Materials Used for Steel Castings and Steel Forgings

Object of Amendment

Rules for the Survey and Construction of Steel Ships Parts D, K, and M Guidance for the Survey and Construction of Steel Ships Parts D and K

Reason for Amendment

IACS Unified Requirements (UR) W7 and W8 specify requirements for the mechanical properties and test methods of steel forgings (W7) and steel castings (W8) used for hull structures and machinery, and these requirements have already been incorporated into the NK Rules.

Among these requirements, the application of those related to the chemical compositions of steel castings and steel forgings, handling of the chemical composition values is unclear with respect to differences between carbon steel and alloy steel as well as whether they may be used for welded constructions, etc. In addition, the application of requirements related to forging ratios is partially unclear with respect to steel forgings.

Accordingly, relevant requirements are amended in order to clarify the above-mentioned application and to bring requirements for steel forgings and steel castings more in line with current practice.

Outline of the Amendment

The main contents of this amendment are as follows:

- (1) Clarify the correspondence between the specified minimum tensile strength values of shaft materials used and Part K of the Rules for the Survey and Construction of Steel Ships.
- (2) Specify requirements for rolled steel bars intended for machine structures includes rolled steel bars for hull structures, and that rolled steel bars are required to undergo impact tests in the same manner as steel forgings.
- (3) Clarify the chemical composition values of steel castings by categorising them as either steel castings for welded construction or steel castings for non-welded construction.
- (4) Clarify requirements related to forging ratios based upon UR W7.
- (5) Clarify the chemical composition values of steel forgings by categorising them as either steel forgings for machinery or for hull structures, and also by categorising as either for welded construction or for non-welded construction.
- (6) Delete requirements related to the omission of impact tests during approval tests for welding procedures and related specifications with respect to steel castings and steel forgings which are to be of the same weldable quality used for hull structures.

Effective Date and Application

- (1) This amendment applies to ships for which the date of contract for construction is on or after 1 January 2025.
- (2) Notwithstanding (1) above, this amendment may be applied to other ships upon

An asterisk (*) after the title of a requirement indicates that there is also relevant information in the corresponding Guidance.

Amended	Original	Remarks
RULES FOR THE SURVEY AND	RULES FOR THE SURVEY AND	
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	
Part D MACHINERY INSTALLATIONS	Part D MACHINERY INSTALLATIONS	
Chapter 6 SHAFTINGS	Chapter 6 SHAFTINGS	
6.2 Materials, Construction and Strength	6.2 Materials, Construction and Strength	
6.2.1 Materials	6.2.1 Materials	
1 (Omitted)	1 (Omitted)	
2 (Omitted)	2 (Omitted)	A 11
3 The specified tensile strength of the shaft materials is	3 The specified tensile strength of the shaft materials is	Align with the value
generally to be between 400 and <u>760 N/mm²</u> and to be between	generally to be between 400 and $800 N/mm^2$ and to be between	given for tensile strength in Table K6.3(a),
500 and $\frac{760}{N}$ N/mm ² for shafts experiencing torsional vibration	500 and $800 N/mm^2$ for shafts experiencing torsional vibration	Chapter 6, Part K of the
stress that exceeds 85 % of the value for τ_2 given in 8.2.2.	stress that exceeds 85 % of the value for τ_2 given in 8.2.2.	Rules.
Steel forgings with a specified tensile strength exceeding	Steel forgings with a specified tensile strength exceeding	1100200
$\frac{760}{100}$ N/mm ² are not to be used for any shafts unless specially	$800 \ N/mm^2$ are not to be used for any shafts unless specially	
approved by the Society. For alloy steel castings, the value	approved by the Society.	
<u>"760 N/mm²" is to be read as "1100 N/mm²".</u>		

7 Hillended	Amended	3 Companis	Original	Remarks				
RULES FO	R THE SURVEY AN	ID	RULES FOR THE SURVEY AND					
	ΓΙΟΝ OF STEEL SH		CONSTRUCTION OF STEEL SHIPS					
Part 1	KMATERIALS		Part KMATERIALS					
Chapter 3	ROLLED STEELS	S	Chapter 3 ROLLED STEELS					
3.7 Rolled Steel Ba	rs for <u>Structures</u>		3.7 Rolled Steel Bars for Machine Structures	Delete the word "machine" so as to also include hull structures.				
used for machine st (hereinafter referred to	ts are to apply to the rolle ructures such as shaft as "steel bars" in 3.7) and tures such as stern frames	ts or bolts drolled steel	 3.7.1 Application 1 The requirements are to apply to the rolled steel bars used for machine structures such as shafts or bolts (hereinafter referred to as "steel bars" in 3.7). 2 (Omitted) 	Clarify that the requirement also applies to rolled steel bars used for hull structures.				
3.7.2 Kinds The steel bars at Table K3.26.	re classified into 2 grades	C	3.7.2 Kinds The steel bars are classified into 2 grades as given in Table K3.26. Table Steel Bars	Add an example of an				
	Kind		Grade	indication for hull				
	Rolled carbon steel bars	to the grade "KS	seel bars is to be indicated by suffixing a letter "R" specified in Table K6.3(a) and Table K6.3(b) o-M and KSFR440-H)	structures.				
	Rolled alloy steel bars							
'								

Amended-Original Requirements	Comparison Table	Materials Used for Steel	Castings and Steel Forgings)
\wp 1	1	(

	on Table (Materials Used for Steel Castings and Steel F	C C /
Amended	Original	Remarks
 3.7.7 Selection of Test Specimens Test specimens are to be taken according to (1) to (3) below: (1) One tensile test specimen is to be taken from one test sample. (2) A set of test specimens are to be taken from one test sample. 	 3.7.7 Selection of Test Specimens Test specimens are to be taken according to (1) and (2) below: (1) One tensile test specimen is to be taken from one test sample. (Newly added) 	Clarify that impact testing is also required for rolled bars for structures in accordance with the requirements for castings and forgings.
(3) The requirements specified in 3.6.8-3, -4 and -5 are to apply.	(2) The requirements specified in 3.6.8-3 and -4 are to apply.	
3.7.12 Markings Steel bars which have satisfactorily complied with the required tests are to be marked with the identification mark in accordance with the requirements in 1.5.1. For steel bars to which the requirements given in 6.1.6-2 have been applied, the value corresponding to the required tensile strength employed is to be suffixed to their respective grade markings (e.g. where the required tensile strength employed is 440 N/mm², "KSFR440-M" or "KSFR440-H" is to be indicated) Chapter 5 CASTINGS	3.7.12 Markings Steel bars which have satisfactorily complied with the required tests are to be marked with the identification mark in accordance with the requirements in 1.5.1. For steel bars to which the requirements given in 6.1.6-2 have been applied, the value corresponding to the required tensile strength employed is to be suffixed to their respective grade markings (e.g. where the required tensile strength employed is 440 N/mm², "KSFR440-M" is to be indicated) Chapter 5 CASTINGS 5.1 Steel Castings	Add an example of an indication for hull structures.
5.1.4 Chemical Composition	5.1.4 Chemical Composition	
1 Steel castings are to have the chemical composition given in Table K5.1.	1 Steel castings are to have the chemical composition given in Table K5.1. Steel castings for welded construction are to have a chemical composition deemed appropriate by the Society.	Instead of specifying the chemical composition of steel castings intended for welding in Table

	Amended-Original Requirements Comparison Table (Materials Used for Steel Castings and Steel F												Torgings)		
			ended					•			Original				Remarks
"W" is t	2 For steel castings intended for welded construction, "W" is to be suffixed to their respective grade markings (e.g. KSC440W and KSCA440W). (-3 and -4 are omitted.) 2 For carbon steel castings intended for welded construction, the carbon content is generally not to exceed 0.23 %. For carbon steel castings complying with this requirement, "W" is to be suffixed to their respective grade markings (e.g. KSC440W). (-3 and -4 are omitted.)										K5.1, delete the text that is no longer necessary. Same as above. Add an example of an indication for alloy steel castings.				
					Table K	5.1 Che		Composi						Ī	
	Kind C Si Mn S				Chemic P	cal compos	cr	Ni	Мо	<u>V</u>	Total residual elements		Specify the categorising		
	Steel castings not	Carbon steel castings	0.40 max.	0.60 max.	0.50- 1.60	0.035 max.	0.035 max.	0.30 max. ⁽¹⁾	0.30 max. ⁽¹⁾	0.40 max. ⁽¹⁾	0.15 max. ⁽¹⁾	=	0.80 max.		of steel castings as being either those intended for welding or those not intended for welding, and also as being either carbon steel castings or alloy steel castings.
	<u>intended</u> <u>for</u> <u>welding</u>	Alloy steel castings	0.45 max.	0.60 max.	0.50- 1.60	0.030 max.	0.035 max.	0.30 min. ⁽²⁾	0.40 min. ⁽²⁾	0.40 min. ⁽²⁾	0.15 min. ⁽²⁾	_	_		
	Steel castings	Carbon steel castings	0.23 max.	0.60 max.	0.50- 1.60	0.035 max.	0.035 max.	0.30 max. (1)	0.30 max. (1)	0.40 max. (1)	0.15 max. ⁽¹⁾	_	0.80 max.		
	$ \begin{array}{c cccc} \underline{intended} & \underline{Alloy} \\ \underline{for} & \underline{steel} & \underline{0.25} & \underline{0.60} \\ \underline{welding} & \underline{castings} & \underline{max.} & \underline{max.} \\ \hline & & & & & & & \\ \hline \end{array} $						0.035 max.	0.30 max. (1)	0.40 min. (2)	0.40 min. (2)	0.15 min. (2)	0.12 max. (1)	_		
	No (1 (2 (3	One or m	ore of the	elements is	s to comply	y with the	minimum	ments are r content.						•	

Table K5.2 Mechanical Properties of Steel Casting Steel Casting Tensile strength. (i) Proof stress (N/mm²) Pr	test (2) mum average energy (J) 27	
Tensile strength	test (2) mum average energy (J) 27	fo
Carbon steel castings KSC400	energy (J) 27	
Carbon steel castings SCC440		
Carbon steel gs KSC480		
Steel castings Stee		
Section Sect		
Section Sect		
RSC600 600 min. 320 min. 13 min. 20 min. 35 min. 32 min. 30 min. 35 min. 400 min. 22 min. 30		
Alloy Steel castings Carbon Steel castings SCZ60W 520 min. 200 min. 15 min. 25 min. 20		
Alloy steel KSCA600 600 min. 400 min. 16 min. 35 min. 220 min. 220 m		
KSCA650 650 min. 450 min. 14 min. 32 min. Carbon gs led KSCA400W 400 min. 200 min. 25 min. 40 min. Carbon steel castings KSC440W 440 min. 220 min. 22 min. 30 min. KSC520W 520 min. 260 min. 18 min. 25 min. KSC560W 560 min. 300 min. 15 min. 20 min. KSC600W 600 min. 320 min. 13 min. 20 min. Alloy steel castings KSCA600W 600 min. 400 min. 16 min. 30 min. KSCA650W 650 min. 450 min. 14 min. 30 min. KSCA700W 700 min. 540 min. 12 min. 28 min.		
Carbon Steel Castings KSCA700 700 min. 540 min. 12 min. 28 min. 28 min. 27		
Carbon steel castings KSC400W 400 min. 200 min. 25 min. 40 min. 30 min. KSC440W 440 min. 220 min. 220 min. 27 min. 27 min. KSC480W 520 min. 260 min. 18 min. 25 min. 200 min. KSC560W 560 min. 300 min. 15 min. 20 min. 20 min. KSC600W 600 min. 320 min. 13 min. 20 min. 20 min. KSC600W 600 min. 320 min. 13 min. 20 min. 30 min. KSCA550W 550 min. 355 min. 18 min. 30 min. KSCA600W 600 min. 400 min. 16 min. 30 min. KSCA650W 650 min. 450 min. 14 min. 30 min. KSCA700W 700 min. 540 min. 12 min. 28 min. Notes:		
Carbon steel castings KSC440W	Clarify that "W" is	
Carbon Steel Castings KSC480W 480 min. 240 min. 20 min. 27 min. 25 min. 25 min. 20 min. 25 min. 20 m	Clarify that "W" is	
Castings Castings	Clarify that "W" is	
See	Clarify that "W" is	
Alloy Steel Castings KSCA700W Too min. Too	Clarify that "W" is	
Alloy steel castings	Clarify that "W" is	
Steel castings KSCA650W 650 min. 450 min. 16 min. 30 min. KSCA700W 700 min. 450 min. 14 min. 30 min. KSCA700W 700 min. 540 min. 12 min. 28 min.	Clarify that "W" is	
Castings KSCA650W 650 min. 450 min. 14 min. 30 min. KSCA700W 700 min. 540 min. 12 min. 28 min.	Clarify that "W" is	
Notes: KSCA700W 700 min. 540 min. 12 min. 28 min.	Clarify that "W" is	
	Clarify that "W" is	
(1) A tensile strength range of 130 N/mm² may additionally be specified. (2) Special consideration may be given to alternative requirements for Charpy V-notch impact tests, depending on design and application, and so	- 1	

7/23

(4) For steel castings intended for welded construction, "W" is to be suffixed to their respective grade markings in accordance with 5.1.4-2.

welding is performed.

Amended	Original Original	Remarks
Chapter 6 STEEL FORGINGS	Chapter 6 STEEL FORGINGS	
•		
6.1 Steel Forgings	6.1 Steel Forgings	
 6.1.2 Manufacturing Process* 1 Steel forgings are to be manufactured from killed steel. 2 Adequate top and bottom discards are to be made to ensure freedom from piping and harmful segregation in the finished forgings. 3 Primary materials such as ingot supplied to other works are to be manufactured at the works approved by the Society with regard to the manufacturing process of the materials. (Deleted) 	 6.1.2 Manufacturing Process* 1 Steel forgings are to be manufactured from killed steel. 2 Adequate top and bottom discards are to be made to ensure freedom from piping and harmful segregation in the finished forgings. 3 Primary materials such as ingot supplied to other works are to be manufactured at the works approved by the Society with regard to the manufacturing process of the materials. 4 Steel forgings are to be hot worked by means specified in Table K6.1 from ingots, blooms forged or rolled from ingots or blooms made from ingots by a combination of rolling 	Incorporate into -4.
 4 Steel forgings are to be forged in accordance with the following (1) to (6). (1) The plastic deformation by forging is to be such as to ensure soundness, uniformity of structure and satisfactory mechanical properties after the heat treatment specified in 6.1.5. (2) The forging ratio is to be calculated with reference to the average cross-sectional area of the cast material. (3) In cases where the cast material is initially upset, the reference area in (2) above may be taken as the average cross-sectional area after this operation. (4) The total forging ratio is to be not less than those in Table K6.1 unless otherwise deemed appropriate by 	and forging. 6 Steel forgings are to be subjected to hot work to give sufficient forging ratios that are not less than those in Table	-4(1) to -4(4): Incorporates UR W7(Rev.4) Para2.4. Specify in -4(4).

Amended	Original	Remarks
 (5) Steel forgings are to be gradually and uniformly forged as far as practicable and are to be brought as near as possible to the finished shape and size so as to cause metal flow in the most favourable direction having regard to the mode of stressing in service. (6) When upsetting, ingots are to be compressed in the axial direction using anvils whose cross-sections are larger than that of the ingot in order to have sufficient internal forging effects (e.g. uniform deformation of internal portions) on the ingot. Forging ratios are to be described on mill sheets. 5 Where steel forgings are subjected to surface hardening process such as induction hardening, nitriding or rolling press, data relative to the hardening process is to be submitted for approval to the Society in advance. 6 Steel forgings shaped by flame cutting or scarfing are to have a sufficient machining allowance for removing the heat-affected zone, and the operation is to be carried out before the final heat treatment. Preheating is to be carried out according to the chemical composition, dimensions and form of the steel forgings. 	K6.1. The requirements, however, may be suitably modified at the discretion of the Surveyor according to the size or form or the use for which they are intended, except for compression deformations of steel ingots or forging materials in the longitudinal direction (i.e. upsetting). 5 Steel forgings are to be gradually and uniformly hot worked as far as practicable and are to be brought as nearly as possible to the finished shape and size so as to cause metal flow in the most favourable direction having regard to the mode of stressing in service. 9 When upsetting, ingots are to be compressed in the axial direction using anvils whose cross-sections are larger than that of the ingot in order to have sufficient internal forging effects (e.g. uniform deformation of internal portions) on the ingot. Forging ratios are to be described on mill sheets. 7 Where steel forgings are subjected to surface hardening process such as induction hardening, nitriding or rolling press, data relative to the hardening process is to be submitted for approval to the Society in advance. 8 Steel forgings shaped by flame cutting or scarfing are to have a sufficient machining allowance for removing the heat-affected zone, and the operation is to be carried out before the final heat treatment. Preheating is to be carried out according to the chemical composition, dimensions and form of the steel forgings.	Transfer to relevant guidance.

Amended						on Table (Materials Used for Steel Castings and Steel F						
	Amended			Original						Remar	·ks	
Tabl	e K6.1 Forging Rat	io				Clarify	UR V	W7(Rev.4)				
<u>Type</u>	<u>Dimension⁽¹⁾</u>	Forging ratio ⁽²⁾			<u>Forging</u>	Hot working	Portion	Forging ratio ⁽¹⁾	Para. 2.4	r		
Forgings made from ingots or	<u>L > D</u>	<u>S=3</u>			Shaft forgings	Forging only	Body Others	$\frac{S=3}{S=1.5}$				
from forged blooms or billets	<u>L ≤ D</u>	<u>S=1.5</u>				Forging and rolling	Body Others	$\frac{S=5}{S=3}$				
Forgings made	<u>L ≤ D</u>	<u>S=4</u>			Ring forgings	Extend hollow forging by forging press ring	<u>—</u>	<u>S=3</u>				
<u>from rolled</u> <u>products</u>	<u>L > D</u>	<u>S=2</u>			Disc forgings	mill, etc. Upsetting from ingot ⁽²⁾		<u>U=1/3</u>				
Forgings made by upsetting (3)	_	<u>U=1/3</u>		'								
Rolled bars	=	<u>S=3</u>										
$(1) L \text{ and } D \text{ are } \frac{p \text{ roducts.}}{p \text{ roducts.}}$ $(2) \text{Forging ratio}$ $S = \frac{A}{a}, U = \frac{1}{L}$ where: $A : \text{ Mean se } a : \text{ Sectiona}$ $\frac{L_i}{L_f} : \text{ Length } \frac{L_f}{L_f} : \text{ Length } \frac{L_f}{L_f}$ $(3) \text{ In the case of } \frac{L_f}{L_f} : \text{ Tatio may be}$ $6.1.3 \text{Kinds}$	products. (2) Forging ratio is to be calculated by the following equation: $S = \frac{A}{a}, U = \frac{1}{L_i / L_f}$ where: A: Mean sectional area of original ingot (m^2) a: Sectional area of the portion after forging (m^2) $L_i : \text{Length before upsetting } (m)$ $L_f : \text{Length after upsetting } (m)$ (3) In the case of an initial forging ratio of at least $S = 1.5$, the forging ratio may be not more than $U = 1/2$ of the length before upsetting.					ing ratio is to be calculated $(a, U = L_1/L)$ e: Mean sectional area of original dectional area of the portion dength before upsetting (m) denoted after upsetting up to $1/L$ the value U , as a whole, $1/L$ s. In forgings are classif	nal ingot (m^2) after forging $\sqrt{2U}$ or more in $\sqrt{3}$.	s (m ²)				
Steel forgings are classified as specified in Table K6.3(a) and Table K6.3(b).			K	1 ne steet	Torgings are classif	icu as spe	cifica in Table					
6.1.4 Chemical	Composition				6.1.4 Chen	nical Composition						
1 Steel forgings	are to have the ch	emical com	position		1 Steel for	gings are to have th	ne chemic	al composition	Specify	sepa	rately for	

given in Table K6.2.

machinery steel forgings

given in Table K6.2(a) and Table K6.3(b).

Original	Remarks
	and hull steel forgings.
2 Where carbon steel forgings are not intended for	Summarise in Table
welded constructions, carbon content is not to exceed 0.65 %.	K6.2(a) and Table
Carbon content may be increased in cases where the carbon	K6.2(b).
equivalent (C_{eq}) specified in 1.5.2-2(6) is less than 0.41 %.	
	Same as above.
<u> </u>	
,	
1	
_ , _ ,	
<u> </u>	
,	
	2 Where carbon steel forgings are not intended for welded constructions, carbon content is not to exceed 0.65 %. Carbon content may be increased in cases where the carbon equivalent (Ceq) specified in 1.5.2-2(6) is less than 0.41 %. 3 Where alloy steel forgings are intended for welded constructions, chemical composition is to be approved by the Society. 4 For steel forgings complying with -2 or -3 above, "W" is to be suffixed to their respective grade markings (e.g. KSF440W and KSFA600W-H). 5 For steel forgings for rudder stocks and pintles, the chemical composition is to be weldable quality. In case where high strength carbon steel forgings are used, the requirements in -2 above may be relaxed subject to the approval by the Society. In this case, "(W)" is to be suffixed to the markings. 6 Steel forgings may be added with Al, Nb or V element for greater grain refining of the metal crystal. 7 The manufacturer is to make an analysis of each melt

	Amended							C	Original			Remarks
	Table K6	.2 <u>(a)</u> Che	emical (Composi			composition		<u>ıgs</u>			Specify separately for machinery steel forgings and hull steel forgings.
Kir	nd	С	Si ⁽²⁾	Mn	P	S	Cr (♣2)	<i>Mo</i> ^{(₃} 2)	Ni ⁽³ 2)	Cu (\$2)	Total residual elements	and hun seer rorgings.
Steel forgings	<u>Carbon steel</u> <u>forgings</u>	0.65 max. (4)	0.45 max.	<u>0.30∼</u> 1.50	0.035 max.	0.035 max.	0.30 max.	0.15 max.	0.40 max.	0.30 max.	0.85 max.	
not intended for welding	Alloy steel forgings	0.45 max. (5)	0.45 max.	0.30~ 1.00 ⁽⁵⁾	0.035 max.	0.035 max.	0.40 min.	0.15 min. (43)(5)	0.40 min.	0.30 max.	_	Specify separately fo not intended for welding and intended fo
Steel forgings	Carbon steel forgings	0.23 max ⁽⁴⁾	0.45 max.	0.30~ 1.50	0.035 max.	0.035 max.	0.30 max.	0.15 max.	0.40 max.	0.30 max.	0.85 max.	welding.
intended for welding	Alloy steel forgings (5)	0.25	<u>0.45</u>	0.30~ 1.00	0.035	0.035	0.40 min. (3)	0.15 min. (3)	0.40 min. (3)	0.30	<u>=</u>	
(43) One or m (54) For alloy	the steel. The contents to ore of the elements is steel forgings for huld may be increased in case.	to comply w	vith the m	inimum cor alues in th	ntent. e table, sp	ecificatio	ns are to l			ociety for (approval Carbon	Delete Note (2) so as to align with UI W7(Rev.4).
(5) The chen	nical composition in th	nis table is to	be applie	ed unless ot	herwise d	eemed ap	propriate b	y the Socie	ety.			

Amended							Original Original							Remarks
		Table I	X6.2(b)	Chemic	al Comp	osition	of Hull	Steel F	orgings					Same as above
Chemical Composition (%) (1)														
	<u>Ki</u>	<u>nd</u>	<u>C</u>	<u>Si</u>	<u>Mn</u>	<u>P</u>	<u>S</u>	<u>Cr ⁽²⁾</u>	<u>Mo (2)</u>	<u>Ni ⁽²⁾</u>	<u>Cu (2)</u>	Total residual elements		
	Steel forgings	<u>Carbon steel</u> <u>forgings</u>	0.65 max. (4)	0.45 max.	<u>0.30∼</u> <u>1.50</u>	0.035 max.	0.035 max.	0.30 max.	0.15 max.	0.40 max.	0.30 max.	<u>0.85 max.</u>		
	not intended for welding	Alloy steel forgings (5)	0.45 max. (6)	0.45 max.	0.30~ 1.00 ⁽⁶⁾	0.030 max.	0.030 max.	0.40~ 3.50 (3)(6)	0.15~ 0.70 (3)(6)	0.40~ 3.50 (3)(6)	0.30 max.	=		
	Steel forgings	<u>Carbon steel</u> <u>forgings</u>	0.23 max. (4)	0.45 max.	<u>0.30∼</u> <u>1.50</u>	0.035 max.	0.035 max.	0.30 max.	0.15 max.	0.40 max.	0.30 max.	<u>0.85 max.</u>		
	<u>intended</u> <u>for welding</u>	Alloy steel forgings (5)	0.25 max. (6)	0.45 max.	0.30~ 1.00 (6)	0.035 max.	0.035 max.	0.40 min. (3)(6)	0.15 min. (3)(6)	0.40 min. (3)(6)	0.30 max.	_		
Notes: (1) Where other elements approved by the Society are added, their contents are to be described in the test results. (2) Elements considered to be residual elements except in cases where a minimum value is indicated. Residual elements are not to be intentionally added to the steel. The contents of residual elements are to be described in the test results. (3) One or more of the elements is to comply with the minimum content. (4) Carbon content may be increased in cases where the carbon equivalent (Ceq) specified in 1.5.2-2(6) is less than 0.41 %. (5) The chemical composition in this table is to be applied unless otherwise deemed appropriate by the Society. (6) Specification is to be submitted for approval regardless of the values in the table.														
forg K6 stee	.1.6 Mechanic Regardless of we gings are to be in .3(b). However, the forgings for which ropriate by the Social Where the various forgings is 6 K6.3(a) and 1	a) and valloy eemed of the	the me	The mordance chanical llowing by. When forging the more and the more	nechanie with all proper apply re the very series.	Fables Kerties of lomay be alue of y	erties of (6.3(a) ow alloy as dee ield point from	and K (orgings are to (3.3(b). Howe orgings for who propriate by roof stress of alues in Tal	ver, nich the	Clarify that both cases of welding or not welding are applicable.			

Amended	Original	Remarks
(2) Where the forgings are used for rudder stokes or	(2) Where the forgings are used for rudder stoke or pintles	
pintles, etc.	etc.	
(-2 to -5 are omitted.)	(-2 to -5 are omitted.)	

Table K6.3(a) Mechanical Properties of Machinery Steel Forgings

Kin	ıd	Grade (7)	Tensile strength (1)	Yield point or proof stress		$L = 5.65 \sqrt{A}$		on of area	Brinell hardness ⁽²⁾ HBW	Charpy V-no	tch impac	t test ⁽⁶⁾
			(N/mm ²)	(N/mm ²)	L	T	L	T		Test temperature (°C)	average	mum e energy
											L	T
		KSF400-M	400 min.	200 min.	26 min.	19 min.	50 min.	35 min.	110~150			
		KSF440-M	440 min.	220 min.	24 min.	18 min.	50 min.	35 min.	125~160			
		KSF480-M	480 min.	240 min.	22 min.	16 min.	45 min.	30 min.	135~175			
	G 1	KSF520-M	520 min.	260 min.	21 min.	15 min.	45 min.	30 min.	150~185	_		
	Carbon	KSF560-M	560 min.	280 min.	20 min.	14 min.	40 min.	27 min.	160~200			
	steel forgings	KSF600-M	600 min.	300 min.	18 min.	13 min.	40 min.	27 min.	175~215			
	Torgings	KSF640-M	640 min.	320 min.	17 min.	12 min.	40 min.	27 min.	185~230			
For		KSF680-M	680 min.	340 min.	16 min.	12 min.	35 min.	24 min.	200~240	A T ⁽⁸⁹⁾	27	18
machinery (78)		KSF720-M	720 min.	360 min.	15 min.	11 min.	35 min.	24 min.	210~250	AI(*2)	21	18
		KSF760-M	760 min.	380 min.	14 min.	10 min.	35 min.	24 min.	225~265			
		KSFA600-M	600 min.	360 min.	18 min.	14 min.	50 min.	35 min.	175~215			
	A 11	KSFA700-M	700 min.	420 min.	16 min.	12 min.	45 min.	30 min.	205~245			
	Alloy steel	KSFA800-M	800 min.	480 min.	14 min.	10 min.	40 min.	27 min.	235~275			
	forgings	KSFA900-M	900 min.	630 min.	13 min.	9 min.	40 min.	27 min.	260~320			
	Torgings	KSFA1000-M	1000 min.	700 min.	12 min.	8 min.	35 min.	24 min.	290~365			
		KSFA1100-M	1100 min.	770 min.	11 min.	7 min.	35 min.	24 min.	320~385			

	Amended	Original	Remarks
Note		2	
(1)		ss than 900 N/mm^2 , a tensile strength range of 150 N/mm^2 may additionally be specified. For ste	el forgings whose specified
	minimum tensile strength is $900 \ \textit{N/mm}^2$ or more, a tensile strength		
(2)	Hardness values are standard and are given for information purpos	•	
(3)		ctively and indicate the direction in which the specimen is to be taken with respect to the product	•
(4)		nealed, normalized, normalized and tempered, or quench and tempered.	
(5)	The requirement for low alloy steel forgings is applicable to those approval.	quenched and tempered. In cases where they are normalized and tempered, their mechanical prop	erties are subject to Society
(6)	Special consideration may be given to alternative requirements for	r Charpy V-notch impact test, depending on design and application, and subject to Society appro	val.
(7)	For steel forgings complying with 6.1.4-2, "W" is to be suffixed to	<u> </u>	
(7 8)		to their respective grade markings (e.g.+ KSF400-M and KSFA600W-M)	
(8 9)	AT refers to the ambient temperature specified in ISO 148-1:2016	(i.e. 23 °C±5 °C).	
			Add Note (7) into Table
			K6.3(a) for clarification.
			()
			This is clarifying that
			"W" is to be suffixed to
			their respective grade
			markings when intended
			for welded
			constructions.

		Amended					Original			Ro	emarks	
			Tabl	le K6.3(b) Me	chanical Prope	rties of Hull	Steel Forging	S				
Kir	nd	Grade (6)	Tensile strength (1)	Yield point or proof stress	Elongation (<i>L</i> (%			on of area	Charpy V-notch impact		act test (5)	
		(N/mm ²)	(N/mm ²) (N/mm	(N/mm ²)	L	T	L	T	Test temperature	averag	imum e energy	
									(°C)	L	T	
		KSF400-H	400 min.	200 min.	26 min.	19 min.	50 min.	35 min.				
		KSF440-H	440 min.	220 min.	24 min.	18 min.	50 min.	35 min.				
	Carbon steel forgings	KSF480-H	480 min.	240 min.	22 min.	16 min.	45 min.	30 min.				
		KSF520-H	520 min.	260 min.	21 min.	15 min.	45 min.	30 min.	0			
For hull ⁽⁶⁷⁾		KSF560-H	560 min.	280 min.	20 min.	14 min.	40 min.	27 min.		27	18	
		KSF600-H	600 min.	300 min.	18 min.	13 min.	40 min.	27 min.				
	A 11	KSFA550-H 550 min. 350 min.	20 min.	14 min.	50 min.	35 min.						
	Alloy steel	KSFA600-H	600 min.	400 min.	18 min.	13 min.	50 min.	35 min.				
	forgings	KSFA650-H	650 min.	450 min.	17 min.	12 min.	50 min.	35 min.				

Notes:

- (1) For steel forgings whose specified minimum tensile strength is less than 600 N/mm², a tensile strength range of 120 N/mm² may additionally be specified. For steel forgings whose specified minimum tensile strength is 600 N/mm² or more, a tensile strength range of 150 N/mm² may additionally be specified.
- (2) The letters "L" and "T" refer to longitudinal and tangential respectively and indicate the direction in which the specimen is taken with respect to the product.
- (3) The requirement for carbon steel forgings is applicable to those annealed, normalized, normalized and tempered, or quench and tempered.
- (4) The requirement for low alloy steel forgings is applicable to those quenched and tempered. In cases where they are normalized and tempered, their mechanical properties are subject to Society approval.
- (5) Special consideration may be given to alternative requirements for Charpy V-notch impact test, depending on design and application, and subject to Society approval.
- (6) For steel forgings complying with 6.1.4-2, "W" is to be suffixed to their respective grade markings.
- (67) For steel forgings complying with the table, "-H" is to be suffixed to their respective grade markings (e.g. KSF400-H and KSFA600W-H)

Add Note (6) into Table

Amended	Original	Remarks
		K6.3(b) for clarification.
		This is clarifying that
		"W" is to be suffixed to
		their respective grade
		markings when intended
		for welded
		constructions.

Amended	Original Original	Remarks
RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS	RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS	
Part M WELDING	Part M WELDING	
Chapter 4 WELDING PROCEDURE AND RELATED SPECIFICATIONS	Chapter 4 WELDING PROCEDURE AND RELATED SPECIFICATIONS	
4.1 General	4.1 General	
 4.1.1 Application* This Chapter applies to the approval of welding procedure and related specifications mainly for hull construction as well as pipes and piping systems, etc., unless specified in another chapter. This chapter correspondingly applies to the welding procedure and related specifications for the approval of steel castings and steel forgings which is to be of a weldable quality used for hull structures. 	 4.1.1 Application* The requirements in this Chapter are to be applied to the approval of welding procedure and related specifications mainly for hull construction as well as pipes and piping systems, etc., unless specified in another chapter. The requirements of this chapter correspondingly apply to the welding procedure and related specifications for the approval of steel castings and steel forgings which is to be weldable quality used for hull structures. However, the impact test may be omitted, upon the approval by the Society. 	Delete requirement regarding omission so as to align with UR W7(Rev.4) and UR W8(Rev.3).

	Amended	Original	Remarks
	EFFECTIVE DATE AND APPLICATION		
1	The effective date of the amendments is 1 Januar 2025.	У	
2	Notwithstanding the amendments to the Rules, the current requirements apply to ships for which the date of contract for construction is before the effective date.	e	
3	Notwithstanding the provision of preceding 2., the amendments to the Rules may apply to ships for which the date of contract for construction is before the effective date upon request by the owner.	or	

Amended	Original Original	Remarks
GUIDANCE FOR THE SURVEY AND	GUIDANCE FOR THE SURVEY AND	
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	
Part D MACHINERY INSTALLATIONS	Part D MACHINERY INSTALLATIONS	
D2 RECIPROCATING INTERNAL CONBUSTION ENGINES	D2 RECIPROCATING INTERNAL CONBUSTION ENGINES	
D2.3 Crankshafts	D2.3 Crankshafts	
D2.3.1 Solid Crankshafts and Semi-Build Crankshafts	D2.3.1 Solid Crankshafts and Semi-Build Crankshafts	
1 (Omitted)	1 (Omitted)	
2 The diameters of crankpins and journals are to be not	2 The diameters of crankpins and journals are to be not	
less than the value given by the following formula:	less than the value given by the following formula:	
$d_{c} = \left\{ \left(M + \sqrt{M^{2} + T^{2}} \right) D^{2} \right\}^{\frac{1}{3}} K_{m} K_{s} K_{h}$	$d_{c} = \left\{ \left(M + \sqrt{M^{2} + T^{2}} \right) D^{2} \right\}^{\frac{1}{3}} K_{m} K_{s} K_{h}$	
where	where	
d_c : Required diameter of crankshaft (mm)	d_c : Required diameter of crankshaft (mm)	
$M:10^{-2}ALP_{max}$	$M:10^{-2}ALP_{max}$	
$T : 10^{-2}BSP_{mi}$	$T : 10^{-2}BSP_{mi}$	
S :(Omitted)	S :(Omitted)	
L :(Omitted)	L :(Omitted)	
P_{max} :(Omitted) P_{mi} :(Omitted)	P_{max} :(Omitted) P_{mi} :(Omitted)	
A and B: (Omitted)	A and B : (Omitted)	
D: (Omitted)	D : (Omitted)	
K_m : Value given by the following (1) or (2) in	K_m : Value given by the following (1) or (2) in	
accordance with the specified tensile strength of	accordance with the specified tensile strength of	
the crankshaft material. However, the value of K_m	the crankshaft material. However, the value of K_m	

Amended	Original	Remarks
for materials other than steel forgings and steel castings is to be determined by the Society in each case.	for materials other than steel forgings and steel castings is to be determined by the Society in each case.	
(1) In cases where the specified tensile strength of material exceeds $440 \ N/mm^2$ $K_m = \sqrt[3]{\frac{440}{440 + \frac{2}{3}(T_s - 440)}}$ where $T_s : \text{Specified tensile strength of material}$ (N/mm^2)	(1) In cases where the specified tensile strength of material exceeds $440 \ N/mm^2$ $K_m = \sqrt[3]{\frac{440}{440 + \frac{2}{3}(T_s - 440)}}$ where $T_s : \text{Specified tensile strength of material}$ (N/mm^2)	Align with the values given in Table K6.3(a),
The value of T_s is not to exceed 760 N/mm^2 for carbon steel forgings and $1100 N/mm^2$ for low alloy steel forgings. (2) In cases where the specified tensile strength of material is not more than $440 N/mm^2$ but not less than $400 N/mm^2$ $K_m = 1.0$ K_s : (Omitted) K_h : (Omitted)	The value of T_s is not to exceed 760 N/mm^2 for carbon steel forgings and 1080 N/mm^2 for low alloy steel forgings. (2) In cases where the specified tensile strength of material is not more than 440 N/mm^2 but not less than $400 \ N/mm^2$ $K_m = 1.0$ K_s : (Omitted) K_h : (Omitted)	Chapter 6, Part K of the Rules.

	on Table (Materials Used for Steel Castings and Steel F	<u> </u>
Amended	Original	Remarks
GUIDANCE FOR THE SURVEY AND	GUIDANCE FOR THE SURVEY AND	
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	
D. ALAMATERNAL C	D. ALAMATERDIAL C	
Part K MATERIALS	Part KMATERIALS	
K6 STEEL FORGINGS	K6 STEEL FORGINGS	
K6.1 Steel Forgings	K6.1 Steel Forgings	
K6.1.2 Manufacturing Process	K6.1.2 Manufacturing Process	
1 The wording "unless otherwise deemed appropriate by	(Newly added)	Add the provision in
the Society" in 6.1.2-4(4), Part K of the Rules means the		6.1.2-6, Part K of the
requirements may be suitably modified at the discretion of the		Rules.
surveyor according to the size or form, or the use for which		
they are intended, except for compression deformations of		
steel ingots or forging materials in the longitudinal direction		
(i.e. upsetting).		
2 In relation to 6.1.2-7 , Part K of the Rules , where gas	In relation to the requirements of 6.1.2-7, Part K of	
workings are being carried out on the parts subjected to high	the Rules, where gas workings are being carried out on the	
stress such as mass removal of crankshaft, the data related to	parts subjected to high stress such as mass removal of	
the processes (including pre-heating) and change of material	crankshaft, the data related to the processes (including pre-	
due to working are to be submitted approval of the Society.	heating) and change of material due to working are to be	
	submitted approval of the Society.	

	Amended	Original	Remarks
	EFFECTIVE DATE AND APPLICATION		
1	The effective date of the amendments is 1 Janua 2025.	ry	
2	Notwithstanding the amendments to the Guidance the current requirements apply to ships for which the date of contract for construction is before the effective date.	ch	
3	Notwithstanding the provision of preceding 2., the amendments to the Guidance may apply to ships f which the date of contract for construction is before the effective date upon request by the owner.	or	