Range and Mean Stress			
1 (Omitted)	1 (Omitted)			
2 The resultant stress range in the direction orthogonal	2 The resultant stress range in the direction orthogonal			
and parallel to the weld line is to be obtained based on the	and parallel to the weld line is to be obtained based on the			
stresses obtained by the finite element analysis specified in	stresses obtained by the finite element analysis specified in			
9.4. The orthogonal direction to the weld line is represented	9.3. The orthogonal direction to the weld line is represented by the v direction and the normalial direction is represented by			
by the <i>x</i> -direction and the parallel direction is represented by	y by the <i>x</i> -direction and the parallel direction is represented by			

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

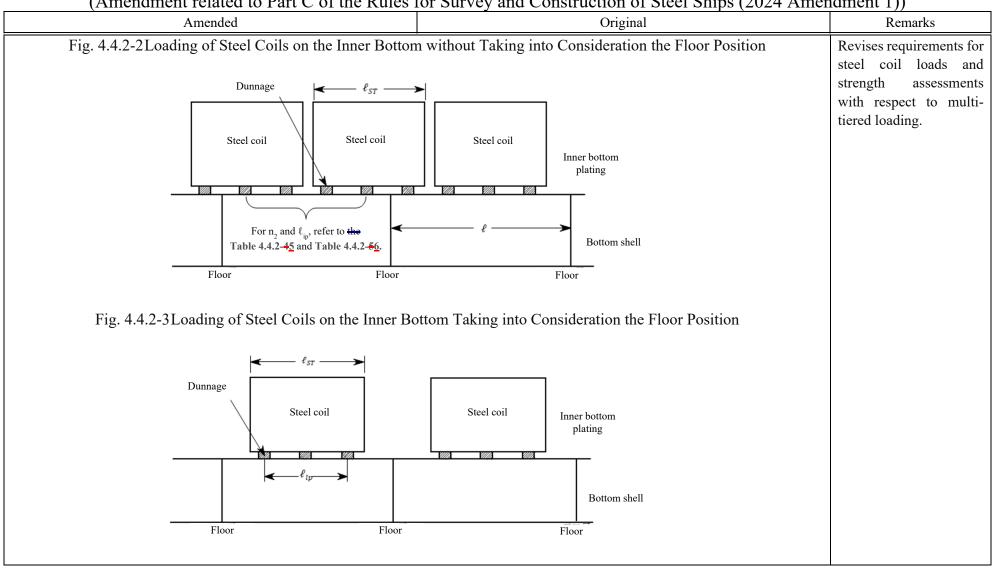
(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))				
Amended	Original	Remarks		
the <i>y</i> -direction.	the <i>y</i> -direction.			
3 (Omitted)	3 (Omitted)			
4 (Omitted)	4 (Omitted)			
9.4.5.2 Hot Spot Locations and Stress Readout Points, Stress Readout Method and Hot Spot Stresses The hot spot locations and stress readout points, stress readout method, and stress reference points and hot spot stresses are to be in accordance with 9.4.5.2, Part 1, 9.4.5.3, Part 1 and 9.4.5.4, Part 1, respectively.	9.3.5.2 Hot Spot Locations and Stress Readout Points, Stress Readout Method and Hot Spot Stresses The hot spot locations and stress readout points, stress readout method, and stress reference points and hot spot stresses are to be in accordance with 9.4.5.2, Part 1, 9.4.5.3, Part 1 and 9.4.5.4, Part 1, respectively.			
9. <u>4</u> .5.3 Weld Root Fatigue Strength Assessment (Omitted)	9.<u>3</u>.5.3 Weld Root Fatigue Strength Assessment (Omitted)			
9.5 Detailed Design Standards	9. <u>4</u> Detailed Design Standards			
9. <u>5</u> .1 General	9. <u>4</u> .1 General			
9. <u>5</u> .1.1 General	9. <u>4</u> .1.1 General			
(Omitted)	(Omitted)			

(Amendment related to Part C of the Rules	ndment 1))	
Amended	Original	Remarks
Part 2-5 GENERAL CARGO SHIPS AND REFRIGERATED CARGO SHIPS	Part 2-5 GENERAL CARGO SHIPS AND REFRIGERATED CARGO SHIPS	Revises requirements for steel coil loads and strength assessments with respect to multi-
Chapter 4 LOADS	Chapter 4 LOADS	tiered loading
4.4 Loads to be Considered in Additional Structural Requirements	4.4 Loads to be Considered in Additional Structural Requirements	
4.4.2 Maximum Load Condition	4.4.2 Maximum Load Condition	
4.4.2.1 Steel Coils	4.4.2.1 Steel Coils	
1 The requirements are given by assuming the following	1 The requirements are given by assuming the following	
(1) to (5).	(1) to (5).	
(1) It is assumed that steel coil cores are arranged in the	(1) It is assumed that steel coil cores are arranged in the	
longitudinal direction and loaded securing as shown	longitudinal direction and loaded securing as shown	
in Fig. 4.4.2-1.	in Fig. 4.4.2-1.	
(2) When one and a half-tiered loading is included in the	(2) <u>When two or more steel coils are loaded</u> , it is assumed	
design conditions, only one steel coil is assumed for	that <u>only the bottom steel coil is</u> in contact with the	
the second tier adjacent to the bottom steel coil.	hopper slant plate, the longitudinal bulkhead, or the	
Examples of steel coil arrangements are given in	side frame.	
<u>Table 4.4.2-1.</u>		
(3) When two-tiered loading is included in the design	(Newly added)	
conditions, it is assumed that only the bottom steel		
<u>coil is in contact with the longitudinal bulkhead or</u> side frame. It is assumed as the design condition that		
either only the bottom tier or also the second tier is in		
contact with the bilge hopper plating.		
(<u>4</u>) When <u>three-tiered loading is included in the design</u>	(Newly added)	

30/50

Amended	Original	Remarks
<u>conditions</u> , it is assumed that <u>at least two of the tiers</u> <u>are</u> in contact with the <u>bilge hopper plating</u> , the longitudinal bulkhead or the side frame.	(2) There are true torget of steel soil arrangements for	
 (5) There are two types of steel coil arrangements for inner bottoms: one is when the floor position is considered, and the other is when the floor position is not considered. (6) All steel coils have the same characteristics. (7) In the case where does not fall under (1) to (6) above, the loads are to be determined by an appropriate 	 (3) There are two types of steel coil arrangements for inner bottoms: one is when the floor position is considered, and the other is when the floor position is not considered. (4) All steel coils have the same characteristics. (5) In the case where does not fall under (1) to (4) above, the loads are to be determined by an appropriate 	
method. Fig. 4.4.2-1 Example of Securing Means for Steel Coils	method. Fig. 4.4.2-1 Example of Securing Means for Steel Coils	
Dunnage	Dunnage	

		Amended	Original	Remarks			
	Table 4.4.2-1 Example of Loading Conditions for Each Loading Tier						
Number	r of Tiers		Example	steel coil loads and strength assessments			
<u>Single-</u> tiered loading	<u>n₁ = 1</u>	Without Key Coil	With Key Coil	with respect to multi- tiered loading			
	<u>n₁ = 1.5</u>						
<u>Multi-</u> tiered loading	<u>n₁ = 2</u>						
	<u>n₁ = 3</u>						


(Amendment feldted to f art e of the Rules)	for Survey and Construction of Steel Ships (2024 Amer	
Amended	Original	Remarks
2 The total load F_{SC} (kN) of the steel coil acting on the	2 The total load F_{SC} (kN) of the steel coil acting on the	Revises requirements for
hull is to be calculated by the following formula. However, it	hull is to be calculated by the following formula. However, it	steel coil loads and
is <u>not to</u> be less than 0.	is to not be less than 0.	strength assessments
$F_{SC} = F_{SCs} + F_{SCd}$	$F_{SC} = F_{SCS} + F_{SCd}$	with respect to multi-
F_{SCs} : Static load (<i>kN</i>), as specified in Table 4.4.2-	F_{SCs} : Static load (<i>kN</i>), as specified in Table 4.4.2-	tiered loading
<u>2</u> .	<u>1</u> .	
F_{SCd} : Dynamic load (kN), as specified in Table		
4.4.2- <u>3</u> .	4.4.2- <u>2</u> .	

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

	Amended		Original	Remarks
	Table 4.4	2- <u>+2</u> Static Load of Steel	Coil F _{SCs}	Revises requirements for
	Members	n_2 and n_3	F_{SCS} (kN)	steel coil loads and
	Inner bottom ploting	$n_2 \le 10$ and $n_3 \le 5$	$C_{SC1}W_{SC}\frac{n_1n_2}{n_3}g$	strength assessment with respect to multi tiered loading
Inner bottom plating		$n_2 > 10$ or $n_3 > 5$	$C_{SC1}W_{SC}n_1rac{\ell}{\ell_{st}}g$	
		$n_2 \le 10$ and $n_3 \le 5$	$C_{SC2}W_{SC}\frac{n_2}{n_3}g\cdot\cos\alpha$	
нор	per tank sloping <u>Bilge hopper plating</u>	$n_2 > 10$ or $n_3 > 5$	$C_{SC2}W_{SC}\frac{\ell}{\ell_{st}}g\cdot\cos\alpha$	
Lon	gitudinal bulkheads and side frames	NA	0	
$\begin{array}{c} n_{1}:\\ n_{2}:\\ n_{3}:\\ W_{SC}:\\ C_{SC1}:\\ \end{array}$ $C_{SC2}:\\ \\ \ell_{st}:\\ \alpha:\\ \end{array}$	Position from the bilge tank sloping of $C_{SC2} = 2.0$ for all other cases $C_{SC2} = 1.0$ for single-tiered loading	of dunnages for a single panel), a ng one row of steel coils ecured with one or more key coils r single-tired loading without key or multi tiered stacking in whiel rinner hull oading or two-tiered loading, or fo on from the bilge hopper plating . 4.4.2-2)	s coils the key coil is arranged in the second or third or single-tiered loading and also the case where a	

MembersLoad in waves $F_{SCd}(kN)$ Iner bottoms $\frac{F_{SC1}}{g}C_{WD2}a_{Ze-SC}$ Iner bottoms $\frac{F_{SC2}}{g}C_{WD2}a_{Ze-SC}$ Bilee hopper plating: Hopper tank sloping $\frac{C_{SC2}}{g}C_{WD2}a_{Ze-SC} \cdot \cos\alpha$ Case 1 $\frac{F_{SC2}}{g}C_{WD2}a_{Ze-SC} \cdot \cos\alpha$ Bilee hopper plating: Hopper tank sloping C_{SC2} $C_{SC2}W_{SC}\frac{n_1n_2}{n_3}g\sin\theta \cdot \cos(\theta-\alpha)$ Longitudinal bulkheads $n_2 \leq 10$ and $n_3 \leq 5$ $C_{SC3}W_{SC}\frac{n_1n_2}{n_3}g\sin\theta \cdot \cos(n (\frac{\pi}{2}-\alpha,\frac{\pi}{4})))$ Side frames $C_{SC3}W_{SC}\frac{n_1}{n_4}g\sin\theta$ Notes: C_{WD2} : C_{WD2} : Coefficient of each load condition, specified in Table 4.4.2-8, Part 1 a_{Ze-SC} : Envelope acceleration in vertical direction (m/c^2) at the centre of gravity of steel coil in the cargo hold to be considered, as calculated in accordance with 4.2.4.1, Part 110- a_{Ze-SC} : $C_{SC2} = 0.2 \ Coefficient, as follows:C_{SC2} = 0.2 \ Coefficient, a$	Amende	d	Original	Remarks
Inner bottoms $\frac{F_{SCS}}{g}C_{WDx}a_{Ze-SC}$ strength assessment with respect to multi- tiered loading.Bilge hopper plating Hopper task eloping $\frac{C_{BSC} 1}{g}C_{WDx}a_{Ze-SC} \cdot \cos \alpha$ $\frac{g}{g}C_{WDx}a_{Ze-SC} \cdot \cos \alpha$ $\frac{g}{g}C_{WDx}a_{Ze-SC} \cdot \cos \alpha$ Bilge hopper plating Hopper task eloping $\frac{C_{BSC} 2}{g}C_{WDx}a_{Ze-SC} \cdot \cos \alpha$ $\frac{g}{g}Sin \theta \cdot \cos \left(\min\left(\frac{\pi}{2} - \alpha, \frac{\pi}{4}\right)\right)$ Longitudinal bulkheads $n_2 \le 10$ and $n_3 \le 5$ $n_2 > 10$ or $n_3 > 5$ $C_{SC3}W_{SC}\frac{n_1n_2}{n_4}g \sin \theta$ Side frames $C_{SC3}W_{SC}\frac{n_1n_2}{n_4}g \sin \theta$ Notes: $C_{WDS}:$ $C_{WDS}:$ $C_{WSS}: f + n_3$ specified in Table 4.4.2-8, Part 1 $a_{Ze-SC}:$ $Expective as acceleration in vertical direction (m/\pi^2) at the centre of gravity of steel coil in the cargo hold to beconsidered, as calculated in accordance with 4.2.4.1, Part1(2).C_{SCS}: Coefficient, as specified in Table 4.4.2-42\theta:Roll angle (rad) as specified in 4.2.2, Part 1(2).C_{SCS}: Coefficient, as collows:C_{SCS}: - \frac{1}{2} f_{SCS}: sigle-tiered stacking or multi-tiered stacking in which the key coil is arranged in the secondor third position from the ship sideC_{SCS}: = \frac{2.2}{2} for all other casesn_4:The number of side frames that support a single steel coil.$		Revises requirements for		
Inner bottoms $\frac{2 \operatorname{ans}}{g} C_{WDx} a_{Ze-SC}$ with respect to multi-tiered loading.Bilse hopper plating $\frac{C \operatorname{asc} 1}{g}$ $\frac{F_{SCS}}{g} C_{WDx} a_{Ze-SC} \cdot \cos a}{\cos a}$ with respect to multi-tiered loading.Bilse hopper plating $C \operatorname{asc} 2$ $\frac{F_{SCS}}{g} \operatorname{cosc}(\theta-at)$ with respect to multi-tiered loading.Longitudinal bulkheads $n_2 \le 10$ and $n_3 \le 5$ $C_{SC3}W_{SC} \frac{n_1 n_2}{n_3} g \sin \theta$ $\sigma = 0$ Side frames $C_{SC3}W_{SC} \frac{n_1}{n_4} g \sin \theta$ $n_2 \le 10$ or $n_1 > 5$ $C_{SC3}W_{SC} \frac{n_1}{n_4} g \sin \theta$ Notes: $C_{SC3}W_{SC} \frac{n_1}{n_4} g \sin \theta$ $C_{NC2} : Coefficient of each load condition, specified in Table 4.4.2-8, Part 1a_{Ze-SC} : Envelope acceleration in vertical direction (m/s2) at the centre of gravity of steel coil in the cargo hold to beconsidered, as calculated in accordance with 4.2.4.1, Part 11(2).C_{SC3} : Coefficient, as follows:C_{SC3} = -35 C_{SC3} = 2.20 for single-tiered stacking or multi-tiered stacking in which the key coil is arranged in the secondor third position from the ship sideC_{SC3} = -35 C_{SC3} = 2.20 for all other casesn_4 : -35 : Coefficient, as follows:C_{SC3} = -35 : C_{SC3} = 2.20 for all other casesn_4 : -35 : Coefficient, as follows:C_{SC3} = -35 : C_{SC3} = 2.20 for all other casesn_4 : -35 : Coefficient, as follows:C_{SC3} = -35 : C_{SC3} = 2.20 for all other casesn_4 : -35 : Coefficient, as follows:C_{SC3} = -35 : C_{SC3} = 2.20 for all other casesn_4 : -35 : Coefficient, as follows:C_{SC3} = -35 : C_{SC3} = 2.20 for all other casesn_4 : -35 : Coefficient, as follows:C_{SC3} = -35 : C$	Members		Load in waves F_{SCd} (kN)	steel coil loads and
Bilge hopper plating. Hepper tank chopingCase 1 $\frac{\frac{F_{SCE}}{g}C_{WD2} a_{Ze-SC} \cdot cosa}{g}$ Bilge hopper plating. Hepper tank chopingCase 2 $\frac{F_{SCE}}{cosa}C_{SC2}(g-at)$ Case 2 $C_{SC3}W_{SC}\frac{n_1n_2}{n_3}g\sin\theta \cdot cos\left(\min\left(\frac{\pi}{2}-\alpha,\frac{\pi}{4}\right)\right)$ Longitudinal bulkheads $n_2 \le 10$ and $n_3 \le 5$ $C_{SC3}W_{SC}\frac{n_1n_2}{n_3}g\sin\theta$ Side frames $n_2 \ge 10$ or $n_3 > 5$ $C_{SC3}W_{SC}n_1\frac{t}{t_{st}}g\sin\theta$ Notes: $C_{SC3}W_{SC}\frac{n_1}{n_4}g\sin\theta$ C_{WD2} :Coefficient of each load condition, specified in Table 4.4.2-8, Part 1 a_{Ze-SC} :Enclope acceleration in vertical direction (m/c^3) at the centre of gravity of steel coil in the cargo hold to be considered, as calculated in accordance with $4.2.4.1$, Part1 ⁽¹⁾ $a_{T_1}, n_2, n_3, W_{SC}, \ell, t_{st}$:Asspecified in Table 4.4.2-42 θ :Roll angle (rad), as specified in Table 4.4.2-42 θ :Roll angle (rad), as specified in 4.2.2, Part 1 ⁽²⁾ . $C_{SC2} = -2.20$ for all other cases $r_{SC2} = -2.20$ for all other cases $n_{2} = -56C_{SC2} = =2.20$ for all other cases $n_{2} = -56C_{SC2} = =2.20$ for all other cases $n_{3} = -56C_{SC2} = =2.20$ for all other cases $n_{3} = -56C_{SC2} = =2.20$ for all other case $n_{3} = -56C_{SC2} = =2.20$ for all other cases $n_{3} = -50C_{SC2} = =2.20$ for all other case $n_{3} = -56C_{SC2} = =2.20$ for all other case $n_{3} = -50C_{SC2} = =2.20$ for all other case $n_{3} = -56C_{SC2} = =2.20$ for all other case $n_{3} = -50C_{SC2} = =2.20$ for all other case $n_{3} = -56C_{SC2} = =2.20$ for all other case $n_{3} = -50C_{SC2} = =2.20$ for all other	Inner bottoms	$\frac{F_{SCS}}{g}C_{WDz}a_{Ze-SC}$		with respect to multi-
Hopper task clopingCase 2 $\overline{C_{SG3}W_{SC}} \frac{n_1 n_2}{n_3} g \sin \theta \cdot \cos\left(\sin\left(\frac{\pi}{2} - \alpha, \frac{\pi}{4}\right)\right)}{\frac{C_{SG3}W_{SC}}{n_3} g \sin \theta \cdot \cos\left(\sin\left(\frac{\pi}{2} - \alpha, \frac{\pi}{4}\right)\right)}$ Longitudinal bulkheads $n_2 \le 10$ and $n_3 \le 5$ $C_{SG3}W_{SC} \frac{n_1 n_2}{n_3} g \sin \theta$ Side frames $n_2 \ge 10$ or $n_3 > 5$ $C_{SG3}W_{SC} \frac{n_1}{\ell} \frac{\ell}{\ell_{sst}} g \sin \theta$ Notes: $C_{SG3}W_{SC} \frac{n_1}{n_4} g \sin \theta$ Notes: $C_{SG3}W_{SC} \frac{n_1}{n_4} g \sin \theta$ Notes: $C_{SG3}W_{SC} \frac{n_1}{n_4} g \sin \theta$ Notes: $C_{SG3}W_{SC} + \ell_{sst} + \lambda s specified in Table 4.4.2-8, Part 1a_{Ze-SC}:Envelope acceleration in vertical direction (m/s^2) at the centre of gravity of steel coil in the cargo hold to beconsidered, as calculated in accordance with 4.2.4.1, Part1(1)a, n_1, n_2, n_3, W_{SC}, \ell, \ell_{st} : As specified in Table 4.4.2-42\ell_{sst} = -40\ell_{sst} = -40C_{scg} = -3.2 for single-tiered stacking or multi-tiered stacking in which the key coil is arranged in the secondor third position from the ship side\ell_{sstg} = -40C_{scg} = -3.2 for all other casesn_4:The number of side frames that support a single steel coil.(1) The centre of gravity of steel coil to be considered is in accordance with Table 4.4.2-3.$		Case 1	$\frac{F_{SCS}}{g}C_{WDz}a_{Ze-SC}\cdot\cos\alpha$	tiered loading.
Longitudinal bulkheads $n_2 \le 10$ and $n_3 \le 5$ $C_{SC3}W_{SC}\frac{n_1n_2}{n_3}g\sin\theta$ $n_2 > 10$ or $n_3 > 5$ $C_{SC3}W_{SC}n_1\frac{\ell}{\ell_{st}}g\sin\theta$ Side frames $C_{SC3}W_{SC}\frac{n_1}{n_4}g\sin\theta$ Notes: C_{WD2} :Coefficient of each load condition, specified in Table 4.4.2-8, Part 1 a_{Ze-SC} : Envelope acceleration in vertical direction (m/s^2) at the centre of gravity of steel coil in the cargo hold to be considered, as calculated in accordance with 4.2.4.1, Part1 ⁽¹⁾ $a, n_1, n_2, n_3, W_{SC}, \ell, \ell_{st}$: As specified in Table 4.4.2-42 ℓ_{SC3} θ :Roll angle (rad) , as specified in 4.2.2, Part 1 ⁽²⁾ . C_{SC3} : $C_{SC3} = 1.0$ $C_{SC3} = 1.0$ $C_{SC3} = 2.2$ for single-tiered stacking or multi-tiered stacking in which the key coil is arranged in the second or third position from the ship side $C_{SC3} = 2.5$ $C_{SC3} = 2.0$ for all other cases n_4 : The number of side frames that support a single steel coil.(1) The centre of gravity of steel coil to be considered is in accordance with Table 4.4.2-3.	Bilge hopper plating Hopper tank sloping	Case 2	$\frac{C_{SC3}W_{SC}}{n_3} \frac{n_1 n_2}{n_3} g \sin \theta \cdot \cos \left(\min \left(\frac{\pi}{2} - \alpha, \frac{\pi}{4} \right) \right)$	
$n_2 > 10$ or $n_3 > 5$ $C_{SC3}W_{SC}n_1\frac{t}{t_{st}}g\sin\theta$ Side frames $C_{SC3}W_{SC}\frac{n_1}{n_4}g\sin\theta$ Notes: C_{WD2} :Coefficient of each load condition, specified in Table 4.4.2-8, Part 1 a_{Ze-SC} :Envelope acceleration in vertical direction (m/s^2) at the centre of gravity of steel coil in the cargo hold to be considered, as calculated in accordance with 4.2.4.1, Part1 ⁽¹⁾ $a, n_1, n_2, n_3, W_{SC}, t, t_{st}$:As specified in Table 4.4.2-42 θ :Roll angle (rad), as specified in 4.2.2, Part 1 ⁽²⁾ . C_{SC3} :Coefficient, as follows: $\frac{C_{SC3} = 4.0}{C_{SC2} = 3.2}$ for single-tiered stacking or multi-tiered stacking in which the key coil is arranged in the second or third position from the ship side $\frac{C_{SU3} = 5.5}{C_{SC2} = 2.0}$ for all other cases n_4 :The number of side frames that support a single steel coil.(1)(1)The centre of gravity of steel coil to be considered is in accordance with Table 4.4.2-3.	Longitudinal bulkheads	$n_2 \leq 10$ and $n_3 \leq 5$	$C_{SC3}W_{SC}rac{n_1n_2}{n_3}g\sin heta$	
 Notes: C_{WDz}: Coefficient of each load condition, specified in Table 4.4.2-8, Part 1 a_{Ze-SC}: Envelope acceleration in vertical direction (m/s²) at the centre of gravity of steel coil in the cargo hold to be considered, as calculated in accordance with 4.2.4.1, Part1⁽¹⁾ α, n₁, n₂, n₃, W_{SC}, ℓ, ℓ_{st} : As specified in Table 4.4.2-42 θ: Roll angle (rad), as specified in 4.2.2, Part 1⁽²⁾. C_{SC3}: Coefficient, as follows: C_{bts} = 4.0 - C_{SC2} = 3.2 for single-tiered stacking or multi-tiered stacking in which the key coil is arranged in the second or third position from the ship side C_{bts} = 2.5 C_{SC3} = 2.0 for all other cases n₄: The number of side frames that support a single steel coil. (1) The centre of gravity of steel coil to be considered is in accordance with Table 4.4.2-3. 	Longitudinai outkiteadis	$n_2 > 10$ or $n_3 > 5$	$C_{SC3}W_{SC}n_1\frac{\ell}{\ell_{st}}g\sin\theta$	
 C_{WDZ}: Coefficient of each load condition, specified in Table 4.4.2-8, Part 1 a_{Ze-SC}: Envelope acceleration in vertical direction (m/s²) at the centre of gravity of steel coil in the cargo hold to be considered, as calculated in accordance with 4.2.4.1, Part1⁽¹⁾ α, n₁, n₂, n₃, W_{SC}, l, l_{st}: As specified in Table 4.4.2-42 θ: Roll angle (rad), as specified in 4.2.2, Part 1⁽²⁾. C_{SC3}: Coefficient, as follows: C_{SC4} = 4.0 C_{SC2} = 3.2 for single-tiered stacking or multi-tiered stacking in which the key coil is arranged in the second or third position from the ship side C_{SC4} = 2.5 C_{SC3} = 2.0 for all other cases n₄: The number of side frames that support a single steel coil. (1) The centre of gravity of steel coil to be considered is in accordance with Table 4.4.2-3. 	Side frames		$C_{SC3}W_{SC}rac{n_1}{n_4}g\sin heta$	
(2) The parameters (0^{14} , 2_6 , etc.) required to calculate the sing motions and acceleration is in accordance with the values in the	C_{WDz} :Coefficient of a_{Ze-SC} :Envelope accelconsidered, as calc α , n_1 , n_2 , n_3 , W_{SC} , d θ :Roll angle (rate C_{SC3} :Coefficient, as C_{SC3} :Coefficient, as $C_{SC3} = 4.0 - C_{SC}$ or third position from the s $C_{SC3} = 2.5 - C_{SC}$ n_4 :The number of(1)The centre of gravity	leration in vertical direction (m/s^2) culated in accordance with 4.2.4.1, ℓ , ℓ_{st} : As specified in Table 4.4 ℓ), as specified in 4.2.2, Part 1 ⁽²⁾ . follows: $c_3 = 3.2$ for single-tiered stacking hip side $c_3 = 2.0$ for all other cases is side frames that support a single so of steel coil to be considered is in	at the centre of gravity of steel coil in the cargo hold to be , Part1 ⁽¹⁾ 1.2-42 or multi-tiered stacking in which the key coil is arranged in the second steel coil. accordance with Table 4.4.2-3.	

Amended			Original			Remarks
Table 4.4.2- 3 4The Centre				vity of Steel Coil	Revises requirements for	
		The lo	cation of the	he centre of gravity(m)		steel coil loads and
	The location in longitudinal direction, x_{sc} Volumetric centre of x_{sc}		of gravity	of cargo hold under consideration		strength assessments with respect to multi- tiered loading.
t	The location in transverse direction, y_{sc}			$\varepsilon \frac{B_H}{4}$		dered fouding.
ε	For assessing the m B_H : Breadth of cargo h	embers on port side, $\varepsilon = 1.0$ embers on starboard side, $\varepsilon = -1.0$	-	o hold and at the mid height between lower end of ble 4.4.2-9, Part 1.		
panel by dum points of dunn accordance wi (1) <u>Steel</u> position Table (2) <u>Steel of</u> are to Fig. 4. (a) The (b) The du	 panel by dunnage n₂ and the distance between the load points of dunnage at both ends of each panel l_{lp} are to be in accordance with the following (1) to (2). (1) Steel coil arrangements that do not consider floor position are to be as specified in Fig. 4.4.2-2 and Table 4.4.2-5. (2) Steel coil arrangements that do consider floor position are to be as specified in the following (a) to (b). (See Fig. 4.4.2-3) 		points	 In applying -2 above, the number of low by dunnage n₂ and the distance betw of dunnage at both ends of each panel low of dunnage at both ends of each panel low of dunnage at both ends of each panel low of dunnage at both ends of each panel low of dunnage at both ends of each panel low of dunnage at both ends of each panel the distance between the dunnage supporting a row of steel coils. 	een the load p are to be in consider floor Table 4.4.2 - onsider floor a) to (b). (<i>See</i> el by dunnage points of the l ℓ_{lp} is to be	Revises requirements for steel coil loads and strength assessments with respect to multi- tiered loading.

	Amended		2	Original	5111p3 (2024 7 1110)	Remarks
	Table 4.4.2- <u>45</u> Num	ber of Load Points P	er Panel According	to Dunnage n_2	-	Revises requirements for
		r	ı ₃			steel coil loads and
n ₂	2	3	4	5		strength assessments with respect to multi-
1	$0 < {\ell \choose \ell_{st}} \leq 0.5$	$0 < \ell /_{\ell_{st}} \le 0.33$	$0 < \ell /_{\ell_{st}} \le 0.25$	$0 < \ell /_{\ell_{st}} \le 0.2$		tiered loading.
2	$0.5 < \ell/_{\ell_{st}} \le 1.2$	$0.33 < \ell/_{\ell_{st}} \le 0.67$	$0.25 < \ell_{\ell_{st}} \le 0.5$	$0.2 < \ell/_{\ell_{st}} \leq 0.4$		
3	$1.2 < \ell/_{\ell_{st}} \le 1.7$	$0.67 < \ell/_{\ell_{st}} \le 1.2$	$0.5 < \ell /_{\ell_{st}} \le 0.75$			
4	$1.7 < \ell / \ell_{st} \le 2.4$	$1.2 < \ell/_{\ell_{st}} \le 1.53$	$0.75 < \ell/_{\ell_{st}} \le 1.2$	$0.6 < \ell/_{\ell_{st}} \le 0.8$		
5	$2.4 < \ell/_{\ell_{st}} \le 2.9$	$1.53 < \ell/\ell_{st} \le 1.87$	$1.2 < \ell/_{\ell_{st}} \le 1.45$	$0.8 < \ell/_{\ell_{st}} \le 1.2$		
6	$2.9 < \ell/_{\ell_{st}} \le 3.6$	$1.87 < \ell/_{\ell_{st}} \le 2.4$	$1.45 < {\ell /}_{\ell_{st}} \leq 1.7$	$1.2 < \ell/_{\ell_{st}} \le 1.4$		
7	$3.6 < \ell /_{\ell_{st}} \le 4.1$	$2.4 < \ell/_{\ell_{st}} \le 2.73$	$1.7 < \ell /_{\ell_{st}} \leq 1.95$	$1.4 < \ell/_{\ell_{st}} \le 1.6$		
8		$2.73 < \ell/\ell_{st} \le 3.07$				
9		$3.07 < \ell_{/\ell_{st}} \leq 3.6$				
10	$5.3 < \ell /_{\ell_{st}} \le 6.0$	$3.6 < \ell/\ell_{st} \le 3.93$	$2.65 < \ell/_{\ell_{st}} \le 2.9$	$2.0 < \ell/_{\ell_{st}} \le 2.4$		

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

(nended			Original	er Ships (2024 Amer	Remarks
Tabl	le 4.4.2- 5	6Distance Betwe	een Load Points of	Dunnage on Both En	ds of Each Panel <i>&</i>	$P_{lp}(m)$	
				<i>n</i> ₃			
	<i>n</i> ₂	2	3	4	5		
	1		Actual w	idth of dunnage			
	2	$0.5\ell_{st}$	$0.33\ell_{st}$	$0.25\ell_{st}$	$0.2\ell_{st}$		
	3	$1.2\ell_{st}$	$0.67\ell_{st}$	$0.50\ell_{st}$	0.4 <i>ℓ</i> _{st}		
	4	$1.7\ell_{st}$	$1.20\ell_{st}$	$0.75\ell_{st}$	$0.6\ell_{st}$		
	5	$2.4\ell_{st}$	$1.53\ell_{st}$	$1.20\ell_{st}$	$0.8\ell_{st}$		
	6	$2.9\ell_{st}$	$1.87\ell_{st}$	$1.45\ell_{st}$	$1.2\ell_{st}$		
	7	$3.6\ell_{st}$	$2.40\ell_{st}$	$1.70\ell_{st}$	$1.4\ell_{st}$		
	8	$4.1\ell_{st}$	$2.73\ell_{st}$	$1.95\ell_{st}$	$1.6\ell_{st}$		
	9	$4.8\ell_{st}$	$3.07\ell_{st}$	$2.40\ell_{st}$	$1.8\ell_{st}$		
	10	$5.3\ell_{st}$	$3.60\ell_{st}$	$2.65\ell_{st}$	$2.0\ell_{st}$		
4 In determin (<i>kN-m</i>) and horizo acting on the hull, the are to be considered requirements of 4.4	ontal ber he load co ed. For 1	nding moment onditions shown oad conditions	in Table 4.4.2- <u>7</u> <i>HF</i> and <i>RP</i> , the	(<i>kN-m</i>) and horizo acting on the hull, the	ntal bending mor le load conditions s d. For load condit	ading moment M_{V-HG} nent M_{H-HG} (kN-m) hown in Table 4.4.2-6 tions <i>HF</i> and <i>RP</i> , the followed.	Revises requirements for steel coil loads and strength assessments with respect to multi- tiered loading.

Amended-Original Requirements Comparison Table
(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

Amended		Original		Remarks
Table 4.4.2-6 Load Condition of Hull Girder Load		Table 4.4.2-6 Load Cond	dition of Hull Girder Load	
Members	Load condition	Members	Load condition	
Inner bottom plating	HF an <u>d</u> RP	Inner bottom plating	HF an <u>r</u> RP	
Bilge hopper plating	<u>Case 1</u> <u>HF</u>	Hopper tank sloping	RP	
<u></u>	Case 2 RP	Longitudinal bulkheads	RP	
Longitudinal bulkheads	RP	Side frames	N/A	
Side frames	N/A			
Chapter 10 ADDITIONAL STRUCTURAL REQUIREMENTS 10.1 Ships Carrying Steel Coils		Chapter 10 ADDIT	IONAL STRUCTURAL	Revises requirements for
		*	EMENTS	steel coil loads and strength assessments with respect to multi- tiered loading.
10.1 Ships Carrying Ste 10.1.3 <u>Bilge</u> Hopper <u>P</u>		REQUIR 10.1 Ships Carrying Steel 10.1.3 Hopper <u>Slant Pla</u>	EMENTS	steel coil loads and strength assessments with respect to multi-
 10.1 Ships Carrying State 10.1.3 <u>Bilge Hopper P</u>with <u>Bilge Hop</u>Hoppers) 10.1.3.1 <u>Bilge Hopper P</u> 	eel Coils <u>latings</u> and Longitudinal Frames pper <u>Platings</u> (Ships with Bilge <u>Platings</u>	REQUIR 10.1 Ships Carrying Steel 10.1.3 Hopper <u>Slant Pla</u> with Hopper <u>Sla</u>	EMENTS Coils <u>tes</u> and Longitudinal Frames <u>ant Plates</u> (Ships with Bilge	steel coil loads and strength assessments with respect to multi-
 10.1 Ships Carrying State 10.1.3 <u>Bilge Hopper P</u> with <u>Bilge Hop</u> Hoppers) 10.1.3.1 <u>Bilge Hopper P</u> <u>Bilge hopper plating</u> 	eel Coils <u>latings</u> and Longitudinal Frames pper <u>Platings</u> (Ships with Bilge <u>Platings</u> g thickness is to be greater than or	REQUIR 10.1 Ships Carrying Steel 10.1.3 Hopper <u>Slant Pla</u> with Hopper <u>Sla</u> Hoppers) 10.1.3.1 Hopper <u>Slant Plat</u> <u>Hopper slant plate</u> thi	EMENTS Coils <u>tes</u> and Longitudinal Frames <u>ant Plates</u> (Ships with Bilge	steel coil loads and strength assessments with respect to multi-
 10.1 Ships Carrying State 10.1.3 <u>Bilge Hopper P</u>with <u>Bilge Hop</u>Hoppers) 10.1.3.1 <u>Bilge Hopper P</u>Bilge hopper plating 	eel Coils <u>latings</u> and Longitudinal Frames pper <u>Platings</u> (Ships with Bilge <u>Platings</u> g thickness is to be greater than or e. <u>However, this requirement need</u>	REQUIR 10.1 Ships Carrying Steel 10.1.3 Hopper <u>Slant Pla</u> with Hopper <u>Sla</u> Hoppers) 10.1.3.1 Hopper <u>Slant Plat</u>	EMENTS Coils <u>tes</u> and Longitudinal Frames <u>int Plates</u> (Ships with Bilge <u>tes</u>	steel coil loads and strength assessments with respect to multi-
 10.1 Ships Carrying State 10.1.3 <u>Bilge Hopper P</u>with <u>Bilge Hop</u>Hoppers) 10.1.3.1 <u>Bilge Hopper P</u>Bilge hopper plating 	eel Coils <u>latings</u> and Longitudinal Frames pper <u>Platings</u> (Ships with Bilge <u>Platings</u> g thickness is to be greater than or	REQUIR 10.1 Ships Carrying Steel 10.1.3 Hopper <u>Slant Pla</u> with Hopper <u>Sla</u> Hoppers) 10.1.3.1 Hopper <u>Slant Plat</u> <u>Hopper slant plate</u> thi	EMENTS Coils <u>tes</u> and Longitudinal Frames <u>int Plates</u> (Ships with Bilge <u>tes</u>	steel coil loads and strength assessments with respect to multi-
 10.1 Ships Carrying State 10.1.3 <u>Bilge Hopper P</u>with <u>Bilge Hop</u>Hoppers) 10.1.3.1 <u>Bilge Hopper P</u>Bilge hopper plating 	eel Coils <u>latings</u> and Longitudinal Frames pper <u>Platings</u> (Ships with Bilge <u>Platings</u> g thickness is to be greater than or e. <u>However, this requirement need</u> not in contact with steel coils.	REQUIR 10.1 Ships Carrying Steel 10.1.3 Hopper <u>Slant Pla</u> with Hopper <u>Sla</u> Hoppers) 10.1.3.1 Hopper <u>Slant Plat</u> <u>Hopper slant plate</u> thi	EMENTS Coils <u>tes</u> and Longitudinal Frames <u>int Plates</u> (Ships with Bilge <u>tes</u> ckness is to be greater than or	steel coil loads and strength assessments with respect to multi-

C	for Survey and Construction of Steel Ships (2024 Amen	dment 1))
Amended	Original	Remarks
F _{SC} : The load (kN) acting on the hopper slant plate according to 4.4.2.1-2K1: Coefficient according to 10.1.2.1 Ca: Axial force influence coefficient according to	 <i>F_{SC}</i>: The load (<i>kN</i>) acting on the hopper slant plate according to 4.4.2.1-2 <i>K</i>₁: Coefficient according to 10.1.2.1 <i>C_a</i>: Axial force influence coefficient according to 	
6.3.2.1, Part 1	6.3.2.1, Part 1	
10.1.3.2 Longitudinal Frames with <u>Bilge</u> Hopper	10.1.3.2 Longitudinal Frames with Hopper <u>Slant Plates</u>	
Platings The section moduli and web plate thicknesses of	The section moduli and web plate thicknesses of the	
longitudinal frames with <u>bilge hopper platings</u> are to be greater than or equal to the following values. <u>However, this</u>	web plates of longitudinal frames with hopper slant plates are to be greater than or equal to the following values.	
requirement need not to be applied to longitudinals fitted with plate panels not in contact with steel coils.		
$Z = K_3 \frac{F_{SC}\ell_{bdg}}{8C_s\sigma_Y} \times 10^3 (cm^3), t_w$ $= \frac{0.5F_{SC}}{d_{shr}\tau_Y} \times 10^3 (mm)$	$Z = K_3 \frac{F_{SC} \ell_{bdg}}{8C_s \sigma_Y} \times 10^3 (cm^3), t_w$ $= \frac{0.5F_{SC}}{d_{shr} \tau_Y} \times 10^3 (mm)$	
$=\frac{0.5F_{SC}}{d_{shr}\tau_Y}\times 10^3(mm)$	$= \frac{0.5F_{SC}}{d_{shr}\tau_{V}} \times 10^{3} (mm)$	
Where:	Where:	
σ_Y : Specified minimum yield stress (<i>N/mm²</i>)	σ_Y : Specified minimum yield stress (<i>N/mm</i> ²)	
τ_{Y} : Allowable shear stress (<i>N/mm²</i>)	τ_Y : Allowable shear stress (<i>N</i> / <i>mm</i> ²)	
$\sigma_Y/\sqrt{3}$	$\sigma_Y/\sqrt{3}$	
F_{SC} : The load (kN) acting on the longitudinal frame	F_{SC} : The load (kN) acting on the longitudinal frame	
with <u>bilge</u> hopper <u>plating</u> according to 4.4.2.1-2,	with hopper <u>slant plate</u> according to 4.4.2.1-2, ℓ	
ℓ is to be substituted by ℓ_{bdg} .	is to be substituted by ℓ_{bdg} .	
K_3 : Coefficient according to 10.1.2.2	K_3 : Coefficient according to 10.1.2.2	
C_s : Coefficient related to the influence of axial force	C_s : Coefficient related to the influence of axial force	
according to 6.4.2.1, Part 1	according to 6.4.2.1, Part 1	
d_{shr} : Effective shear depth (mm) of stiffener	d_{shr} : Effective shear depth (mm) of stiffener	
according to 3.6.4.2, Part 1	according to 3.6.4.2, Part 1	

Amended-Original Requirements Comparison Table

(Amendment related to Part C of the Rules)	tor Survey and Construction of Steel Ships (2024 Amer	ament ())
Amended	Original	Remarks
10.1.4 Longitudinal Bulkheads and Longitudinal Frames with Longitudinal Bulkheads (Ships without Bilge Hopper and Ships with Double Side Shells)	10.1.4 Longitudinal Bulkheads and Longitudinal Frames with Longitudinal Bulkheads (Ships without Bilge Hopper and Ships with Double Side Shells)	Revises requirements for steel coil loads and strength assessments with respect to multi- tiered loading.
10.1.4.1 Longitudinal Bulkheads Longitudinal bulkhead thickness is to be greater than or equal to the following value. However, this requirement need not to be applied to strakes not in contact with steel coils. $t = K_1 \sqrt{\frac{F_{SC}}{C_a \sigma_Y}} \times 10^3 (mm)$ Where: F_{SC} : Load (<i>kN</i>) acting on the longitudinal bulkhead according to 4.4.2.1-2 K_1 : Coefficient according to 10.1.2.1. C_a : Axial force influence coefficient according to 6.3.2.1, Part 1.	10.1.4.1 Longitudinal Bulkheads Longitudinal bulkhead thickness is to be greater than or equal to the following value. $t = K_1 \sqrt{\frac{F_{SC}}{C_a \sigma_Y}} \times 10^3 (mm)$ Where: F_{SC} : Load (<i>kN</i>) acting on the longitudinal bulkhead according to 4.4.2.1-2 K_1 : Coefficient according to 10.1.2.1. C_a : Axial force influence coefficient according to 6.3.2.1, Part 1.	
10.1.4.2 Longitudinal Frames with Longitudinal Bulkheads The section moduli and plate thicknesses of the web plates of longitudinal frames with longitudinal bulkheads are to be greater than or equal to the following values. However, this requirement need not to be applied to the longitudinals fitted with plate panels not in contact with steel coils. $Z = K_3 \frac{F_{SC}\ell_{bdg}}{8C_s\sigma_Y} \times 10^3 (cm^3),$	10.1.4.2 Longitudinal Frames with Longitudinal Bulkheads The section moduli and plate thicknesses of the web plates of longitudinal frames with longitudinal bulkheads are to be greater than or equal to the following values. $Z = K_3 \frac{F_{SC} \ell_{bdg}}{8C_s \sigma_Y} \times 10^3 (cm^3),$	

Amended-Original Requirements Comparison Table

(Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

Amended	Original	Remarks
$t_{w} = \frac{0.5F_{SC}}{d_{shr}\tau_{Y}} \times 10^{3} (mm)$ Where: σ_{Y} : Specified minimum yield stress (N/mm ²) τ_{Y} : Allowable shear stress (N/mm ²)	$t_{w} = \frac{0.5F_{SC}}{d_{shr}\tau_{Y}} \times 10^{3} (mm)$ Where: σ_{Y} : Specified minimum yield stress (N/mm ²) τ_{Y} : Allowable shear stress (N/mm ²)	
$\sigma_Y/\sqrt{3}$ F_{SC} : Load (<i>kN</i>) acting on the longitudinal frame with longitudinal bulkhead according to 4.4.2.1-2, ℓ is to be substituted by ℓ_{bdg} .	$\sigma_Y/\sqrt{3}$ F_{SC} : Load (<i>kN</i>) acting on the longitudinal frame with longitudinal bulkhead according to 4.4.2.1-2, ℓ is to be substituted by ℓ_{bdg} .	
$K_3: \text{ Coefficient according to 10.1.2.2} \\ C_s: \text{ Coefficient related to the influence of axial force} \\ according to 6.4.2.1, Part 1 \\ d_{shr}: \text{ Effective shear depth } (mm) \text{ of stiffener,} \\ according to 3.6.4.2, Part 1 \\ \end{bmatrix}$	$K_3: \text{ Coefficient according to 10.1.2.2} \\ C_s: \text{ Coefficient related to the influence of axial force} \\ according to 6.4.2.1, Part 1 \\ d_{shr}: \text{ Effective shear depth } (mm) \text{ of stiffener,} \\ according to 3.6.4.2, Part 1 \\ \end{bmatrix}$	
10.1.5 Side Frames (Ships Without Bilge Hoppers and Single-Side Ships)	10.1.5 Side Frames (Ships Without Bilge Hoppers and Single-Side Ships)	Revises requirements for steel coil loads and strength assessments with respect to multi-
10.1.5.1 Side Frames <u>1</u> In the cases other than three-tiered loading, the section moduli and <u>web</u> thicknesses of side frames are to be greater than or equal to the following values.	10.1.5.1 Side Frames <u>The section moduli and plate</u> thicknesses of side frames are to be greater than or equal to the following values.	tiered loading.
$Z = 1.2 \frac{F_{SC}\ell_{1bdg}}{8\sigma_Y} \times 10^3 (cm^3),$ $t_w = 2.0 \frac{0.5F_{SC}}{d_{shr}\tau_Y} \times 10^3 (mm)$	$Z = 1.2 \frac{F_{SC}\ell_{1bdg}}{8\sigma_Y} \times 10^3 (cm^3),$ $t_w = 2.0 \frac{0.5F_{SC}}{d_{shr}\tau_Y} \times 10^3 (mm)$	
σ_{Y} : Specified minimum yield stress (N/mm ²) τ_{Y} : Allowable shear stress (N/mm ²) $\sigma_{Y}/\sqrt{3}$ F_{SC} : Load (kN) acting on the side frame according	σ_{Y} : Specified minimum yield stress (N/mm ²) τ_{Y} : Allowable shear stress (N/mm ²) $\sigma_{Y}/\sqrt{3}$ F_{SC} : Load (kN) acting on the side frame according	

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

Amended	Original	Remarks
to 4.4.2.1-2	to 4.4.2.1-2	
ℓ_{1bdg} : Effective bending span (<i>m</i>) of the side frame.	ℓ_{1bdg} : Effective bending span (<i>m</i>) of the side frame.	
Where a bracket is provided, the end of the	Where a bracket is provided, the end of the	
effective bending span is to be taken to the	effective bending span is to be taken to the	
position where the depth of the side frame and the	position where the depth of the side frame and the	
bracket is equal to $2h_w$ (See Fig. 6.4.3-2, Part	bracket is equal to $2h_w$ (See Fig. 6.4.3-2, Part	
1).	1).	
d_{shr} : Effective shear depth (mm) of stiffener	d_{shr} : Effective shear depth (mm) of stiffener	
according to 3.6.4.2, Part 1	according to 3.6.4.2, Part 1	
2 In the case of three-tiered loading, the section moduli		
and web thicknesses of side frames are to be treated as simple		
beams and determined by elastic calculations based on the		
following conditions:		
(1) Support conditions are fixed at both ends (positions at		
deck and inner bottom plate)		
(2) Permissible stress is to be σ_y and τ_y as specified in		
-1 above		
(3) As load conditions, F_{SC} for $n_1 = 3$ as specified in		
4.4.2.1-2 for the load acting at the bottom steel coils,		
and F_{SC} for $n_1 = 1$ and no key coil for the load		
acting at the third tier are to be considered.		

Amended-Original Requirements Comparison Table (Amendment related to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))

(Amendment related to Part C of the Rules :	for Survey and Construction of Steel Ships (2024 Amer	ndment 1))
Amended	Original	Remarks
Part 2-6 VEHICLES CARRIERS AND ROLL-ON/ROLL-OFF SHIPS	Part 2-6 VEHICLES CARRIERS AND ROLL-ON/ROLL-OFF SHIPS	Clarifies application of minimum thickness requirements for PCC and Ro-Ro ships
Chapter 3 STRUCTURAL DESIGN PRINCIPLES	Chapter 3 STRUCTURAL DESIGN PRINCIPLES	
 3.1 Minimum Requirements 3.1.1 Minimum Thickness <u>3.1.1.1 Shell Plating in way of Superstructures</u> The minimum thickness requirements specified in 3.5.1.1, Part 1 need not be applied to shell plating from a height twice 	3.1 Minimum Requirements3.1.1 Minimum Thickness	3.1.1.1 was moved to 3.1.1.2 and new require- ments were added as 3.1.1.1.
the height h_s above the freeboard deck to the strength deck. However, the thickness of such plating is not to be less than 5.5 mm.		(Changed)
3.1.1.2 Structures in Cargo Spaces For structural members above the freeboard deck in cargo spaces, the minimum thickness requirements in 3.5.1.3, Part 1 need not be applied.	 3.1.1.<u>1</u> Structure in Cargo <u>space</u> For the structur<u>e of</u> the <u>upper</u> freeboard deck in cargo spaces, the requirements of 3.5, Part 1 <u>may</u> be applied. 3.1.2 Car Deck 	3.1.2 was moved to
3.1.1.3 Car Deck The minimum thickness requirements specified in 3.5.1, Part 1 need not be applied to the plates, stiffeners and girders of car decks loaded solely with wheeled vehicles. However, the gross thicknesses of deck plates, and the webs and flanges of stiffeners attached to decks are not to be less than 5 mm.	3.1.2.1 Application Plates, stiffeners and girders of car decks solely loaded with wheeled vehicles need not comply with the minimum requirements of 3.5, Part1. However, the plates and stiffeners of such decks are to comply with 3.1.2.2.	3.1.1.3 and 3.1.2.2.

Amended-Original Requirements Comparison Table

45/50

Amended	Original	Remarks
3.1.2 Slenderness Requirements3.1.2.1 Shell PlatingThe thickness of shell plating of superstructure is not to beless than that obtained from the following formula.Shell plating of transverse framing system: $t = b \sqrt{\frac{\sigma_Y}{E}} \left(0.9 - \sqrt{0.81 - \frac{0.8\sigma_{min}}{\sigma_Y}} \right)$ Shell plating of longitudinal framing system: $t = b \sqrt{\frac{\sigma_Y}{E}} \cdot$ $\left(\frac{0.06\alpha + 2.19 - \sqrt{(0.06\alpha + 2.19)^2 - \frac{2\alpha\sigma_{min}(3.7 - 1.2\alpha)}{\sigma_Y}} \right)^2 - \frac{2\alpha\sigma_{min}(3.7 - 1.2\alpha)}{\sigma_Y} \right)^2 - \frac{\alpha\sigma_{min}(3.7 - 1.2\alpha)}{\sigma_Y} \right)^2$ a: Length (mm) of the longer side of plateb: Length (mm) of the shorter side of plate $\frac{\alpha}{\sigma_{min}}$: Minimum vertical proof stress considered, to betaken as:Shell plating below the midpoint between the freeboard deck and upper deck: $50 (N/mm^2)$	 3.1.2.2 Minimum Thickness of the Car Deck 1 The gross thickness of the car deck is not to be less than 5 mm. 2 The gross thickness of web and flange of stiffeners attached to the car deck is not to be less than 5 mm. (Newly added) 	

(Amendment related to Fart C of the Rules)	for survey and construction of sicer ships (2024 Amer	
Amended	Original	Remarks
Fig. 3.1.2-1 Minimum Vertical Proof Stress Considered		
Upper Deck $\sigma_{min} = 30 (N/mm^2)$ $\sigma_{min} = 50 (N/mm^2)$ Freeboard Deck <u>3.1.2.2 Car Decks</u> The slenderness requirements specified in 3.5.2, Part 1		
need not be applied to the plates, stiffeners and girders of car decks loaded solely with wheeled vehicles.		

Amended	Original	Remarks
Chapter 9 FATIGUE	Chapter 9 FATIGUE	
9.5 Screening Assessment	9.5 Screening Assessment	
9.5.6 Fatigue Strength Assessment	9.5.6 Fatigue Strength Assessment	
9.5.6.3 Fatigue Damage Calculation and Fatigue Strength Assessment Criterion	9.5.6.3 Fatigue Damage Calculation and Fatigue Strength Assessment Criterion	
1 The cumulative fatigue damage D is to be obtained	1 The cumulative fatigue damage D is to be obtained	
from the following formula:	from the following formula:	
$D = \sum_{j} \alpha_{(j)} \cdot D_{(j)}$	$D = \sum_{j} \alpha_{(j)} \cdot D_{(j)}$	
$\alpha_{(j)}$: Fraction of time of loading condition (j) in	$\alpha_{(j)}$: Fraction of time of loading condition (j) in	
the fatigue design life, as given in Table 9.3.1-1 .	the fatigue design life, as given in Table 9.3.1-1.	
$D_{(j)}$: Cumulative fatigue damage for the fatigue	$D_{(j)}$: Cumulative fatigue damage for the fatigue	
design life for loading condition (j) calculated by	design life for loading condition (j) calculated by	
the following formula: T	the following formula: T	
$D_{(j)} = \frac{\overline{T_{FD}} - \overline{T}_C}{\underline{T_{FD}}} D_{air,(j)} + \frac{\overline{T}_C}{\underline{T_{FD}}} D_{cor,(j)}$	$D_{(j)} = \frac{\overline{T_{DF}} - \overline{T}_C}{\underline{T_{DF}}} D_{air,(j)} + \frac{\overline{T}_C}{\underline{T_{DF}}} D_{cor,(j)}$	
$D_{air,(j)}, \overline{D_{cor,(j)}}$: Cumulative fatigue	$D_{air,(j)}, \overline{D_{cor,(j)}}$: Cumulative fatigue	
damage in the in-air environment	damage in the in-air environment	
and corrosive environment for the	and corrosive environment for the	
fatigue design life for loading	fatigue design life for loading	
condition (j). NED $\Lambda \sigma^m$ (m)	$\begin{array}{c} \text{condition } (j). \\ N_{\text{DE}} \Delta \sigma^{m} \\ \end{array} $	
$D_{air,(j)} = \frac{N_{FD}}{K_{2,air}} \frac{\Delta \sigma_{FS,(j)}}{(\ln N_R)^{m/\xi}} \cdot \mu_{(j)} \cdot \Gamma\left(1 + \frac{m}{\xi}\right)$	$D_{air,(j)} = \frac{MDF}{K_{2,air}} \frac{\Delta O_{FS,(j)}}{(\ln N_R)^{m/\xi}} \cdot \mu_{(j)} \cdot \Gamma\left(1 + \frac{m}{\xi}\right)$	
$D_{air,(j)} = \frac{\underline{N_{FD}}}{K_{2,air}} \frac{\Delta \sigma_{FS,(j)}^m}{(\ln N_R)^{m/\xi}} \cdot \mu_{(j)} \cdot \Gamma\left(1 + \frac{m}{\xi}\right)$ $D_{cor,(j)} = \frac{\underline{N_{FD}}}{K_{2,cor}} \frac{\Delta \sigma_{FS,(j)}^m}{(\ln N_R)^{m/\xi}} \cdot \Gamma\left(1 + \frac{m}{\xi}\right)$	$D_{air,(j)} = \frac{N_{DF}}{K_{2,air}} \frac{\Delta \sigma_{FS,(j)}^{m}}{(\ln N_R)^{m/\xi}} \cdot \mu_{(j)} \cdot \Gamma\left(1 + \frac{m}{\xi}\right)$ $D_{cor,(j)} = \frac{N_{DF}}{K_{2,cor}} \frac{\Delta \sigma_{FS,(j)}^{m}}{(\ln N_R)^{m/\xi}} \cdot \Gamma\left(1 + \frac{m}{\xi}\right)$	

(Amendment related to Part C of the Rules)	ted to Part C of the Rules for Survey and Construction of Steel Ships (2024 Amendment 1))		
Amended	Original	Remarks	
N_{FD} : Total number of cycles in the	N_{DF} : Total number of cycles in the		
fatigue design life T_{DF} .	fatigue design life T_{DF} .		
$\underline{N_{FD}} = \frac{60 \times 60 \times 24 \times 365.25}{4 \log L_c} \cdot f_D$	$\underline{N_{DF}} = \frac{60 \times 60 \times 24 \times 365.25}{4 \log L_c} \cdot f_D$		
$\cdot \underline{T_{FD}}$	$\cdot T_{DF}$		
(Omitted)	(Omitted)		
(0,111,12)			
Part 2-9 SHIPS CARRYING LIQUEFIED	Part 2-9 SHIPS CARRYING LIQUEFIED		
GASES IN BULK	GASES IN BULK		
(INDEPENDENT PRISMATIC TANKS TYPE	(INDEPENDENT PRISMATIC TANKS TYPE		
A/B)	A/B)		
Chapter 9 FATIGUE	Chapter 9 FATIGUE		
Chapter > THIRDEL			
9.1 General	9.1 General		
9.1.2 Assumptions	9.1.2 Assumptions		
-			
9.1.2.1	9.1.2.1		
The following assumptions (1) to (9) are made in the	The following assumptions (1) to (9) are made in the		
fatigue strength assessment specified in this Chapter.	fatigue strength assessment specified in this Chapter.		
(1) A linear cumulative damage model (i.e. Miner's rule)	(1) A linear cumulative damage model (i.e. Miner's rule)		
given in 9.5.4, Part 1 is used in the calculation of	given in 9.5.4, Part 1 is used in the calculation of		
fatigue damage. (2) Estimut design life T is taken not loss than 25	fatigue damage. (2) Estimue design life T is taken not less than 25		
(2) Fatigue design life T_{FD} is taken not less than 25	(2) Fatigue design life T_{DF} is taken not less than 25		

Amended	Original	Remarks
years.	years.	
((3) to (9) are omitted.)	((3) to (9) are omitted.)	
(1) Other than 9.5.5, Part 1; 9.3, 9.4 and 9.5, Part 2-1; and Chapters 4 and 10, Part 2-5		
EFFECTIVE DATE AND APPLICATION		
1. Effective date of this draft amendment is [the date of establishment].		
(2) 9.5.5, Part 1; 9.3, 9.4 and 9.5, Part 2-1; and Chapters 4 and 10, Part 2-5		
EFFECTIVE DATE AND APPLICATION		
1. Effective date of this amendment is the date 6 months from the date of establishment.		
 Notwithstanding the amendments to the Rules, the current requirements apply to ships for which the date of contract for construction is before the effective date. 		
3. Notwithstanding the provision of preceding 2., the amendments to the Rules may apply to ships for which the date of contract for construction is before the effective date upon requests.		