Amendment on 27 June 2024 Resolved by Technical Committee on 30 January 2024

Machinery of Polar Class Ships

Object of Amendment

Rules for the Survey and Construction of Steel Ships Part I

Reason for Amendment

IACS Unified Requirements (UR) I3 (Corr.1) specifies requirements for the machinery of Polar Class Ships, and these requirements have already been incorporated into the NK Rules.

However, the UR contains a number of paragraphs that are reserved for future additions to allow for requirements for certain types of machinery to be further discussed, but this has resulted in a lack of requirements for said types of machinery.

For this reason, IACS conducted a comprehensive review of the UR, which included an examination of the design requirements for propeller blades, shafts, propeller lines component, steering systems, etc. and other requirements for icebreakers. In addition, the consistency between various design requirements stipulated in the Finnish-Swedish Ice Class Rules (FSICR) and the UR was considered. As a result of its review, IACS adopted UR I3 (Rev.2) in January 2023.

Accordingly, relevant requirements are amended based on the UR I3 (Rev.2).

Outline of the Amendment

The main contents of this amendment are as follows:

- (1) Clarifies classification of materials for machinery.
- (2) Clarifies the handling of various design loads.
- (3) Clarifies the handling of fatigue design of propeller blades and propulsion shafting systems.
- (4) Specifies design requirements for blade bolts, propeller bosses, controllable pitching mechanisms, propeller lines component, starting arrangement for main engine, emergency power supply and ladder actuators for steering systems.

Effective Date and application

This amendment applies to ships for which the date of contract for construction is on or after 1 July 2024.

ID: DD23-31

Amended	Original	Remarks
RULES FOR THE SURVEY AND	RULES FOR THE SURVEY AND	
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	
Part I SHIPS OPERATING IN POLAR WATERS, POLAR CLASS SHIPS AND ICE CLASS SHIPS	Part I SHIPS OPERATING IN POLAR WATERS, POLAR CLASS SHIPS AND ICE CLASS SHIPS	
ANNEX 1 SPECIAL REQUIREMENTS FOR THE MATERIALS, HULL STRUCTURES, EQUIPMENT AND MACHINERY OF POLAR CLASS SHIPS	ANNEX 1 SPECIAL REQUIREMENTS FOR THE MATERIALS, HULL STRUCTURES, EQUIPMENT AND MACHINERY OF POLAR CLASS SHIPS	
Chapter 2 MATERIALS AND WELDING	Chapter 2 MATERIALS AND WELDING	
2.1 Material	2.1 Material	UR I3(Rev.2) Para. 3
2.1.5 Materials for Machinery Parts Exposed to Sea Water	2.1.5 Materials for Machinery Parts Exposed to Sea Water	Para. 3.1
 <u>1</u> Materials exposed to sea water, such as propeller blades, propeller hub and <u>cast thruster bodies</u> are to have an elongation of not less than 15 % for the U14A test specimen in Part K of the Rules. <u>2</u> Materials other than bronze and austenitic steel are to have an average impact energy value of 20 J at -10 °C for the U4 test specimen in Part K of the Rules. <u>3</u> Materials are also to be in accordance with the requirement in Chapter 5 and Chapter 6, Part K of the Rules that apply to ice class ships. 	Materials exposed to sea water, such as propeller blades, propeller hub and <u>blade bolts</u> are to have an elongation of not less than 15 % for the $U14A$ test specimen in Part K of the Rules . Materials other than bronze and austenitic steel are to have an average impact energy value of 20 J at -10 °C for the U4 test specimen in Part K of the Rules . (Newly added)	

Amended	Original	Remarks
		Para. 3.2
2.1.6 Materials for Machinery Parts Exposed to Sea Water Temperatures	2.1.6 Materials for Machinery Parts Exposed to Sea Water Temperatures	
1 Except for bronze and austenitic steel, materials exposed to	Materials exposed to sea water temperatures are to be of steel or	
sea water temperatures are to have an average impact energy value	other ductile material approved by the Society. The materials are to	
of 20 J at -10°C for the U4 test specimen in Part K of the Rules.	have an average impact energy value of $20 J$ at -10° C for the U4 test	
Materials are also to be in accordance with requirements in Chapter	specimen in Part K of the Rules.	
5 and Chapter 6, Part K of the Rules that apply to ice class ships.		
2 This 2.1.6 applies to components such as but not limited to	(Newly added)	
blade bolts, controllable pitch mechanisms, shaft bolts, propeller		
shafts and strut-pod connecting bolts.		
3 This 2.1.6 does not apply to surface hardened components,	(Newly added)	
such as bearings and gear teeth or sea water cooling lines (heat		
exchangers, pipes, valves, fittings etc.).		
4 Definitions for structural boundaries exposed to sea water	(Newly added)	
temperatures are the level of 0.5 <i>m</i> below the <i>LIWL</i> as specified in		
<u>2.1.0.</u>		Para 3.3
2.1.7 Materials for Machinery Parts Exposed to Low Air	2.1.7 Materials for Machinery Parts Exposed to Low Air	
Temperatures	Temperatures	
<u>1</u> Except for bronze and austenitic steel, materials of machinery	Materials of essential components exposed to low air temperatures	
and foundations exposed to low air temperatures are to be of steel or	are to be of steel or other ductile materials approved by the Society.	
other ductile materials approved by the Society. The materials are to	The materials are to have an average impact energy value of $20 J$	
have an average impact energy value of 20 J obtained at 10°C below	obtained at 10° C below the lowest design temperature for the U4 test	
the lowest design temperature for the $U4$ test specimen in Part K of	specimen in Part K of the Rules.	
the Kules.		
<u>2</u> Inis 2.1./ does not apply to surface hardened components,	(Inewiy added)	
such as bearings and gear teeth. In addition, definitions for structural		
below the <i>LIMI</i> as specified in 2.1.3		
below the LIWL as specified in 2.1.3.		

Amended	Original	Remarks
Chapter 4 MACHINERY INSTALLATIONS	Chapter 4 MACHINERY INSTALLATIONS	
 4.1 General 4.1.1 Scope The requirements of this chapter apply to main propulsion, steering gear, emergency and essential auxiliary systems essential for the safety of the ship and survivability of the crew. 	 4.1 General 4.1.1 Scope The requirements of this chapter apply to main propulsion, steering gear, emergency and essential auxiliary systems essential for the safety of the ship and survivability of the crew. 	Para. 1
 2 Ship operating conditions are to be in accordance with Chapter 1. 3 This chapter applies in additional to requirements applicable to ships operating in open water. 	(Newly added) (Newly added)	
4.1.2 Drawings and Data Drawings and data to be submitted in this chapter are as	4.1.2 Drawings and Data Drawings and data to be submitted in this chapter are as	Para. 2.1
 follows: (1) Details of the <u>intended</u> environmental <u>operational</u> conditions and the required polar class for the machinery, if different from the polar class of hull structure (2) Detailed drawings and descriptions of the main propulsion. 	 follows: (1) Details of the environmental conditions and the required polar class for the machinery, if different from the polar class of hull structure (2) Detailed drawings of the main propulsion machinery 	
(2) <u>steering</u> , <u>emergency</u> and <u>auxiliary</u> systems (including information on essential main propulsion load control functions)	(including information on essential main propulsion load control functions)	
(3) Operational limitations of the main propulsion, steering, emergency and auxiliaries	(3) Operational limitations of the main propulsion, steering, emergency and essential auxiliaries	
 (4) Descriptions detailing where main, emergency and auxiliary systems are located and how they are protected to prevent problems from freezing, ice and snow accumulation 	 (4) Descriptions detailing how <u>main</u>, <u>emergency and auxiliary</u> systems are <u>located and</u> protected to prevent problems from freezing, ice and snow 	
(5) Evidence of their capability to operate in intended environmental conditions	(5) Evidence of their capability to operate in intended environmental conditions	

Amended	Original	Remarks
(6) Calculations and documentation indicating compliance with	(6) Calculations and documentation indicating compliance with	
the requirements of this chapter	the requirements of this chapter	
(7) Drawings and data which are deemed necessary by the	(7) Drawings and data which are deemed necessary by the	
Society	Society	
113 System Design	113 System Design	Down 2.2
1 Additional fire safety measures are to be arranged in	1 Additional fire safety measures are to be arranged in	Para. 2.2
accordance with the requirements in 523 74 1021 2 1053 1 and	accordance with the requirements in 523 74 1021 2 1053 1 and	
10.5.5.2. Port P of the Pules	1055 2 Part D of the Dulos	
2 Any automation plant (control alarm safety and indication	2 Any automation plant (control alarm safety and indication	
systems) for essential systems installed is to be maintained in	systems) for essential systems installed is to be maintained in	
accordance with the requirements in Chapter 4 of the Pules for	accordance with the requirements in Chanter 4 of the Pules for	
Automatic and Romata Control Systems	Automatic and Romoto Control Systems	
3 Systems subject to damage by freezing are to be drainable	3 Systems subject to damage by freezing are to be drainable	
 Systems subject to damage by neezing are to be dramable. A Dolar close shine closed PC1 to PC5 are to have means 	 Systems subject to damage by neezing are to be dramable. Single coreve polar class shine classed <i>PC</i>1 to <i>PC</i>5 are to have 	
4 <u>r</u> olai class ships classed <i>i</i> C1 to <i>i</i> C5 are to have means	means provided to ensure sufficient vessel exercise in the esse of	
damaga including a controllable nitch machanism	means provided to ensure sumerent vesser operation in the case of	
damage including a controllable pitch mechanism.	(Nowly added)	
5 Sufficient vessel operation means that vessels are to be able	(Inewly added)	
to reach sale haven (i.e. a sale location) where repairs can be		
undertaken. This may be achieved either by temporary repairs at sea		
or by towing, assuming either is available under conditions approved		
by the Society.		
o ivieans are to be provided to free stuck propellers by turning	(Inewly added)	
in the reverse direction. This is to also be possible for propulsion		
plants intended for unidirectional rotation.		
7 Propellers are to be fully submerged at the <i>LIWL</i> .	(Newly added)	

Amended		Amended	Original	Remarks
4.2 M	aterials		(Newly added)	
101	C			
4.2.1	General		(Newly added)	Para. 3
<u>1 Ma</u>	aterials for	r machinery parts are to be in accordance wi	h	
<u>2.1.5, 2.1.6</u>	and 2.1.7			
<u>2</u> Ma	aterials fo	r machinery parts are to be ductile materi	al	
approved b	y the Soci	ety.		
3 Fe	ritic nodu	ular cast iron may be used for machinery par	'S	
other than l	olts In su	ich cases the values of average absorbed energy		
ot the testin	a tomporo	tures specified in 215 216 and 217 are to		
	<u>g tempera</u>	aures specified in 2.1.3, 2.1.0 and 2.1.7 are to t		
applied at 1	<u>0J.</u>			
42 D				Davis 4
<u>4.3 De</u>	<u>ennitions</u>		(Newly added)	Para. 4
4.3.1 Definition of Symbols		on of Symbols	(Newly added)	Para. 4.1
Sv	mbols are	as defined in Table 4.3.1-1.		
	Table -	4.3.1-1 Definition of Symbols	(Newly added)	Table 1
Symbol	Unit	Definition		
<u>C</u>	<u>m</u>	chord length of blade section		
<u>C_{0.7}</u>	<u>m</u>	chord length of blade section at 0.7R propeller radius		
<u>D</u>	<u>m</u>	propeller diameter		
<u>d</u>	<u>m</u>	external diameter of propeller hub (at propeller plane)		
d_{pin}	<u>mm</u>	diameter of shear pin		
<u>D_{limit}</u>	<u>m</u>	limit value for propeller diameter		
EAR	<u>-</u>	expanded blade area ratio		
<u>F</u> _b	<u>kN</u>	maximum backward blade force for the ship's service life		
E	LAT	(negauve value)		
<u>r_{ex}</u>	<u>K/N</u>	ulumate blade load resulung from blade failure inrougn		
Fr	kN	maximum forward blade force for the ship's service life		
- /	<u>114 Y</u>	(positive value)		
<u>F_{ice}</u>	<u>kN</u>	ice load on propeller blade		

		Amended	Original	Remarks
$(F_{ice})_{max}$	kN	maximum ice load for the ship's service life		
h_0	<u>m</u>	depth of the propeller centreline from lower ice waterline		
		<u>(LIWL)</u>		
<u>(H_{ice})</u>	<u>m</u>	ice block dimension for propeller load definition		
<u>I</u>	<u>kgm²</u>	equivalent mass moment of inertia of all parts on engine		
		side of component under consideration		
<u>It</u>	<u>kgm²</u>	equivalent mass moment of inertia of the whole propulsion		
		system		
<u>k</u>	=	shape parameter for Weibull distribution		
<u>m</u>	=	slope for S-N curve in log/log scale		
$\underline{M_{BL}}$	<u>kNm</u>	blade bending moment		
<u>MCR</u>	=	maximum continuous rating		
<u>N</u>	=	number of ice load cycles		
<u>n</u>	rpm	propeller rotational speed		
<u>n_n</u>	<u>rpm</u>	nominal propeller rotational speed at MCR in free running		
		condition		
<u>N_{class}</u>	Ξ	reference number of ice impacts per propeller revolution		
		per ice class		
<u>N_{ice}</u>	=	total number of ice load cycles on propeller blade for the		
N_R	=	reference number of ice load cycles for equivalent fatigue		
N		suess (10° cycles)		
D D	-	number of propener revolutions during a mining sequence		
<u> </u>	111	propeller pitch at 0.7 <i>P</i> radius at <i>MCP</i> in free running open		
$\frac{1-0.7n}{1-0.7n}$	m	water condition		
Pozh	т	propeller pitch at 0.7 <i>R</i> radius at <i>MCR</i> in bollard condition		
<u>PCD</u>	m	pitch circle diameter		
$O(\varphi)$	kNm	Torque		
0 Amax	kNm	maximum response torque amplitude as a simulation		
~Amux		result		
Qemax	kNm	maximum engine torque		
$Q_F(\varphi)$	<u>kN</u> m	Ice torque excitation for frequency domain calculations		
Q_{fr}	kNm	friction torque in pitching mechanism; reduction of spindle		
		torque		

Amended Original Remarks <u>Q_{max}</u> maximum torque on the propeller resulting from kNm propeller/ice interaction <u>kNm</u> electric motor peak torque 0 motor nominal torque at MCR in free running open water Q_n <u>kNm</u> condition response torque along the propeller shaft line $O_r(t)$ kNm maximum of the response torque $Q_r(t)$ <u>Oneak</u> kNm maximum spindle torque of the blade for the ship's service Q_{smax} <u>kNm</u> life extreme spindle torque corresponding to the blade failure <u>Q_{sex}</u> <u>kNm</u> load F_{ex} Vibratory torque at considered component, taken from Q_{vib} <u>kNm</u> frequency domain open water Torsional Vibration Calculation (TVC) propeller radius <u>R</u> m<u>S</u> safety factor -<u>Sfat</u> safety factor for fatigue -<u>Sice</u> ice strength index for blade ice force blade section radius r mТ hydrodynamic propeller thrust in bollard condition kN maximum backward propeller ice thrust for the ship's T_h kNservice life T_{f} maximum forward propeller ice thrust for the ship's kN service life propeller thrust at MCR in free running condition T_n kN T_r kN maximum response thrust along the shaft line T_{kmax} maximum torque capacity of flexible coupling kNm T_{kmax} at N = 1 load cycle Tumar2 kNm T_{kmax} at $N = 5 \times 10^4$ load cycle T_{max1} kNm T_{kv} vibratory torque amplitude at $N = 10^6$ load cycles kNm maximum range of T_{kmax} at $N=5 \times 10^4$ load cycles ΔT_{kmax} kNm maximum blade section thickness t т number of propeller blades Ζ number of shear pins <u>Z_{pin}</u> duration of propeller blade/ice interaction expressed in deg α_i

		Amended	Original	Remarks
		rotation angle		
$\frac{\gamma_s}{\gamma_s}$	=	the reduction factor for fatigue; scatter and test specimen		
		size effect		
γ_{ν}	=	the reduction factor for fatigue; variable amplitude loading		
		effect		
γ_m	<u>-</u>	the reduction factor for fatigue; mean stress effect		
p	=	a reduction factor for fatigue correlating the maximum		
		stress amplitude to the equivalent fatigue stress for 108		
		stress cycles		
$\sigma_{0,2}$	<u>MPa</u>	proof yield strength (at 0.2 % plastic strain) of material		
σ_{exp}	<u>MPa</u>	mean fatigue strength of blade material at 10 ⁸ cycles to		
		failure in sea water		
σ_{fat}	<u>MPa</u>	equivalent fatigue ice load stress amplitude for 108 stress		
		cycles		
σ_{fl}	<u>MPa</u>	characteristic fatigue strength for blade material		
σ_{ref1}	<u>MPa</u>	reference stress		
		$\underline{\sigma_{refl}} = 0.6\sigma_{0.2} + 0.4\sigma_{u}$		
σ_{ref2}	<u>MPa</u>	reference stress whichever is less		
		$\underline{\sigma_{ref2}} = 0.7\sigma_u \text{ or } \sigma_{ref2} = 0.6\sigma_{0.2} + 0.4\sigma_u$		
σ_{st}	<u>MPa</u>	<u>maximum stress resulting from F_b or F_f</u>		
σ_u	<u>MPa</u>	ultimate tensile strength of blade material		
$(\sigma_{ice})_{bmax}$	<u>MPa</u>	principal stress caused by the maximum backward		
		propeller ice load		
$(\sigma_{ice})_{fmax}$	<u>MPa</u>	principal stress caused by the maximum forward propeller		
		ice load		
<u> </u>	<u>MPa</u>	mean stress		
$(\sigma_{ice})_A(N)$	MPa	blade stress amplitude distribution		

Amended			Original	Remarks
4.3.2	Definition of Loads Loads are as defined in Table 4	l.3.2-1.	(Newly added)	Para 4.2
<u> </u>	Table 4.3.2-1 Definit Definition Definition The maximum lifetime backward force on a propeller blade resulting from propeller/ice interaction, including hydrodynamic loads on that blade. The direction of the force is perpendicular to 0.7R chord line. (See Fig. 4.3.2-1) The maximum lifetime forward force on a propeller blade resulting from propeller/ice interaction, including	ion of Loads Use of the load in design process Design force for strength calculation of the propeller blade.	(Newly added)	Table 2
Qsmax	hydrodynamic loads on that blade. The direction of the force is perpendicular to 0.7 <i>R</i> chord line. The maximum lifetime spindle torque on a propeller blade resulting from propeller/ice interaction, including hydrodynamic loads on that blade.	In designing the propeller strength, the spindle torque is automatically taken into account because the propeller load is acting on the blade as distributed pressure on the leading edge or tip area.		
T _b	The maximum lifetime thrust on propeller (all blades) resulting from propeller/ice interaction. The direction of the thrust is the propeller shaft direction and the force is opposite to the hydrodynamic thrust. The maximum lifetime thrust on propeller (all blades) resulting from propeller/ice interaction. The direction of the thrust is the propeller shaft direction acting in the direction of	Is used for estimation of the response thrust T_r . T_b and T_f can be used as an estimate of excitation for axial vibration calculations. However, axial vibration calculations are not required in the rules.		

	Amended		Original	Remarks
	hydrodynamic thrust.			
Q_{max}	The maximum ice-induced torque	Is used for estimation of the		
	resulting from propeller/ice interaction	response torque Q_r along the		
	on one propeller blade, including	propulsion shaft line and as		
	hydrodynamic loads on that blade.	excitation for torsional vibration		
		calculations.		
<u>Fex</u>	Ultimate blade load resulting from blade	Blade failure load is used to		
	loss through plastic bending. The force	dimension the blade bolts, pitch		
	that is needed to cause total failure of the	control mechanism, propeller		
	blade so that plastic hinge is caused to	shaft, propeller shaft bearing and		
	the root area. The force is acting on 0.8R.	trust bearing. The objective is to		
		guarantee that total propeller blade		
		failure should not cause damage		
		to other components.		
<u>Q_{sex}</u>	Maximum spindle torque resulting from	Is used to ensure pyramid strength		
	blade failure load	principle for the pitching		
		mechanism		
Q_r	Maximum response torque along the	Design torque for propeller shaft		
	propeller shaft line, taking into account	line components.		
	the dynamic behaviour of the shaft line			
	for ice excitation (torsional vibration)			
	and hydrodynamic mean torque on			
	propeller.			
T_r	Maximum response thrust along shaft	Design thrust for propeller shaft		
	line, taking into account the dynamic	line components.		
	behaviour of the shaft line for ice			
	excitation (axial vibration) and			
	hydrodynamic mean thrust on propeller.			

Amended	Original	Remarks
Fig. 4.3.2-1 Direction of the Backward Blade Force	(Newly added)	Figure 1
resultant taken Perpendicular to the Chord Line at Radius 0.7R.		
(Ice contact pressure at leading edge is shown with small arrows.)		
Shaft direction		
Back side Fb Direction of rotation		
4. <u>4</u> Design Loads	4.2 Design Loads	Para. 5
4. <u>4</u> .1 General	4. <u>2</u> .1 General	
1 In the design of the propeller, propulsion shafting system and	1 In the design of the propeller, propulsion shafting system and	
power transmission system, the following are to be taken into account.	power transmission system, the following are to be taken into account.	
(1) Maximum backward blade force	(1) Maximum backward blade force	
(2) Maximum forward blade force	(2) Maximum forward blade force	
(3) Maximum blade spindle torque	(3) Maximum blade spindle torque	
(4) Maximum propeller ice torque	(4) Maximum propeller ice torque	
(5) Maximum propeller ice thrust	(5) Maximum propeller ice thrust	
(6) Design torque on propulsion shafting system	(6) Design torque on propulsion shafting system	

Amended		Original		Remarks
(7)	Maximum thrust on propulsion shafting system	(7)	Maximum thrust on propulsion shafting system	
(8)	Blade failure load	(8)	Blade failure load	
2	The loads specified in -1 are to comply with the following:	2	The loads specified in -1 are to comply with the following:	Para. 5.1
(1)	The ice loads cover open and ducted type propellers situated	(1)	The ice loads cover open and ducted type propellers situated	
	at the stern of a ship having controllable pitch or fixed pitch		at the stern of a ship having controllable pitch or fixed pitch	
	blades. Ice loads on bow mounted propellers are to receive		blades. Ice loads on bow propellers and pulling type	
	special consideration.		propellers are to receive special consideration.	
(2)	The given loads in this chapter are expected, single	(2)	The given loads in this chapter are expected, single	
	occurrence, maximum values for the whole ships service life		occurrence, maximum values for the whole ships service life	
	for normal operation conditions, including loads resulting		for normal operation conditions The loads do not cover off-	
	from directional change of rotation where applicable. The		design operational conditions, for example when a stopped	
	loads do not cover off-design operational conditions, for		propeller is dragged through ice.	
	example when a stopped propeller is dragged through ice.			
(3)	The loads apply also for propeller ice interaction for	(3)	The loads apply also for azimuthing (geared and podded)	
	azimuthing and fixed thrusters with geared transmissions or		thrusters considering loads due to propeller ice interaction.	
	integrated electric motors (i.e. "geared and podded		However, ice loads due to ice impacts on the body of	
	propulsors"). However, such load models do not include		azimuthing thrusters are not covered by this chapter.	
	propeller/ice interaction loads when ice enters the propeller			
	of turned azimuthing thrusters from the side (i.e. radially) or			
	loads when ice blocks hit the propeller hubs of pulling			
	propellers. ice loads resulting from ice impacts on the			
	body of azimuthing thrusters are <u>to be estimated on a case</u>			
	by case basis.			
(4)	The loads are total loads including ice-induced loads and	(4)	The loads are total loads (unless otherwise stated) during	
	hydrodynamic loads (unless otherwise stated) during ice		interaction and are to be applied separately (unless otherwise	
	interaction that are to be applied separately (unless otherwise		stated) and are intended for component strength calculations	
	stated) and are intended for component strength calculations		only.	
	only.			
<u>(5)</u>	The load specified in $-1(1)$ above is the maximum force	(Nev	wly added)	
	experienced during the lifetime of the ship that bends			

Amended		Original	Remarks
propeller blades backwards when propellers m	ill ice blocks		
while rotating ahead. The load specified in -1(2	above is the		
maximum force experienced during the lifetim	e of the ship		
that bends propeller blades forwards when pr	opellers mill		
ice blocks while rotating ahead. Since these loa	ads originate		
from different propeller/ice interaction phenor	mena, which		
do not act simultaneously, they are to be applie	d separately.		
4.4.2 Polar Class Factors		(Newly added)	Para. 5.2
1 The ice thickness $H_{ice}(m)$ and the ice strength	ndex Sice for		
each polar class are to be taken as specified in Table 4.4	.2-1.		
2 The design ice block to be considered is to be ob	tained by the		
following formula:			
$\underline{H_{ice} \times 2H_{ice} \times 3H_{ice}}$ (m)			
3 The design ice block <i>H_{ice}</i> and ice strength index	Sice are to be		
used for the estimation of propeller ice loads.			
Table 4.4.2-1 Values of <i>H_{ice}</i> and <i>S_{ice}</i>		(Newly added)	Table 3
Polar class <u>Hice</u> <u>Sice</u>			
$\underline{PC_1} \qquad \underline{4.0} \qquad \underline{1.2}$			
$\underline{PC_2} \qquad \underline{3.5} \qquad \underline{1.1}$			
$\frac{PC_3}{DC} = \frac{3.0}{1.1}$			
$\frac{PC4}{DC} = \frac{2.5}{11}$			
$\frac{PC5}{DC} = \frac{2.0}{1.1}$			
$\frac{PC6}{DC7} = \frac{1.75}{15} = \frac{1}{1}$			
\underline{PU} $\underline{13}$ $\underline{1}$			

Amended	Original	Remarks
		Para. 5.3.1
4. <u>4.3</u> Maximum Backward Blade Force	4. <u>2.2</u> Maximum Backward Blade Force	Para. 5.3.4
1 The maximum backward blade force which bends a	1 The maximum backward blade force which bends a	
propeller blade backwards when a propeller mills an ice block while	propeller blade backwards when a propeller mills an ice block while	
rotating ahead is to be given by the following formulae:	rotating ahead is to be given by the following formulae:	
(1) For open propellers:	(1) For open propellers:	
when $D < D_{\text{limit}}$	when $D < D_{\text{limit}}$	
$F_b = 27S_{ice} \left(\frac{n}{60}D\right)^{0.7} \left(\frac{EAR}{Z}\right)^{0.3} D^2 \ (kN)$	$F_{b} = 27S_{ice} \left(\frac{n}{60}D\right)^{0.7} \left(\frac{EAR}{Z}\right)^{0.3} D^{2} \ (kN)$	
when $D \ge D_{\text{limit}}$	when $D \geq D_{\text{limit}}$	
$F_b = 23S_{ice}(H_{ice})^{1.4} \left(\frac{n}{60}D\right)^{0.7} \left(\frac{EAR}{Z}\right)^{0.3} D (kN)$	$F_b = 23S_{ice}(H_{ice})^{1.4} \left(\frac{n}{60}D\right)^{0.7} \left(\frac{EAR}{Z}\right)^{0.3} D \ (kN)$	
where $D_{\text{limit}} = 0.85 (H_{ice})^{1.4}$ (m)	where $D_{\text{limit}} = 0.85 (H_{ice})^{1.4}$ (m)	
(2) For ducted propellers :	(2) For ducted propellers :	
when $D < D_{\text{limit}}$	when $D < D_{\text{limit}}$	
$F_b = 9.5S_{ice} \left(\frac{n}{60}D\right)^{0.7} \left(\frac{EAR}{Z}\right)^{0.3} D^2 \ (kN)$	$F_b = 9.5S_{ice} \left(\frac{n}{60}D\right)^{0.7} \left(\frac{EAR}{Z}\right)^{0.3} D^2 \ (kN)$	
when $D \geq D_{\text{limit}}$	when $D \geq D_{\text{limit}}$	
$F_b = 66S_{ice}(H_{ice})^{1.4} \left(\frac{n}{60}D\right)^{0.7} \left(\frac{EAR}{Z}\right)^{0.3} D^{0.6} \ (kN)$	$F_b = 66S_{ice}(H_{ice})^{1.4} \left(\frac{n}{60}D\right)^{0.7} \left(\frac{EAR}{Z}\right)^{0.3} D^{0.6} \ (kN)$	
where $D_{\text{limit}} = 4H_{ice}$ (m)	where $D_{\text{limit}} = 4H_{ice}$ (m)	
(Deleted)	<i>H_{ice}</i> : Ice thickness (<i>m</i>) for machinery strength	
	design specified in Table 4.2.2-1.	
(Deleted)	<u>Sice</u> : Ice strength index for blade ice force	
D · Propeller diameter (m)	specified in 1 able 4.2.2-1.	
E = E + E + E + E + E + E + E + E + E +	D: Propener diameter (<i>m</i>) EAP: Expanded blade area ratio	
n: Nominal rotational propeller speed (<i>rpm</i>) at	EAR. Expanded blade area ratio n: Nominal rotational propeller speed (<i>vpm</i>) at	
maximum continuous revolutions in free	maximum continuous revolutions in free	
running condition for controllable pitch	running condition for controllable pitch	
propellers and 85 % of the nominal	propellers and 85 % of the nominal	
rotational propeller speed at maximum	rotational propeller speed at maximum	
continuous revolutions in free running	continuous revolutions in free running	

Amended-Original Requirements Comparison Table (Machinery of Polar Class Ships)

Amended	Original	Remarks
condition for fixed pitch propelle	rs condition for fixed pitch propellers	
(regardless of driving engine type)	(regardless of driving engine type)	
2 For ships affixed with the additional notation "Icebreake	" (Newly added)	
(abbreviated to ICB), the maximum backward blade force	\overline{D}	
specified in -1 above is to be multiplied by a factor of 1.1.		
$\underline{3}$ The maximum backward blade force F_b is to be applied as	a <u>2</u> The maximum backward blade force F_b is to be applied as a	
uniform pressure distribution to an area of the blade for the followi	g uniform pressure distribution to an area of the blade for the following	
load cases as specified in Table 4.4.5-1 and Table 4.4.5-2.	load cases.	
(1) For open propellers:	(1) For open propellers:	
(a) <u>L</u> oad case 1 in Table 4. <u>4.5-1</u>	(a) <u>F_b specified in -1(1) is applied to an area from 0.6R to</u>	
	the tip and from the blade leading edge to a value of 0.2	
	chord length. (See load case 1 in Table 4.2.2-2)	
(b) load case 2 in Table 4.<u>4.5-1</u>	(b) <u>A load equal to 50% of F_b specified in -1(1) is applied</u>	
	on the propeller tip area outside of 0.9R. (See load case	
	2 in Table 4. <u>2.2-2)</u>	
(c) For reversible propellers, <u>L</u> oad case 5 in Table 4. <u>4.5</u>	(c) For reversible propellers, <u>a load equal to 60% of F_b</u>	
	specified in -1(1) is applied to an area from 0.6R to the	
	tip and from the blade trailing edge to a value of 0.2	
	chord length. (See load case 5 in Table 4.2.2-2)	
(2) For ducted propellers:	(2) For ducted propellers:	
(a) <u>L</u> oad case 1 in Table 4. <u>4.5-2</u>	(a) <u>F_b</u> specified in -1(2) is applied to an area from 0.6 <i>R</i> to	
	the tip and from the blade leading edge to a value of 0.2	
	chord length. (See load case 1 in Table 4.2.2-3)	
(b) For reversible propellers, Load case 5 in Table 4.4.5-	(b) For reversible propellers, a load equal to 60% of the F_b	
	specified in $-1(2)$ is applied to an area from $0.6R$ to the	
	tip and from the blade trailing edge to a value of 0.2	
	chord length. (See load case 5 in Table 4.2.2-3)	

|--|

Amended			Remarks			
(Deleted)		Table 4.2.2-1	Values of Hic	ce and Sice		Relocation to Table 4.4.2-1
		Polar class	H_{ice}	Sice		
		PC1	4.0	1.2		
		PC2	3.5	1.1		
		PC3	3.0	1.1		
		PC4	2.5	1.1		
		PC5	2.0	1.1		
		PC6	1.75	1		
		PC7	1.5	1		
						Para. 5.3.2
4. <u>4.4</u> Maximum Forward Blade Force	4. <u>2.</u>	<u>3</u> Maximum For	ward Blade Fo	orce	11	Para. 5.3.5
I Maximum forward blade force which bends a propeller		Maximum forward	blade force w	hich bends a prop		
blade forwards when a propeller interacts with an ice block while	blade	forwards when a proj	peller interacts	with an ice block w	hile	
rotating ahead is to be given by the following formulae:	rotating	g ahead is to be given	by the following	g formulae:		
(1) For open propellers:	(1)	For open propellers				
when $D < D_{\text{limit}}$		when $D < D_{\text{limit}}$				
$F_f = 250 \left(\frac{EAR}{Z}\right) D^2 (kN)$		$F_f = 250 \left(\frac{EAR}{Z}\right)$				
when $D \ge D_{\text{limit}}$		when $D \ge D_{\text{limit}}$				
$F_{f} = 500H_{ice}\left(\frac{EAR}{Z}\right)\left(\frac{1}{1-\frac{d}{D}}\right)D (kN)$		$F_f = 500 H_{ice}$	$\left(\frac{EAR}{Z}\right)\left(\frac{1}{1-\frac{d}{D}}\right)D$	(kN)		
where $D_{limit} = \frac{2}{\left(1 - \frac{d}{D}\right)} H_{ice}$ (m)		where $D_{limit} = \frac{1}{(2)}$	$\frac{2}{1-\frac{d}{D}}H_{ice} (m)$			
(2) For ducted propellers:	(2)	For ducted propelle	ers:			
when $D \leq D_{\text{limit}}$		when $D \leq D_{\text{limit}}$				
$F_f = 250 \left(\frac{EAR}{Z}\right) D^2 (kN)$		$F_f = 250 \left(\frac{EAR}{Z}\right)$	D^2 (kN)			
when $D > D_{limit}$		when $D > D_{limit}$	·			

Amended		Original	Remarks
$F_{f} = 500H_{ice}\left(\frac{EAR}{Z}\right)\left(\frac{1}{1-\frac{d}{D}}\right)D (kN)$		$F_f = 500H_{ice}\left(\frac{EAR}{Z}\right)\left(\frac{1}{1-\frac{d}{D}}\right)D (kN)$	
where $D_{limit} = \frac{2}{\left(1 - \frac{d}{D}\right)} H_{ice}$ (m)		where $D_{limit} = \frac{2}{\left(1 - \frac{d}{D}\right)} H_{ice}$ (m)	
(Deleted)		Hice, D and EAR: As specified in 4.2.2-1.	
d: Propeller boss diameter (m)		d: Propeller boss diameter (m)	
Z: Number of propeller blades		Z: Number of propeller blades	
2 The maximum forward blade force F_f is to be applied as a	2	The maximum forward blade force F_f is to be applied as a	
uniform pressure distribution to an area of the blade for the following	uniform	pressure distribution to an area of the blade for the following	
load cases as specified in Table 4.4.5-1 and Table 4.4.5-2.	load cas	es.	
(1) For open propellers:	(1)	For open propellers:	
(a) <u>L</u> oad case 3 in Table 4. <u>4.5-1</u>		(a) <u>F_f specified in -1(1) is applied to an area from 0.6R to</u>	
		the tip and from the blade leading edge to a value of 0.2	
		chord length. (See load case 3 in Table 4.2.2-2)	
(b) <u>L</u> oad case 4 in Table 4. <u>4.5-1</u>		(b) <u>A load equal to 50% of F_f specified in -1(1) is applied</u>	
		on the propeller tip area outside of 0.9R. (See load case	
		4 in Table 4.2.2-2)	
(c) For reversible propellers, <u>L</u> oad case 5 in Table 4.4.5-		(c) For reversible propellers, <u>a load equal to 60% of F_f</u>	
1		specified in $-1(1)$ is applied to an area from $0.6R$ to the	
		tip and from the blade trailing edge to a value of 0.2	
		chord length. (See load case 5 in Table 4.2.2-2)	
(2) For ducted propellers:	(2)	For ducted propellers:	
(a) Load case 3 in Table 4.4.5-2		(a) F_f specified in -1(2) is applied to an area from 0.6 <i>R</i> to	
		the tip and from the blade leading edge to a value of 0.5	
		chord length. (See load case 3 in Table 4.2.2-3)	
(b) For reversible propellers, Load case 5 in Table 4.4.5-2		(b) For reversible propellers, a load equal to $\overline{60\%}$ of F_f	
		specified in $-1(2)$ is applied to an area from $0.6R$ to the	
		tip and from the blade trailing edge to a value of 0.2	
		chord length. (See load case 5 in Table 4.2.2-3)	

Amended-Original Requirements Comparison Table (Machinery of Polar Class Ships)

Amended-Original Red	uirements Com	parison Table (Machiner	v of Polar Class Ships)	
8	1		•		

Amended	Original	Remarks
		Para. 5.3.3
4.4.5 Loaded area on the blade	(Newly added)	
1 Loaded area on the blade of the Maximum forward blade	(Newly added)	
force and maximum backward blade force are to be in accordance		
with Table 4.4.5-1 and Table 4.4.5-2.		

		Am	nended			Remarks		
	Tabl	e 4. <u>5.5-1</u> Load	Cases for Open Propeller		Tabl	e 4. <u>2.2-2</u> Load	Cases for Open Propeller	Table 4
	Force	Loaded area	Right handed propeller blade seen from back		Force	Loaded area	Right handed propeller blade seen from back	
Load case 1	F_b	Uniform pressure applied on the back of the blade (suction side) to an area from 0.6R to the tip and from the leading edge to 0.2 times the chord length		Load case 1	F _b	Uniform pressure applied on the back of the blade (suction side) to an area from 0.6R to the tip and from the leading edge to 0.2 times the chord length	202	
Load case 2	50% of F _b	Uniform pressure applied on the back of the blade (suction side) on the propeller tip area outside of 0.9 <i>R</i> radius	2.92	Load case 2	50% of F _b	Uniform pressure applied on the back of the blade (suction side) on the propeller tip area outside of 0.9 <i>R</i> radius	0.98	
Load case 3	F _f	Uniform pressure applied on the blade face (pressure side) to an area from $0.6R$ to the tip and from the leading edge to 0.2 times the chord length		Load case 3	F _f	Uniform pressure applied on the blade face (pressure side) to an area from $0.6R$ to the tip and from the leading edge to 0.2 times the chord length		

Amended					Remarks			
Load case 4	50% of <i>F_f</i>	Uniform pressure applied on the propeller face (pressure side) on the propeller tip area outside of 0.9 <i>R</i> radius	280 C	Load case 4	50% of <i>F_f</i>	Uniform pressure applied on the propeller face (pressure side) on the propeller tip area outside of 0.9 <i>R</i> radius		
Load case 5	60% of F_f or F_b which one is greater	Uniform pressure applied on propeller face (pressure side) to an area from $0.6R$ to the tip and from the trailing edge to 0.2 times the chord length	<u><u>9</u>2 <u>9</u>3</u>	Load case 5	60% of F_f or F_b which one is greater	Uniform pressure applied on propeller face (pressure side) to an area from $0.6R$ to the tip and from the trailing edge to 0.2 times the chord length	0.25 +	

Amended			Remarks		
Table 4.5.5-2 Load Cases for Ducted Propeller		Table	4. <u>2.2-3</u> Load	Cases for Ducted Propeller	Table 5
Force Loaded area Right handed propeller blade seen from back		Force	Loaded area	Right handed propeller blade seen from back	
Load case 1 F_b Uniform pressure applied on the back of the blade (suction side) to an area from $0.6R$ to the tip and from the leading edge to 0.2 times the chord length	Load case 1	F _b	Uniform pressure applied on the back of the blade (suction side) to an area from $0.6R$ to the tip and from the leading edge to 0.2 times the chord length		
Load F_f Uniform pressure applied on the blade face (pressure side) to an area from the leading edge to 0.5 times the chord length	Load case 3	F_{f}	Uniform pressure applied on the blade face (pressure side) to an area from the leading edge to 0.5 times the chord length		
Load 60% of F_{for} applied on propeller face (pressure side) to an area from 0.6R to the tip and greater from the trailing edge to 0.2 times the chord length	Load case 5	$\begin{array}{c} 60\% \text{ of } \\ F_f \text{ or } \\ F_b \\ \text{ which } \\ \text{ one is } \\ \text{ greater } \end{array}$	Uniform pressure applied on propeller face (pressure side) to an area from 0.6R to the tip and from the trailing edge to 0.2 times the chord length		
AAC Maximum Plada Snindle Tougue	12	1 N/	ovimum Dlada (Spindle Torrayo	Para. 5.3.7
4.<u>4.0</u> Iviaximum Diade Spinule 1 orque Spindle torque around the spindle axis of the blade fitting is	4. <u>2.</u> 2	<u>t</u> IVI Spindl	e torque around t	Spinule 10rque the spindle axis of the blade fitting is	
to be calculated both for the load case specified in 4.4.3 and 4.4.4 for	to be c	alculated	both for the load	d case specified in 4.2.2 and 4.2.3 for	

Amended	Original	Remarks
F_b and F_f . Where these spindle torque values are less than the default	F_b and F_f . Where these spindle torque values are less than the default	
value obtained from the following formula, the default value is to be	value obtained from the following formula, the default value is to be	
used.	used.	
$Q_{smax} = 0.25FC_{0.7}$ (kNm)	$Q_{smax} = 0.25FC_{0.7}$ (kNm)	
where	where:	
$C_{0.7}$: Length (<i>m</i>) of the blade chord at 0.7 <i>R</i> radius	$C_{0.7}$: Length (m) of the blade chord at 0.7R radius	
F : Either F_b determined in 4. <u>4.3</u> -1 or F_f determined in	F : Either F_b determined in 4.2.2-1 or F_f determined in	
4.4.4-1, whichever has the greater absolute value.	4.2.3-1, whichever has the greater absolute value.	D
447 Frequent Distributions for Propeller Blade Loads	(Newly added)	Para. 5.5.8
1 A Weibull-type distribution (probability that F_{int} exceeds	(Newly added)	
$(F_{ice})_{max}$ as given in Fig. 4.4.7-1, is to be used for the fatigue design	(item) under)	
of blades.		
F_{ice} F		
$F\left(\frac{F_{ice}}{F_{ice}}\right) \ge \frac{F_{ice}}{F_{ice}}$		
$= \exp\left(-\left(\frac{F}{(F_{ice})_{max}}\right)^k \ln(N_{ice})\right)$		
where		
$\overline{F_{ice}}$: Random variable for ice loads (kN) on the blade that		
satisfies $0 \le F_{ice} \le (F_{ice})_{max}$		
$(F_{ice})_{max}$: Maximum ice load for ship's service life (kN)		
<u>k: Shape parameter for the Weibull-type distribution in witch</u>		
the following definitions apply: On an aroundlar $k=0.75$		
$\frac{\text{Open propener. } k = 0.75}{\text{Ducted propeller: } k = 1.0}$		
Note: Total number of ice loads on propeller blade for shin's		
service life		

Amended	Original	Remarks
<u>2</u> A blade stress amplitude distribution in accordance with -1 above is to be determined in accordance with the formula:	(Newly added)	
$(\sigma_{ice})_A(N) = (\sigma_{ice})_{Amax} \cdot \left(1 - \frac{\log(N)}{\log(N_{ice})}\right)^{\frac{1}{k}}$		
where $(\sigma_{ice})_{Amax} = \frac{(\sigma_{ice})_{fmax} - (\sigma_{ice})_{bmax}}{2}$		
Fig.4.4.7-1 Weibull-type Distribution (probability that F_{ice} exceeds $(F_{ice})_{max}$) Used for Fatigue Designs	(Newly added)	Figure 2
1,E-01 1,E-02 1,E-03 1,E-04 1,E-05 1,E-06 1,E-07 Fice/(Ficemax)		

Amended	Original	Remarks
4.4.8Number of Ice Loads1The number of load cycles per propeller blade in the loadspectrum is to be determined according to the following formula: n_n	(Newly added) (Newly added)	Para 5.3.9
$N_{ice} = k_1 k_2 N_{class} \frac{N_n}{60}$ where $N_{class}: \text{Reference number of loads for ice classes, as specified}$ $in Table 4.4.8-1$ $n_n: \text{ Nominal propeller rotational speed at maximum}$ $continuous revolutions in free running condition (rpm)$ $k_1: \text{ Propeller location factor, as specified in Table 4.4.8-2}$ $k_2: \text{ The submersion factor } k_2 \text{ is determined from the}$ $following equation.$ $0.8 - f \qquad : f < 0$ $k_2 = 0.8 - 0.4f \qquad : 0 \le f \le 1$ $0.6 - 0.2f \qquad : 1 < f \le 2.5$		
$\begin{array}{c c} 0.1 & : f > 2.5 \\ \hline \hline where \\ f = \frac{h_0 - H_{ice}}{D/2} - 1 \\ \hline \hline ho: The depth of the propeller centreline at the lower ice \\ \hline waterline (LIWL) of the ship (m). If ho is not known, \\ \hline h_0 = 2/D. \end{array}$ $\begin{array}{c c} \hline Table 4.4.8-1 & Reference Number of Loads for Polar Classes N_{class} \\ \hline \hline Reference Number of Loads for Polar Classes N_{class} \\ \hline \hline Reference Number of Loads for Polar Classes N_{class} \\ \hline \hline Reference Number of Loads for Polar Classes N_{class} \\ \hline \hline Reference N_{class} & \hline Reference N_{class} \\ \hline \hline Reference N_{class} & \hline Reference N_{class} \\ \hline \hline Reference N_{class} & \hline Reference N_{class} \\ \hline \hline Reference N_{class} & \hline Reference N_{class} \\ \hline Reference N_{class} & \hline Refe$	(Newly added)	Table 6

		U	1			
		Amended			Original	Remarks
	Table 4.4.8-2	Propeller Location	Factor k ₁		(Newly added)	
Factor	Centre propeller Bow first operation	Wing propeller Bow first operation	Pulling propeller (wing and centre) Bow propeller or Stem first operation			
<u>k1</u>	<u>1</u>	2	<u>3</u>			
<u>2</u> (abbrevi	For ships is affixed iated to <i>ICB</i>), the m	with the additional mutual spec	notation "Icebreaker" ified in -1 above is to	(Newly	added)	
be multi	plied by a factor of	<u>3.</u>				
3	For components the	hat are subject to	loads resulting from	(Newly	added)	
propelle	r/ice interaction with	h the propeller blade	es, the number of load			
cycles (1	N _{class}) is to be multip	lied by the number of	f propeller blades (Z).			
						Para. 5.4
4. <u>4</u> .9	Blade Failure	Load		4. <u>2</u> .9	Blade Failure Load	
1	Bending Force, Fex			1 <u>T</u>	he blade failure load is to be given by the following	Para. 5.4.1
<u>(1)</u>	Bending force is to	be obtained by the	following formula:	<u>formula:</u>		
	$F_{er} = \frac{0.3ct^2\sigma_{ref}}{2}$	$\times 10^{3}$ (kN)		0	$\frac{3ct^2\sigma_{ref}}{10^3} \times 10^3$ (kN)	
-	where $0.8D-2r$			v	0.8D-2r	
	$\sigma_{ref1} = 0.6\sigma_0$	$_{2} + 0.4\sigma_{\mu}$ (MPa)		,	$\sigma_{ref} = 0.6\sigma_{0.2} + 0.4\sigma_{11}$ (MPa)	
	σ_{1} : Minim	um tensile stress of b	blade material (MPa)		σ_{n} : Ttensile stress of blade material (<i>MPa</i>)	
	$\sigma_{0,2}^{a}$: Minim	num yield stress or 0	.2% proof strength of		$\sigma_{0,2}$: Yield stress or 0.2 % proof strength of blade	
	blade mater	ial (MPa)	1 0		material (MPa)	
	c, t and r:	The actual chord 1	ength, thickness and		c, t and r : The actual chord length, thickness and	
	radius of the	e cylindrical root sec	tion of the blade at the		radius of the cylindrical root section of the blade at the	
	weakest sec	tion outside root fill	et (typically will be at		weakest section outside root fillet (typically will be at	
	the termina	tion of the fillet in	to the blade profile),		the termination of the fillet into the blade profile),	
	respectively	7			respectively	
<u>(2)</u>	The bending for	e <u>in (1) above</u> is	the minimum load	<u>2</u> 1	The force is to be acting at $0.8R$ in the weakest direction <u>of</u>	
	required resulting	in blade failure through	ough plastic bending,	<u>t</u>	ne blade and at a spindle arm of 2/3 the distance of the axis	

Amended	Original	Remarks
and is to be calculated iteratively along the radius of the	of blade rotation of the leading and trailing edge whichever	
blade root to 0.5R assumed to be acting at 0.8R in the	is greater.	
weakest direction.		
(3) Blade failure loads may be obtained alternatively by means	(Newly added)	
of an appropriate stress analysis, reflecting the non-linear		
plastic material behaviour of the actual blade. In such cases,		
blade failure areas may be outside root sections. Blades are		
regarded as having failed if their tips are bent into offset		
positions by more than 10% of the propeller diameter D.		
<u>2</u> Spindle Torque, Q_{sex}	(Newly added)	
(1) The maximum spindle torque due to a blade failure load		
acting at 0.8 <i>R</i> is to be determined. The force that causes		
blade failure typically reduces when moving from the		Para. 5.4.2
propeller centre towards the leading and trailing edges, and		
maximum spindle torque will occur at certain distances from		
to be defined by an empropriate stress analysis or by using		
the following equation:		
$Q_{sex} = \max(C_{LE0.8}; 0.8C_{TE0.8})C_{spex}F_{ex} \ (kNm)$		
where		
$C_{spex} = C_{sp}C_{fex} = 0.7 \left(1 - \left(\frac{4EAR}{z}\right)^3\right)$		
Csp: Non-dimensional parameter taking into account the		
spindle arm		
Cfex: Non-dimensional parameter taking into account the		
reduction of blade failure force at the location of maximum		
spindle torque		
<u>CLE0.8</u> : Leading edge portion of the chord length at 0.8R		

Amended-Original Requirements Comparison Table (Machinery of Polar Class Ships)

Amended	Original	Remarks
CTE0.8: Trailing edge portion of the chord length at 0.8R If Cspex is below 0.3, a value of 0.3 is to be used for Cspex. (2) Spindle torque values due to blade failure loads across the entire chord length area are shown in Fig. 4.4.9-1.		
Fig.4.4.9-1 Schematic figure showing blade failure loads and related spindle torques when force acts at different locations on chord lines at radius 0.8 <i>R</i> Location of max blade failure load Spindle torque force needed to cause the blade to fail Spindle torque caused by blade failure load failure lo	(Newly added)	Figure 3
4.<u>4.10</u> Maximum Propeller Ice Thrust Maximum propeller ice torque applied to the shaft is to be given by the following formula. <u>However, the propeller/ice</u> interaction loads where an ice blocks hit the propeller hubs of pulling propellers are not to be included.	4.<u>2.6</u> Maximum Propeller Ice Thrust Maximum propeller ice torque applied to the shaft is to be given by the following formula.	Para. 5.5.1

(1) Maximum forward propeller ice thrust (1) Maximum forward propeller ice thrust	
$T_f = 1.1 F_f(kN)$ $T_f = 1.1 F_f(kN)$	
(2) Maximum backward propeller ice thrust (2) Maximum backward propeller ice thrust	
$T_b = 1.1 F_b (kN)$ $T_b = 1.1 F_b (kN)$	
where where	
F_{f} : As determined in 4.2.3-1 F_{f} : As determined in 4.2.3-1	
F_b : As determined in 4.2.2-1 F_b : As determined in 4.2.2-1	
4. <u>4.11 Design Thrust along Propulsion Shaft Lines</u> 4. <u>2.8 Maximum Thrust on Propulsion Shafting Syste</u>	em Para. 5.5.2
<u>1</u> <u>Design</u> thrust along the propeller shaft line is to be given by <u>Maximum response</u> thrust along the propeller shaft line is	to be
the following formulae. The greater value of the forward and given by the following formulae.	
backward directional load is to be taken as the design load for both	
directions.	
(1) Maximum shaft thrust forwards: (1) Maximum shaft thrust forwards:	
$T_r = T_n + 2.2T_f (kN) \qquad \qquad T_r = T_n + \alpha 2.2T_f (kN)$	
(2) Maximum shaft thrust backwards: (2) Maximum shaft thrust backwards:	
$T_r = 1.5T_b (kN) \qquad \qquad T_r = \beta 1.5T_b (kN)$	
where: where:	
<i>T</i> : Propeller bollard thrust (kN) If not known, <i>T</i> is to be T_n : Propeller bollard thrust (kN) If not known, T_n is	s to be
taken as specified in Table 4.4.11-1 taken as specified in Table 4.2.8-1	
T_f and T_b : Maximum propeller ice thrust (kN) determined T_f and T_b : Maximum propeller ice thrust (kN) determined	nined
$\operatorname{in} 4.4.10$ $\operatorname{in} 4.2.6$	
<u>2.2</u> and <u>1.5</u> : Thrust magnification factors due to axial $\underline{\alpha}$ and $\underline{\beta}$: Thrust magnification factors due to	axial
vibration vibration given by the following	
Alternatively the factors may be calcu	ulated
by dynamic analysis.	
$\frac{\alpha = 2.2}{\alpha = 1.5}$	
2. For pulling type propellers the ice interaction loads on (Newly added)	
propeller hubs are to be considered in addition to -1 above.	

Amended	Original	Remarks
Table 4. <u>4.11</u> -1 Value of <i>T</i>	Table 4. <u>2.8</u> -1 Value of $T_{\underline{n}}$	Table 7
Propeller type T	Propeller type $T_{\underline{n}}$	
Controllable pitch propellers (open) $1.25T_{\underline{n}}$	Controllable pitch propellers (open) $1.25T$	
Controllable pitch propellers (ducted) $1.1T_n$	Controllable pitch propellers (ducted) $1.1T$	
Fixed pitch propellers driven by turbine or electric motor T_n	Fixed pitch propellers driven by turbine or electric motor T	
Fixed pitch propellers driven by diesel engine (open) $0.85T_{\underline{n}}$	Fixed pitch propellers driven by diesel engine (open) $0.85T$	
Fixed pitch propellers driven by diesel engine (ducted) $0.75T_{\underline{n}}$	Fixed pitch propellers driven by diesel engine (ducted) $0.75T$	
<u>Notes:</u> $T_{\underline{n}}$: Nominal propeller thrust (<i>kN</i>) at maximum continuous revolutions in free running open water conditions	<i>T</i> : Nominal propeller thrust (<i>kN</i>) at maximum continuous revolutions in free running open water conditions	
4. <u>4.12</u> Maximum Propeller Ice Torque	4. <u>2.5</u> Maximum Propeller Ice Torque	Para. 5.6.1
Maximum propeller ice torque applied to the propeller is to	Maximum propeller ice torque applied to the propeller is to	Para. 5.6.2
be given by the following formulae:	be given by the following formulae:	
(1) For open propellers:	(1) For open propellers:	
when $D < D_{\text{limit}}$	when $D < D_{\text{limit}}$	
$Q_{\max} = k_{open} \left(1 - \frac{d}{D}\right) \left(\frac{P_{0.7}}{D}\right)^{0.16} \left(\frac{n}{60}D\right)^{0.17} D^3$	$Q_{\max} = 105 S_{qice} \left(1 - \right)$	
(kNm)	$\left(\frac{d}{D}\right) \left(\frac{P_{0.7}}{D}\right)^{0.16} \left(\frac{t_{0.7}}{D}\right)^{0.6} \left(\frac{n}{C^2}D\right)^{0.17} D^3 (kNm)$	
when $D \ge D_{\text{limit}}$	when $D \ge D_{\text{limit}}$	
$Q_{max} = 1.9k_{max}(1 - 1)$	$Q_{\max} = 202 S_{qice} (H_{ice})^{1.1} \left(1 - \right)$	
$\begin{array}{c} \text{(max)} & \text{(1)} & \text{(0)} & \text{(1)} \\ \text{(2)} & \text{(2)} & \text{(1)} & \text{(2)} & ($	$\left(\frac{d}{2}\right) \left(\frac{P_{0.7}}{2}\right)^{0.16} \left(\frac{t_{0.7}}{2}\right)^{0.6} \left(\frac{n}{12}D\right)^{0.17} D^{1.9} (kNm)$	
$\left(\frac{1}{D}\right)\left(H_{ice}\right)^{1.1}\left(\frac{0.7}{D}\right) \left(\frac{1}{60}D\right) D^{1.7}$ (kNm)	$\frac{D(D)}{\text{where } D_{ijmit}} = 1.81H_{imit}(m)$	
where $D_{limit} = 1.8H_{ice}$ (m)	(Newly added)	
kopen: Factor for open propeller of each polar class		
is given below.		
$\frac{PC1 \text{ to } PC5}{PC6 \text{ to } PC7} = \frac{14.7}{10.0}$		
$\frac{P(0 \text{ to } P(1 - K_{\text{open}} = 10.9)}{K_{\text{open}}}$	(2) For ducted propellers:	
(2) For ducted propeners: when $D \leq D$	when $D \leq D_{\text{limit}}$	
when $D \leq D_{\text{limit}}$		

Amended	Original	Remarks
$Q_{\text{max}} = k_{ducted} \left(1 - \frac{d}{p}\right) \left(\frac{P_{0.7}}{p}\right)^{0.16} \left(\frac{n}{60}D\right)^{0.17} D^3$	$Q_{\rm max} = 74 S_{qice} \left(1 - \right)$	
(kNm)	$\left(\frac{d}{D}\right) \left(\frac{P_{0.7}}{D}\right)^{0.16} \left(\frac{t_{0.7}}{D}\right)^{0.6} \left(\frac{n}{60}D\right)^{0.17} D^3 (kNm)$	
when $D \ge D_{limit}$	when $D \ge D_{limit}$	
$Q_{\max} = 1.9 k_{ducted} \left(1 - \right)$	$Q_{\max} = 141 S_{qice} (H_{ice})^{1.1} (1 - 1)^{1.1}$	
$\frac{d}{D} (H_{ice})^{1.1} \left(\frac{P_{0.7}}{D}\right)^{0.16} \left(\frac{n}{60}D\right)^{0.17} D^{1.9} \ (kNm)$	$\frac{d}{D} \left(\frac{P_{0.7}}{D}\right)^{0.16} \left(\frac{t_{0.7}}{D}\right)^{0.6} \left(\frac{n}{60}D\right)^{0.17} D^{1.9} (kNm)$	
where: $D_{limit} = 1.8H_{ice}$ (m)	where: $D_{limit} = 1.8H_{ice}$ (m)	
kducted: Factor for open propeller of each polar class	(Newly added)	
is given below.		
<u>PC1 to PC5 $k_{\text{ducted}} = 10.4$</u>		
<u>PC6 to PC7 $k_{\text{ducted}} = 7.7$</u>		
(Deleted)	<u>H_{ice}, D and d: As specified in 4.2.2-1 and 4.2.3-1</u>	
(Deleted)	<u>Sqice</u> : Ice strength index for blade ice torque	
\mathbf{D} \mathbf{D} 11 (1) (0.7 \mathbf{D}	$\frac{\text{specified in 1 able 4.2.5-1}}{\text{Point Proposition (w) at 0.7P}}$	
$P_{0.7}$: Propeller pitch (<i>m</i>) at 0. / <i>R</i>	$F_{0.7}$. Fropener pitch (<i>m</i>) at 0.7A For controllable nitch nronaller. $D_{\rm rec}$ is to	
For controllable pitch propellers, $P_{0.7}$ is to	For controllable pitch properties, F0.7 is to	
concespond to maximum continuous	revolutions in bollard condition. If not	
$P_{\text{resurp}} = P_{\text{resurp}} = 0.7 P_{\text{resurp}}$	known $P_{0.7}$ is to be taken as $0.7 P_{0.7}$, where	
$P_{0.7}$ is propeller pitch at maximum	$P_{0.7\pi}$ is propeller nitch at maximum	
continuous revolutions in free running open	continuous revolutions in free running	
water condition	condition.	
(Deleted)	$t_{0.7}$: Maximum thickness (<i>mm</i>) at 0.7 <i>R</i>	
n: Rotational propeller speed (<i>rpm</i>) at bollard	n: Rotational propeller speed (<i>rpm</i>) at bollard	
condition	condition	
If not known, n is to be taken as specified in	If not known, n is to be taken as specified in	
Table 4.4.12-1.	Table 4.2.5-2.	

Amended-Original Requirements Comparison Table (Machinery of Polar Class Ships)

Amended			Or	riginal		Remarks
(Deleted)			Table 4.2.5-1	Value of Sqice		
			Polar class	Sqice		
		[PC1	1.15		
			PC2	1.15		
			PC3	1.15		
			PC4	1.15		
			PC5	1.15		
			PC6	1		
			PC7	1		
		_				
Table 4. <u>4.12-1</u> Rotational Propeller	Speed	Tab	ole 4. <u>2.5-2</u> Rotat	tional Propeller Sp	beed	
Propeller type	п	Propeller type			n	
Controllable pitch propellers	n_n	Controllable pitch	propellers		n_n	
Fixed pitch propellers driven by turbine or electric motor	n_n	Fixed pitch propell	lers driven by turbine or e	lectric motor	n_n	
Fixed pitch propellers driven by diesel engine	$0.85n_n$	Fixed pitch propell	lers driven by diesel engin	ne	0.85 <i>n</i> _n	
Notes: n_n : Nominal rotational speed (TPM) at maximum continurunning condition	ous revolutions in free	<i>n</i> _n : Nominal running c	rotational speed (<i>rpm</i>) condition	at maximum continuou:	s revolutions in free	

Amended	Original	Remarks
4.4.13 Les Torque Excitations	(Nowby added)	Dom 5.6.2
1 General	(Newly added)	r ala. 5.0.5
(1) The given excitations are used to estimate the maximum		
torque likely to be experienced once during the service life		
of the ship. The load cases in this paragraph are intended to		
of the ship. The load cases in this paragraph are interfaced to		
the unreally interests with ice and the corresponding		
the propener interacts with ice and the corresponding		
reaction of the complete system. The ice impact and system		
response cause loads in the individual shaft line components.		
The ice torque Q_{max} may be taken as a constant value in the		
complete speed range. When considerations at specific shaft		
speeds are performed a relevant Q_{max} may be calculated		
using the relevant speed.		
(2) Diesel engine plants without an elastic coupling are to be		
calculated at the least favourable phase angle for ice versus		
engine excitation, when calculated in time domain. In		
addition, engine firing pulses are to be included in the		
calculations and their standard steady state harmonics can be		
used. The phase angles between ice and gas force excitation		
do not need to be considered in frequency domain analyses,		
and misfiring does not need to be considered at all.		
(3) If there is a blade order resonance just above MCR speed,		
calculations are to cover the rotational speeds up to 105 %		
of MCR speed.		
(4) See 4.4.15.		
2 Time domain calculation	(Newly added)	Para 5631
(1) The propeller ice excitation torque for shaft line transient		
dynamic analysis in the time domain is defined as a		
sequence of blade impacts which are of half sine shape and		

Amended	Original	Remarks
occur at the blade. The torque due to a single blade ice		
impact as a function of the propeller rotation angle is then		
given by the following formulae:		
(a) when $0 \le \varphi - 360x \le \alpha_i$ (deg)		
$\underline{Q(\varphi)} = \underline{C_q Q_{max}} \sin(\varphi(180/\alpha_i))$		
(b) when $\alpha_i \leq \varphi - 360x \leq 360$ (deg)		
$Q(\varphi) = 0$		
where		
φ : Rotation angle from when the first impact occurs		
X: Integer revolutions from the time of first impact		
C _a : As specified in Table 4.4.13-1		
a. Direction of monollon blodo/ico interpotion		
<u>ui</u> . Duration of propener blade/ice interaction		
<u>expressed in rotation angle as specified in ranie</u>		
<u>4.4.15-1</u>		
Table $4.4.13 \cdot 1$ Values of C and α	(Newly added)	Table Q
Torque Propellerice $q_i(deg)$	(Incurry added)	
excitation interaction \underline{C}_{a} \underline{C}_{a} $\underline{T=3}$ $\underline{7=4}$ $\underline{7=5}$ $\underline{7=6}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
<u>Case 2</u> <u>Single ice block</u> <u>1.0</u> <u>135</u> <u>135</u> <u>135</u> <u>135</u>		
Two ice blocks		
$ \underline{\text{Case 3}} \qquad (\text{phase shift} \ 0.5 \ 45 \ 45 \ 36 \ 30 $		
Case 4 Single ice block 0.5 45 45 36 30		
(2) Total ice torque is obtained by summing the torque of single		Para, 5.6.3.1
blades, while taking account of the phase shift 360 dpg /7		
(3) At the beginnings and ends of milling sequences (within the		
calculated duration), linear ramp functions are to be used to		

Amended	Original	Remarks
increase C_q to its maximum value within one propell	<u>r</u>	
revolution and vice versa to decrease it to zero.		
(4) The number of propeller revolutions and the number	\underline{bf}	
impacts during milling sequences are to be obtained by the	e	
following formulae.		
(a) Number of propeller revolutions:		
$N_Q = 2H_{ice}$		
(b) The number of impacts:		
\underline{ZN}_Q		
where		
Z: Number of propeller blades		
Examples of all excitation cases for different number	<u>s</u>	
of blades are showing in Fig. 4.4.13-1 and Fi		
<u>4.4.13-2.</u>		
(5) Dynamic simulation is to be performed for all excitation	n	
cases starting at MCR nominal, MCR bollard condition at	d	
just above all resonance speeds (1st engine and 1st black	<u>e</u>	
harmonic), so that resonant vibration responses can l	e	
obtained. For fixed pitch propeller plants, such dynam		
simulation is to also cover the bollard pull condition with	<u>a</u>	
corresponding speed assuming maximum possible output	$\underline{\mathrm{of}}$	
the engine.		
(6) If a speed drop occurs down to stand still of the main engine	2.	
it indicates that the engine may not be sufficiently power	<u>d</u>	
for the intended service task. For consideration of loads, the	e	
maximum occurring torque during the speed drop process		
to be applied. In such cases, excitation is to follow sha	<u>ft</u>	
speed.		

Amended	Original	Remarks
Fig. 4.4.13-1 Example of the Excitation Torque due to Torsional	(Newly added)	Appendix
$\frac{\text{Load for Different Blade Numbers}(Z=3 \text{ and } Z=4) \text{ in Polar Class } PCT}{(H_{ireg}=1.5)}$		
Number of blades $7 = 3$ Number of blades $7 = 4$		
$\mathbf{F}_{\mathbf{s}}^{r} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0$		
$\begin{array}{c} 1,5\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 180\\ 360\\ 540\\ 720\\ 900\\ 1080\\ \end{array}$		
1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5		
$ \frac{1,5}{90} = 0,5 \\ 0,5 \\ 0,5 \\ 0,6 \\ 0,6 \\ 0,180 \\ 0,5 \\ 0,6 \\ 0,180 \\ 0,5 \\ 0,6 \\ 0,180 \\ 0,5 \\ 0,6 \\ 0,180 \\ 0,5 \\ 0 \\ 0,180 \\ $		
Amended	Original	Remarks
---	---------------	----------
Fig. 4.4.13-2 Example of the Excitation Torque due to Torsional	(Newly added)	Appendix
Load for Different Blade Numbers($Z=5$ and $Z=6$) in Polar Class PC7 ($U_{L} = 1.5$)		
(11ice - 1.5)		
Number of blades Z = 5 Number of blades Z = 6		
0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5		
0 180 360 540 720 900 1080 0 180 360 540 720 900 1080		
15 1.5 000000		
es do s		
0 180 360 540 720 900 1080 0 180 360 540 720 900 1080		
1,5		
0 180 240 150 240 150 200 1080 0 180 240 150 200 1080		
1,5		
0 180 360 540 720 900 1080 0 180 360 540 720 900 1080		
Rotation angle ['] Rotation angle [']		

Amended	Original	Remarks
3 Frequency domain excitations	(Newly added)	Para. 5.6.3.2
(1) For frequency domain calculations, the torque excitation is		
to be given by following formula. The excitation has been		
derived so that the time domain half sine impact sequences		
have been assumed to be continuous and the Fourier series		
components for blade order and twice the blade order		
components have been derived. The frequency domain		
analysis is generally considered as conservative compared to		
the time domain simulation provided there is a first blade		
order resonance in the considered speed range:		
$Q_F(\varphi) = Q_{max}(C_{q0} + C_{q1}\sin(ZE_0\varphi + \alpha_1) + \alpha_1)$		
$\underline{C_{q2}}\sin(2ZE_0\varphi + \alpha_2)) (kNm)$		
where		
C _{q0} : Mean torque parameter, as specified in Table 4.4.13-2		
<u>C_{ql}: First blade order excitation parameter, as specified in</u>		
$\frac{1 \text{ able 4.4.13-2}}{2 Comparison of the second state of th$		
$\underline{C_{q2}}$: Second blade order excitation parameter, as specified		
$\frac{111110102444152}{2}$		
specified in Table 4.4.13-2		
ω : Angle of rotation		
E_0 : Number of ice blocks in contact, as specified in Table		
4.4.13-2		
Z: Number of propeller blades		

			Amend	ed				Original	Remarks
T	able 4.4.13-2	2 Value	es of C_q	0 <u>, Cq</u> 1, α	L_1, C_{q2}, α	2 <u>, and E</u>	0	(Newly added)	Table 10
<u>Number</u> propeller blades: Z	of <u>Torque</u> excitation	<u>Cq0</u>	<u>C_{q1}</u>	<u> </u>	<u>C_{q2}</u>	<u><i>A</i></u> ₂	<u>Eo</u>		
<u>3</u>	Case 1	<u>0.375</u>	0.36	<u>-90</u>	<u>0</u>	<u>0</u>	1		
	Case 2	<u>0.7</u>	<u>0.33</u>	<u>-90</u>	<u>0.05</u>	<u>-45</u>	<u>1</u>		
	Case 3	<u>0.25</u>	<u>0.25</u>	<u>-90</u>	<u>0</u>		<u>2</u>		
	Case 4	<u>0.2</u>	0.25	<u>0</u>	0.05	<u>-90</u>	<u>1</u>		
<u>4</u>	Case 1	0.45	0.36	<u>-90</u>	0.0625	<u>-90</u>	<u>]</u>		
	Case 3	0.9373	0.25	<u>-90</u>	0.0023	<u>-90</u>	<u>1</u> 2		
	Case 4	0.2	0.25	0	0.05	<u>-90</u>	1		
5	Case 1	0.45	0.36	-90	0.06	-90	1		
	Case 2	1.19	0.17	<u>-90</u>	0.02	<u>-90</u>	1		
	Case 3	<u>0.3</u>	<u>0.25</u>	<u>-90</u>	<u>0.048</u>	<u>-90</u>	2		
	Case 4	<u>0.2</u>	<u>0.25</u>	<u>0</u>	<u>0.05</u>	<u>-90</u>	<u>1</u>		
<u>6</u>	Case 1	<u>0.45</u>	<u>0.36</u>	<u>-90</u>	<u>0.05</u>	<u>-90</u>	<u>1</u>		
	Case 2	<u>1.435</u>	<u>0.1</u>	<u>-90</u>	<u>0</u>	<u>0</u>	<u>1</u>		
	Case 3	0.3	0.25	<u>-90</u>	0.048	<u>-90</u>	2		
	Case 4	0.2	0.25	<u>0</u>	0.05	<u>-90</u>	<u>1</u>		
<u>(2)</u>	Torsional v excitation ca	<u>ibration</u> ases.	respon	ses are	to be c	alculate	ed for all		Para. 5.6.3.2
(3)	The results of	of the rel	evant ex	citation	a cases a	t the mo	st critical		
	rotational sp	eeds are	e to be u	sed in th	e follow	ving. Th	e highest		
	response tor	que (be	tween th	ne vario	us lump	ed mas	ses in the		
	svstem) is in	n the fol	lowing	referred	to as p	eak torc	ue O _{peak} .		
	The highest	torque a	amplitu	de durin	ig a seci	ience o	f impacts		
	is to be dete	ermined	as half	f of the	range fi	om ma	x to min		
	torque and is	s referre	d to as (O _{Amax} . A	n illustr	ration of	f O _{Amax} is		
	given in Fig	. 4.4.13-	3. The l	nighest t	orque ar	nplitud	e is given		
	by following	g formu	la:		<u>1</u>	_ <u>.</u>	<i>e</i>		

Amended	Original	Remarks
$Q_{Amax} = \left(\frac{max(Q_r(time)) - min(Q_r(time))}{2}\right) (kNm)$		
$Fig.4.4.13-3 Interpretation of Q_{Amax} in Torque Curve$ $Peak torque Q_{peak}$ Q_{e} Q_{e} Q_{e} Q_{e} Q_{e} Q_{e} Q_{e} Q_{e} Q_{e} $Double torque amplitude torque Trime$	(Newly added)	Figure 4
4. <u>4.14</u> Design Torque on Propulsion Shafting System <u>1</u> If there is not a predominant torsional resonance in the operational speed range or in the range 20 % above and 20 % below the maximum operating speed (bollard condition), the following	4.2.7 Design Torque on Propulsion Shafting System (Newly added)	
estimation of the maximum torque can be used. All the torques and		
the inertia moments are to be reduced to the rotation speed of the		
component being examined:		
Directly coupled two stroke diesel engines without flexible		
coupling		

Amended	Original	Remarks
$\begin{array}{l} Q_{peak} = Q_{emax} + Q_{vib} + Q_{max} \frac{l}{l_t} (kNm) \\ \hline and other plants \\ Q_{peak} = Q_{emax} + Q_{max} \frac{1}{l_t} (kNm) \\ \hline \hline \\ \hline $		
Table 4.4.14-1 Maximum Engine Torque Q_{emax} Propeller type Q_{emax} Propellers driven by electric motor Q_{max} Propellers not driven by electric motor Q_n FP propellers driven by turbine Q_n FP propellers driven by diesel engine $0.75 Q_n$ Notes: Q_{max} : Electric motor peak torque (kNm) Q_{ni} : Nominal torque at maximum continuous revolutions in free running condition (kNm)	(Newly added)	Table 11

Amended	Original	Remarks
2 If there is a first blade order torsional resonance in the range 20% above and 20% below the maximum operating speed (bollard condition), the design torque of the shaft component is to be determined by means of a dynamic torsional vibration analysis of the entire propulsion line in the time domain or alternatively in the frequency domain. It is then assumed that the plant is sufficiently designed to avoid harmful operation in barred speed range.	(Newly added)	
(Deleted)	 The propeller ice excitation torque for shaft line dynamic analysis is to comply with the following requirements. (1) The excitation torque is to be described by a sequence of blade impacts which are of half sine shape and occur at the blade. The total ice torque is to be obtained by summing the torques of single ice blade ice impacts taking into account the phase shift. Single ice blade impact is to be given by the following formula. (See Fig. 4.2.7-1) (a) when φ = 0 to α_i (deg) Q(φ) = C_qQ_{max}sin(φ(180/α_i)) (b) when φ = α_i to 360 (deg) Q(φ) = 0 where Q_{max} : As specified in 4.2.5 C_q and α_i : As specified in Table 4.2.7-1 	
	(2) The number of propeller revolutions and the number of impacts during the milling sequence are to be given by the following formulae. For bow propellers, the number of propeller revolutions and the number of impacts during the milling sequence are subject to special consideration. (a) The number of propeller revolutions: $N_Q = 2H_{ice}$	

Amended	Original	Remarks
(Deleted) (Deleted)	(b) The number of impacts: ZNQ Where Hice: As specified in Table 4.2.2-1 Z: Number of propeller blades 2 The response torque at any shaft component is to be analyzed considering excitation torque at the propeller specified in -1, actual engine torque and mass elastic system. 3 The design torque of the shaft component is to be determined by means of torsional vibration analysis of the propulsion line. Calculation is to be carried out for all excitation cases specified in Table 4.2.7-1 and the response is to be applied on top of the mean hydrodynamic torque in bollard condition at the considered propeller	
(Deleted)	Table 4.2.7-1 Values of C_q and α_i Torque excitationPropeller-ice interaction C_q α_i Case 1Single ice block0.545Case 2Single ice block0.7590Case 3Single ice block1.0135Case 4Two ice blocks with 45 degree phase in rotation angle0.545	

Amended-Original Requirements Comparison Table (Machinery of Polar Class Ships)

Amended	Original	Remarks
(Deleted)	Fig.4.2.7-1 Example of the Shape of the Propeller Ice Torque Excitation (four blacked propeller) $\int_{a}^{a} \int_{a}^{a} \int_{a}^{$	
 <u>4.4.15 Torsional Vibration Calculations</u> <u>1</u> The aim of Torsional vibration calculations are used to estimate the torsional loads for individual shaft line components over the life time of the ship in order to determine scantlings for safe operation. The model can be taken from the normal lumped mass elastic torsional vibration model (frequency domain) including the damping. Standard harmonics may be used to consider the gas forces. The engine torque speed curve of the actual plant is to be applied. <u>2</u> For time domain analysis, the model is to include the ice excitation at the propeller, the mean torques provided by the prime 	(Newly added) (Newly added)	Para. 5.7

Amended-Original Red	uirements Com	parison Table (Machiner	v of Polar Class Ships	;)

Amended	Original	Remarks
mover and the hydrodynamic mean torque produced by the propeller as well as any other relevant excitations. The calculations are to cover the variation of phase between the ice excitation and prime mover excitation. This is extremely relevant for propulsion lines with direct driven combustion engines.3For frequency domain calculations the load is to be estimated as a Fourier component analysis of the continuous sequence of half sine load peaks. The first and second order blade components is to be used for excitation, and calculations are to cover the entire relevant shaft speed range. The analysis of the responses at the relevant torsional vibration resonances may be performed for open water (without ice excitation) and ice excitation separately. The resulting maximum torque can be obtained for directly coupled plants by the following superposition: <td>(Newly added)</td> <td></td>	(Newly added)	

Amended	Original	Remarks
4. <u>5</u> Design	4.3 Design of Propulsion Shafting System	Para .6
4.5.1Design Principles1Propulsion lines are to be designed according to the pyramidstrength principle. This means that the loss of a propeller blade is notto cause any significant damage to other propeller shaft line	(Newly added) (Newly added)	Para. 6.1
2 Propulsion line components are to withstand maximum and fatigue operational loads with the relevant safety margin. The loads do not need to be considered for shaft alignment or other calculations of normal operational conditions such the torsional vibration of shafting specified in Chapter 8, Part D of the Rules.	(Newly added)	
4.5.2Fatigue Design in General1Design loads are to be based on ice excitation and wherenecessary (shafting) dynamic analysis, and described as a sequence ofblade impacts (4.4.13-2). Shaft response torque is to be determinedaccording to 4.4.14.	(Newly added) (Newly added)	Para. 6.2
2 Propulsion line components are to be designed so as to prevent accumulated fatigue failure when considering the relevant loads using the linear elastic Miner's rule defined as follows: $D = \frac{n_1}{N_1} + \frac{n_2}{N_2} + \dots + \frac{n_k}{N_k} \le 1$ $\frac{Or}{D} = \sum_{j=1}^{j=k} \frac{n_j}{N_j} \le 1$ $\frac{Where}{k}$	(Newly added)	
<u>k: Number of stress level</u> <u>N_{1.k}: Number of load cycles to failure of the individual stress</u> <u>level class</u> <u>n_{1.k}: Accumulated number of load cycles of the case under</u>		

Amended	Original	Remarks
$\frac{\text{consideration, per class}}{D: \text{Sum of damage using Miner's rules}}$ 3 Stress distributions are to be divided into frequency load spectrums having a minimum ten stress blocks (every 10 % of the load) because calculations having five stress blocks have been found to be too conservative. In addition, maximum allowable loads are limited by $\sigma_{re/2}$ for propeller blades and yield strength for all other components, and load distributions (spectrums) are to be in accordance with the Weibull distribution.	(Newly added)	
4.5.3 Propeller Blades 1 Calculations of blade stresses due to static loads are as follows: (1) Propeller blade stresses are to be calculated for the design loads given in 4.4.3 to 4.4.8 using Finite Element Analysis. (2) In the case of a relative radius $r/R < 0.5$, the blade stresses for all propellers at their root areas may be obtained by the following formula: $\sigma_{st} = C_1 \frac{M_{BL}}{100ct^2} (MPa)$ where C_1 : stress obtained with FEM analysis result stress obtained with beam equation If the actual value is not available, C_1 is to be taken as 1.6. M_{BL} : Blade bending moment (kNm), but to be as follows in the case of a relative radius $r/R < 0.5$:	(Newly added) (Newly added)	Para. 6.3 Para. 6.3.1
$\frac{where}{F: \text{ Force } F_b \text{ or } F_f, \text{ whichever has the greater absolute value.}}$ 2 The calculated blade stress σ_{st} specified in -1 above is to	(Newly added)	Para. 6.3.2

Amended	Original	Remarks
$\begin{array}{l} \label{eq:complywith the following:} \\ \underline{\sigma_{ref2}} \geq 1.3 \\ \underline{\sigma_{st}} \\ \hline where \\ \\ \underline{\sigma_{st}} \\ \hline Maximum stress resulting from F_b or F_t(MPa). \\ \hline If Finite Element Analysis is used in estimating the stresses, von Mises stresses are to be used. \\ \hline \\ \underline{\sigma_{ref2}} \\ \hline Reference strength (MPa), whichever is less, as obtained by the following formulae: \\ \\ \underline{\sigma_{ref2}} = 0.7\sigma_u, \text{ or } \sigma_{ref2} = 0.6\sigma_{0.2} + 0.4\sigma_u \\ \hline \\ $	(Newly added)	Para. 6.3.3 Para. 6.3.3.1

Amended			Original	Remarks
Table 4.5.	3-1 The Coefficien	ts B_1, B_2 and B_3	(Newly added)	Table 12
Coefficients	Open propeller	Ducted propeller		
<u>B1</u>	<u>0.00328</u>	<u>0.00223</u>		
<u>B</u> 2	<u>1.0076</u>	<u>1.0071</u>		
<u>B3</u>	2.101	2.471		
(b) Where	the criterion in (a)	above is not fulfilled the		Para. 6.3.3.1
<u>fatigue</u>	requirements defined	d below apply:		
<u>i)</u> T	he fatigue design of a	propeller blade is based on		
th	e estimated load dist	ribution for the service life		
of	the ship and the	S-N curve for the blade		
<u>m</u>	aterial. An equivalent	t stress ofat that produces the		
sa	<u>me fatigue damag</u>	e as the expected load		
di	stribution is to be	calculated according to		
M	liner's rule. An equiv	valent stress that produces		
th	e same fatigue dam	age as the expected load		
di	stribution is to	be calculated and the		
ac	ceptability criterion f	for fatigue is to be fulfilled		
as	given in this paragra	ph. The equivalent stress is		
no	ormalised for 10^8 cycl	les.		
ii) T	he blade stresses at v	various selected load levels		
<u>fo</u>	r fatigue analysis are	to be taken proportional to		
th	e stresses calculated	for maximum loads given		
in	4.4.3 to 4.4.8. The pe	eak principal stresses σ_f and		
σ_{t}	are determined from	m F_f and F_b using Finite		
E	ement analysis. The	beak stress range $\Delta \sigma_{max}$ and		
th	e maximum stres	s amplitude σ_{Amax} are		
re	spectively determined	d on the basis of load cases		
1	and 3, and cases 2 an	d 4.		
Δ	$\sigma_{\text{max}} = 2 \overline{\sigma_{Amax}} =$	$ (\sigma_{ice})_{fmax} +$		

Amended	Original	Remarks
 (σ_{ice})_{bmax} . iii) The load spectrum for backward loads is normally expected to have a lower number of cycles than the load spectrum for forward loads. Since taking this into account in a fatigue analysis introduces complications that are not justified considering all uncertainties involved, two types of S-N curves are to be used for calculations of equivalent stress. 1) Two-slope S-N curve (slopes 4.5 and 10) (See Fig. 4.5.3-1) 2) One-slope S-N curve (the slope can be chosen) (See Fig. 4.5.3-2) iv) S-N curve type is to be selected to correspond with the material properties of the blade. If the S-N curve is unknown, a two-slope S-N curve is to be used. 		
Fig.4.5.3-1 Two-slope S-N Curve	(Newly added)	Figure 5

Amended	Original	Remarks
Fig.4.5.3-2 Constant-slope S-N Curve	(Newly added)	Figure 6
Pyping set slope m=10 1,E+04 1,E+04 1,E+06 Number of loads		
(2) Equivalent fatique stress		Para 6332
(a) A more general method of determining the equivalent		1 414. 0.3.3.2
fatigue stress of propeller blades is described in 4.5.5.		
where the principal stresses are considered in accordance		
with 4.4.3 to 4.4.8 using the Miner's rule. For the total		
number of load blocks $nbl > 100$, both methods deliver the		
same result, therefore, are regarded as equivalent.		
(b) The equivalent fatigue stress for 10 ⁸ cycles which		
produces the same fatigue damage as the load		
distribution is to be obtained as follows:		
$\underline{\sigma_{fat}} = \rho(\sigma_{ice})_{max}$		
where		
$\underline{(\sigma_{ice})_{max}} = 0.5 ((\sigma_{ice})_{fmax} - (\sigma_{ice})_{bmax})$		
$(\sigma_{ice})_{max}$: The mean value of the principal stress		
amplitudes resulting from design forward and backward		
blade forces at the location being studied. $(\sigma_{ice})_{fmax}$:		
The principal stress resulting he from forward load		
$(\sigma_{ice})_{bmax}$: The principal stress resulting from		

Amended	Original	Remarks
backward load		
(c) In the calculation of $(\sigma_{ice})_{max}$, case 1 and case 3, or		
case 2 and case 4 are to be considered as pairs for		
$(\sigma_{ice})_{fmax}$ and $(\sigma_{ice})_{bmax}$ calculations. Case 5 is		
excluded from the fatigue analysis.		
(d) The calculation of the parameter ρ for a two-slope S-N		
curve		
i) The range of the number of load cycles N_{ice} is to		
be given as follows. In such cases the error of the		
method in ii) to determine the parameter ρ is		
sufficiently small.		
$\underline{5 \times 10^6} \le N_{ice} \le 10^8$		
ii) Parameter ρ relates the maximum ice load to the		
distribution of ice loads in accordance with the		
following regression formulae:		
$\rho = C_1(\sigma_{ice})_{max} C^2 \sigma_{fl} S^2 \log(N_{ice})^{C4}$		
where		
on: Characteristic fatigue strength for blade		
material for 10^8 load cycles(MPa) (See 4.5.3-3(3))		
$\underline{C_1, C_2, C_3}$ and $\underline{C_4}$: Coefficients, as given in Table		
4.5.3-2		
Table 4522 The Coefficients C: Co. Cound C.	(Newly added)	Table 12
$\frac{1}{1000} \frac{1}{4} \frac{1}{5} \frac$	(INEWIY added)	
<u>coencients</u> <u>Open</u> <u>Ducted</u> propeller propeller		
$\underline{C_l}$ <u>0.000747</u> <u>0.000534</u>		
<u>C2</u> <u>0.0645</u> <u>0.0533</u>		
<u>C3</u> <u>-0.0565</u> <u>-0.0459</u>		
$\underline{C_4}$ <u>2.220</u> <u>2.584</u>		

Amended	Original	Remarks
(e) Calculations of the parameter ρ for constant-slope S-N		
curves		
i) In the case of materials with constant-slope S-N		
curves (See Fig. 4.5.3-2), the ρ parameter is to be		
obtained by the following formula:		
$\rho = \left(G\frac{N_{ice}}{N_R}\right)^{1/m} \left(\ln(N_{ice})\right)^{-1/k}$		
where		
k: Shape parameter of the Weibull distribution to		
be taken as follows:		
Ducted propellers: 1.0		
Open propellers: 0.75		
<u>N_R</u> : The reference number of load cycles (= 10 ⁸)		
m: slope for S-N curve in log/log scale		
G: Values corresponding to m/k given in Table		
4.5.3-3. Linear interpolation may be used to		
calculate the G value of m/k ratios other than those		
given in Table 4.5.3-3.		

Amended											Original	Remarks
Table 4.5.3-3 Value for the G Parameter for Different m/k Ratios						ameter	r for D	oiffere	nt <u>m/k</u>	Ratios	(Newly added)	Table 14
<u>m/k</u>	<u>G</u>		<u>m/k</u>	<u>G</u>		<u>m/k</u>	<u>G</u>		<u>m/k</u>	<u>G</u>		
<u>3</u>	<u>6</u>		<u>5.5</u>	<u>287.</u>		<u>8</u>	<u>403</u>		<u>10.5</u>	<u>11.8</u>		
				<u>9</u>			<u>20</u>			<u>99E</u>		
										<u>6</u>		
<u>3.5</u>	<u>11.6</u>		<u>6</u>	<u>720</u>		<u>8.5</u>	<u>119</u>		<u>11</u>	<u>39.9</u>		
							<u>292</u>			<u>17E</u>		
4	24		65	107		0	262		11.5	<u>6</u> 126		
4	<u>24</u>		0.5	<u>10/</u> 1		2	<u> </u>		<u>11.5</u>	<u>150.</u> 843		
				1			000			<u>645</u> E6		
4.5	52.3		7	504		9.5	1.13		12	479.		
				<u>0</u>			<u>3E6</u>			002		
										<u>E6</u>		
<u>5</u>	<u>120</u>		<u>7.5</u>	<u>140</u>		<u>10</u>	<u>3.62</u>					
				<u>34</u>			<u>9E6</u>					
	_											
<u>(3)</u>	For	the a	accept	ance	criteri	<u>on fo</u>	<u>r fatig</u>	gue, t	he eq	<u>uivale</u>	<u>t</u>	Para. 6.3.3.3
	fatig falle	<u>ue sti</u>	resses	at lo	cation	<u>s on l</u>	blades	area	to sa	tisty th		
	<u>10110</u> σ _{f1}	wing	accer	nance	CILLEI	<u>IOII.</u>						
	$\frac{\sigma_{fat}}{\sigma_{fat}}$	≥ 1.5										
	where	2	-									
$\overline{\sigma_{\text{fat}}}$: Equivalent fatigue ice load stress amplitude for 10 ⁸ stress			e for 1	0^8 stres	3							
cycles				-			-					
	$\sigma_{\rm fl}$: Characteristic given by following formula:						ng forr	<u>nula:</u>				
	σ_{fl}	$= \gamma_{\varepsilon 1}$	$\gamma_{\varepsilon 2} \gamma_{\varepsilon}$	$\gamma_m \sigma_c$	exp_							

Amended	Original	Remarks
$\frac{\gamma_{\ell 1}: \text{ The reduction factor due to scatter (equal to one standard}}{\text{deviation}}$		
$\frac{\gamma_{e2}}{by the following formula:}$		
$\frac{\gamma_{\varepsilon 2} = 1 - a \cdot \ln\left(\frac{t}{0.025}\right)}{1}$		
where		
a: The values given in Table 4.5.3-4		
t: Maximum blade section thickness (m)		
γ_{ν} : The reduction factor for variable amplitude loading		
$\underline{\gamma_m}$: The reduction factor for mean stress obtained by the following formula:		
$\gamma_m = 1 - \left(\frac{1.4\sigma_{mean}}{\sigma_u}\right)^{0.75}$		
σ_{exp} : The mean fatigue strength of the blade material at 10^8 cycles to failure in seawater (<i>MPa</i>). The values in Table 4.5.3-4 are to be used.		
<u>The following values are to be used as reduction factors if</u> <u>actual values are unavailable:</u>		
$\gamma_{\varepsilon 1} = 0.67$		
$\gamma_{v} = 0.75$		
$y_m = 0.75$		
4 <u>111</u>		

Amended-Original Requirements Comparison Table (Machinery of Polar Class Ships)

Amended	Original	Remarks
Table 4.5.3-4 Mean Fatigue Strength σ_{exp} for Different Material	(Newly added)	Table 15
Types		
Bronze and brass ($a = 0.01$) Stainless steel ($a = 0.05$)		
$\begin{array}{c c} \underline{Mn Bronze} & \underline{84 MPa} & \underline{\text{Ferritic (}12Cr-1Ni)} & \underline{144 MPa^{(2)}} \\ (KHBsC1) & (KSCSP1) & \end{array}$		
$\begin{array}{c cccc} \hline Mn-Ni \ \text{Bronze} & \underline{84 \ MPa} & \underline{Martensitic} & \underline{(13Cr-} & \underline{156 \ MPa} \\ \hline (KHBsC2) & \underline{4Ni} \\ \hline (KSCSP2) & \underline{(KSCSP2)} \end{array}$		
Ni-Al Bronze 120 MPa Martensitic(16Cr- 168 MPa (KAlBC3) 5Ni) (KSCSP3)		
Mn-Al Bronze113 MPaAustenitic(19Cr- 11Ni)132 MPa(KAlBC4)11Ni)(KSCSP3)		
 <u>Notes:</u> (1) Values are defined from the results of constant amplitude loading fatigue tests at 10⁷ load cycles and 50% survival probability and have been extended to 10⁸ load cycles. Values other than those given in this table may be used, provided they are deemed appropriate by the Society. S-N curve characteristics are based on two slopes, the first slope 4.5 is from 1000 to 10⁸ load cycles and the second slope 10 is above 10⁸ load cycles. The maximum allowable stress for one or a low number of cycles is limited to the range in 4.5.3-2, fatigue strength σ_{ba} is the fatigue limit at 100 million load cycles. (2) This value may be used, provided perfect galvanic protection is active, otherwise a reduction of about 30 MPa is to be applied. 		Para. 6.3.3.3
4.5.4Blade Bolts, Propeller Hubs and CP Mechanisms1General(1)The blade bolts, CP mechanisms, propeller bosses, and fitting of propellers to propeller shafts are to be designed to withstand maximum static and fatigue design loads (as applicable) defined in 4.4.3 to 4.4.8 and 4.5.3, and safety factors are to be greater than follows unless otherwise stated.	(Newly added) (Newly added)	Para. 6.4 Para. 6.4.1

Amended	Original	Remarks
(a) Safety factor against yielding: 1.5		
(b) Safety factor against fatigue: 1.5		
(2) Safety factors for loads resulting from loss of propeller		
blades through plastic bending as defined in 4.4.9-1 are to be		
greater than 1.0 against yielding.		
(3) Provided that calculated stresses duly considering local		
stress concentrations are less than yield strength or a		
maximum of 70 % of $\sigma_{\rm u}$ of the respective materials, detailed		
fatigue analysis is not required. In other cases, however,		
components are to be analysed for cumulative fatigue, and		
an approach similar to that used for shafting assessment may		
be applied (See 4.5.5).		
2 Blade bolts	(Newly added)	Para. 6.4.2
(1) Blade bolts are to withstand the following bending moments		
considered around tangents on bolt pitch circles or other		
relevant axis for non-circular joints that are parallel to the		
root section considered:		
$M_{bolt} = SF_{ex} \left(0.8 \frac{D}{2} - r_{bolt} \right) (kNm)$		
where		
<u><i>r</i>bolt</u> : radius to the bolts plane		
<u>S: Safety factor, taken as 1.0</u>		
(2) Blade bolt pre-tension is to be sufficient to avoid separation		
between mating surfaces when the maximum forward and		
backward ice loads defined in 4.4.3 to 4.4.8 (open and		
ducted propellers respectively) are applied. For conventional		
arrangements, the following formula is to be used:		
$d_{bb} = 41 \sqrt[2]{\frac{F_{ex} \cdot (0.8D-d) \cdot S \cdot \alpha}{\sigma_{0.2} \cdot Z_{bb} \cdot PCD}} (mm)$		
where		

Amended	Original	Remarks
α : Factor based on the following bolt tightening methods. Other factors, however, may be used in cases where the Society deems it appropriate. Torque guided tightening: 1.6 Elongation guided: 1.3 Angle guided: 1.2 Other additional means: 1.1 d_{bb} : effective diameter of blade bolt in way of thread Z_{bb} : Number of blade bolts S: Safety factor, taken as 1.03CP mechanisms (1)(1)Separate means (e.g. dowel pins) are to be provided in order to withstand the spindle torque resulting from blade failure Q_{sex} (4.4.9) or ice interaction Q_{smax} (4.4.6), whichever is greater. In addition, other components of CP mechanisms are not to be damaged by the maximum spindle torques (Q_{sex} or Q_{smax}), and 1/3 of the spindle torque is to be assumed to be consumed by friction when not otherwise documented through further analysis.(2)Diameters of fitted pins d_{fp} between blades and blade carriers are to be obtained by the following formula: $d_{fp} = 66 \sqrt{\frac{(Q_s - Q_{fr})}{p_{CD-z_{pin},\sigma_{0.2}}}} (nm)$ Seafety factor, taken as 1.3 for Q_{smax} and as 1.0 for Q_{sex} Q_{fr} : Friction between connected surfaces, taken as 0.33 Q_s . Alternative Q_{fr} calculations in accordance with reaction forces due to F_{ex} or F_f and F_b , whichever is relevant, may be used by utilising a friction coefficient = 0.15.1, may be used by utilising a friction coefficient = 0.15.1	(Newly added)	Para. 6.4.3
forces due to F_{ex} or F_f and F_b , whichever is relevant, may be used by utilising a friction coefficient = 0.15. In addition, stresses in actuating pins are to be obtained by		

Amended	Original	Remarks
the following formula:		
$\sigma_{\nu M ises} = \sqrt{\left(\frac{\left(F\frac{h_{pin}}{2}\right)}{\frac{\pi}{32}}\right)^2 + 3\left(\frac{F}{\frac{\pi}{4}\cdot d_{pin}^2}\right)^2} (MPa)$		
$\frac{\text{where}}{F = \frac{Q_s - Q_{fr}}{l_m}} (kN)$		
<i>lm</i> : Distance pitching centre of blade to axis of pin (m)		
hpin: Height of actuating pin (mm)		
dpin: Diameter of actuating pin (mm)		
Q_{f} : Friction torque in blade bearings acting on blade palms		
and caused by reaction forces due to F_{ex} , or F_f , F_b , which over is relevant are to be taken as $1/2$ of spindle		
$\frac{\text{which even is relevant are to be taken as 1/5 or spinule}{\text{torque } O_c}$		
(3) Blade failure spindle torque O_{ser} is not to lead to any		
consequential damage, and fatigue strength is to be		
considered for parts transmitting the spindle torque from		
blades to servo systems in consideration of the ice spindle		
torque acting on one blade. In addition, maximum amplitude		
Q_{smax} is to be obtained by the following formula:		
$Q_{samax} = \frac{Q_{sb} + Q_{sf}}{2} \ (kNm)$		
where		
Q_{sb} : Spindle torque due to $ F_b $ (mm)		
<u>Q_{sf}. Spindle torque due to $F_{f}(mm)$</u>		
<u>4 Servo pressures</u>	(Newly added)	Para. 6.4.4
(1) Design pressures for servo systems are to be taken as the		
pressures caused by Q _{smax} or Q _{sex} when not protected by		
relief valves on the hydraulic actuator side or reduced by		
relevant friction losses in bearings caused by the respective		
ice loads.		

Amended-Original Requirements Comparison Table (Machinery of Polar Class Ships)

Amended	Original	Remarks
(2) Design pressures are not to be less than relief valve set		
pressure.		
4.5.5 Propulsion Line Components	(Newly added)	Para. 6.5
<u>1 General</u>	(Newly added)	
(1) The ultimate loads resulting from the total blade failure F_{ex}		
defined in 4.4.9 are to consist of combined axial and bending		
load components, wherever this is significant. In addition,		
the minimum safety factor against yielding is to be 1.0 for		
all shaft line components.		
(2) Shafts and shafting components (such as bearings, couplings		
and flanges) are to be designed to withstand operational		
propeller/ice interaction loads.		
(3) Obtained loads are not intended to be used for shaft		
alignment calculations, and cumulative fatigue calculations		
are to be conducted in accordance with Miner's rule. In		
addition, fatigue calculations are not necessary when		
maximum stress is below fatigue strength at 10 ⁸ load cycles.		
(4) Torque and thrust amplitude distributions (spectrums) in		
propulsion lines are to be obtained by the following formula		
(Weibull exponent $k = 1.0$):		
$Q_A(N) = Q_{Amax} \left(1 - \frac{\log(N)}{\log(Z \cdot N_{ice})} \right)$		
where		
ZNice: The number of load cycles in the load spectrum		
(5) The Weibull exponent to be considered is $k = 1.0$ for both		
open and ducted propeller torque and bending forces. Load		
distributions are accumulated load spectrums, and load		
spectrums are to be divided into a minimum of ten load		
blocks when using Miner's rules. The load spectrums used		

Amended	Original	Remarks
to count the number of cycles for 100 % load are to be the number of cycles above the next step (e.g. 90 % load) to ensure that calculations are on the conservative side, since calculated safety margins become more conservative as the number of stress blocks used decreases. An example of ice load distribution (spectrum) for shafting is shown in Fig.(6)Load spectrums are to be divided into the number of load blocks (<i>nbl</i>) for the Miner's rules, the number of cycles for each load block is to be obtained by the following formula: $n_i = N_{ice}^{1-\left(1-\frac{i}{n_{bl}}\right)^k} - \sum_{i=1}^i n_{i-1}$ where $i:$ Single load block $nbl:$ Number of load blocks		
	(Newly added)	Figure 7

Amended	Original	Remarks
Fig. 4.5.5-2 Example of Ice Load Distribution (Spectrum) for the	(Newly added)	Figure 7
Shafting $(k=1.0)$		
Ice Load Divided into Load Blocks		
$\begin{array}{c} & 0.9 \\ 0.9 \\ 0.0$		
2 Fitting propellers to shafts	(Newly added)	Para. 6.5.1
(1) Keyless cone mounting		Para. 6.5.1.1
(a) Friction capacity at 0 °C is to be at least $S = 2.0$ times		
the highest peak torque Qpeak without exceeding the		
permissible hub stresses.		
(b) Necessary surface pressure $P_{\ell} \rho_{C}^{2}$ is to be obtained by		
following formula:		
$P_{0^{\circ}C} = \frac{2 \cdot S \cdot Q_{peak}}{2} (MPa)$		
$\frac{0.0}{\pi \cdot \mu \cdot D_s^{-2} \cdot L \cdot 10^3}$		
<u>witcic</u> <i>u</i> : Coefficient of friction between metal materials		
μ . Coefficient of includi between metal materials		
follows Coefficients are to be increased by 0.01 in cases		
where glycerin is used in wet mounting		
Steel and steel: 0.15		
Steel and bronze: 0.13		
D_s : Shrinkage diameter at the mid-length of the taper (m)		
L: Effective length of taper (<i>m</i>)		
S: Safety factor, more than 2.0		

Amended	Original	Remarks
(2) Key mounting is not permitted.		
(3) Flange mounting		Para. 6.5.1.2
(a) Flange thickness is to be at least 25 % of the required		Para. 0.3.1.3
aft end shaft diameter (See 6.2.4-1 and -2, Part K of		
the Rules).		
(b) Additional stress raisers such as recesses for bolt heads		
are not to interfere with flange fillets unless flange		
thickness is increased correspondingly.		
(c) Flange fillet radii are to be at least 10% of the required		
shaft diameter.		
(d) The diameter of shear pins is to be obtained by the		
following formula:		
$d_{pin} = 66^{2} \sqrt{\frac{Q_{peak} \cdot S}{PCD \cdot z_{pin} \cdot \sigma_{0.2}}} (mm)$		
where		
<u>dpin</u> : Diameter of shear pins (mm)		
zpin: Number of shear pins		
<u>S: Safety factor, taken as 1.3</u>		
(e) Bolts are to be designed so that blade failure loads F_{ex}		
(4.4.9) in the backwards direction do not cause yielding		
of the bolts. The following formula is to be used:		
$d_b = 41 \sqrt{\frac{F_{ex}\left(0.8 \cdot \frac{D}{PCD} + 1\right) \cdot \alpha}{\sigma_{0.2} \cdot z_b}} (mm)$		
where		
α : Factor based on the following bolt tightening methods.		
Other factors, however, may be used in cases where the		
Society deems it appropriate.		
Torque guided tightening: 1.6		
Elongation guided: 1.3		

Amended	Original	Remarks
Angle guided: 1.2		
Other additional means: 1.1		
db: Diameter of flange bolt (mm)		
Zb: Number of flange bolts		
3 Propeller shafts	(Newly added)	
(1) Blade failure loads F_{ex}		Para. 6.5.2
(a) Blade failure loads F_{ex} (4.4.9) applied parallel to shafts		Para. 6.5.2.1
(forwards or backwards) are not to cause yielding,		
bending moments need not be combined with other		
loads. In addition, the diameter d_p in way of aft stern		
tube bearing are not to be less than the value of the		
following formula:		
$d_p = 160^{3} \sqrt{\frac{F_{ex} \cdot D}{\sigma_{0.2} \cdot \left(1 - \frac{d_i^4}{d_p^4}\right)}} (mm)$		
where		
<u>db</u> : Propeller shaft diameter (mm)		
di: Propeller shaft inner diameter (mm)		
(b) Forward of aft stern tube bearings, shaft diameters may		
be reduced based on direct calculation of the actual		
bending moment, or on the assumption that the bending		
moments caused by F_{ex} are linearly reduced to 25 % at		
the next bearing and in front of this linearly to zero at		
the third bearing.		
(c) Bending due to maximum blade forces F_b and F_f has		
been disregarded since the resulting stress levels are		
much lower than the stresses caused by the blade failure		
load.		
(2) Peak torque <i>Q</i> _{peak}		Para. 6.5.2.2
(a) Stresses due to the peak torque Q _{peak} are to have		

Amended-Original Red	quirements Com	parison Table (Machinery	of Polar Class Ships)
0		(/

Amended	Original	Remarks
minimum safety factors of $S = 1.5$ against yielding in		
plain sections and $S = 1.0$ in way of stress		
concentrations in order to avoid bent shafts.		
(b) Minimum shaft diameters are to be obtained by the		
following formula. Notched shaft diameters, however,		
are not to be less than required plain shaft diameters.		
<u>Plain shaft</u>		
$d_p = 210^3 \sqrt{\frac{Q_{peak} \cdot S}{\sigma_{0.2} \cdot \left(1 - \frac{d_i^4}{d^4}\right)}} (mm)$		
Notched shaft		
$d_p = 210^3 \sqrt{\frac{Q_{peak} \cdot S \cdot \alpha_t}{\sigma_{0.2} \cdot \left(1 - \frac{d_i^4}{d^4}\right)}} (mm)$		
where		
$\underline{\alpha}_t$: Local stress concentration factor in torsion		
(3) Torque amplitudes (See 4.4.13) of a corresponding number		Para. 6.5.2.3
of load cycles are to be used in accumulated fatigue		
evaluation in which the safety factor is $S_{fat} = 1.5$. This is also		
to be considered when plants have high engine excited		
torsional vibrations (e.g. direct coupled 2-stroke engines).		
(4) Fatigue strength		D (504
(a) The fatigue strengths σ_F and τ_F (three million		Para. 6.5.2.4
cycles) of shaft materials may be assessed by the following formula on the basis of the material's yield on		
1000000000000000000000000000000000000		
$\frac{0.2}{6} \frac{1}{10000000000000000000000000000000000$		
$\frac{\upsilon_F - \upsilon_4 3 \upsilon \cdot \upsilon_{0,2} + 77 - \iota_F \cdot \sqrt{3} (MPu)}{\text{This is valid for small polished specimers (no notch) and}$		
reversed stresses (See "VDFH 1093 Reviewt Nr. A DE11		
Berechnung von Wöhlerlinien für Rauteile aus		
$\frac{d_p = 210^3 \sqrt{\frac{Q_{peak} \cdot S}{\sigma_{0.2} \left(1 - \frac{d_i^4}{d^4}\right)}} (mm)}{Notched shaft}$ $\frac{d_p = 210^3 \sqrt{\frac{Q_{peak} \cdot S \cdot \alpha_t}{\sigma_{0.2} \left(1 - \frac{d_i^4}{d^4}\right)}} (mm)$ $\frac{where}{\alpha_t: \text{Local stress concentration factor in torsion}}$ (3) Torque amplitudes (See 4.4.13) of a corresponding number of load cycles are to be used in accumulated fatigue evaluation in which the safety factor is $S_{fat} = 1.5$. This is also to be considered when plants have high engine excited torsional vibrations (e.g. direct coupled 2-stroke engines). (4) Fatigue strength (a) The fatigue strengths σ_F and τ_F (three million cycles) of shaft materials may be assessed by the following formula on the basis of the material's yield or 0.2% proof strength: $\sigma_F = 0.436 \cdot \sigma_{0.2} + 77 = \tau_F \cdot \sqrt{3} (MPa)$ This is valid for small polished specimens (no notch) and reversed stresses. (See "VDEH 1983 Bericht Nr. ABF11 Berechnung von Wöhlerlinien für Bauteile aus		Para. 6.5.2.3 Para. 6.5.2.4

Amended-Original Requirements Comparison Table (Machinery of Polar Class Ships)

Amended	Original	Remarks
Stahl")		
(b) High cycle fatigue (<i>HCF</i>) is to be assessed based on the		
fatigue strengths in (a) above, notch factors (i.e.		
geometrical stress concentration factors and notch		
sensitivity), size factors, mean stress influence and at		
required safety factor of 1.6 at three million cycles		
increasing to 1.8 at 10 ⁹ cycles.		
(c) Low cycle fatigue (<i>LCF</i>) representing 10^4 cycles is to		
be based on the smaller of yield or 0.7 of tensile strength		
$\sqrt{3}$, and this criterion utilises a safety factor of 1.25.		
(d) The <i>LCF</i> and <i>HCF</i> given in (b) and (c) above represent		
the upper and lower knees in a stress-cycle diagram.		
Since the required safety factors are included in these		
values, a Miner's sum of unity is acceptable.		
$\frac{4}{100000000000000000000000000000000000$	(Newly added)	Para. 6.5.3
above.		
5 Shaft connections	(Newly added)	Para. 6.5.4
(1) Shrink fit couplings (keyless) are to be in accordance with		Para. 0.3.4.1
$\frac{4.5.5-2(1)}{10}$ In such cases, a safety factor of 1.8 is to be used.		Para. 6.5.4.2
(2) Key mounting is not permitted.		
(3) Flange mounting (a) Element this image is to be at least 20.9/ of the manying		Para. 6.5.4.3
(a) Flange unckness is to be at least 20 % of the required shaft diameter (See 6.2.4.1 and 2. Part D of the		
Shalt diameter (See 0.2.4-1 and -2, 1 art D of the		
(b) Additional stress raisers such as recesses for bolt heads		
are not to interfere with flange fillets unless flange		
thickness is increased correspondingly		
(c) Flange fillet radii are to be at least 8 % of shaft		
diameters.		
(d) Diameters of ream fitted (i.e. light press fit) bolts are to		
 <u>4</u> Intermediate shafts are to be designed to satisfy -3(2) to (4) <u>above</u>. <u>5</u> Shaft connections (1) Shrink fit couplings (keyless) are to be in accordance with <u>4.5.5-2(1)</u>. In such cases, a safety factor of 1.8 is to be used. (2) Key mounting is not permitted. (3) Flange mounting (a) Flange thickness is to be at least 20 % of the required shaft diameter (See 6.2.4-1 and -2, Part D of the Rules). (b) Additional stress raisers such as recesses for bolt heads are not to interfere with flange fillets unless flange thickness is increased correspondingly. (c) Flange fillet radii are to be at least 8 % of shaft diameters. (d) Diameters of ream fitted (i.e. light press fit) bolts are to 	(Newly added) (Newly added)	Para. 6.5.3 Para. 6.5.4 Para. 6.5.4.1 Para. 6.5.4.2 Para. 6.5.4.3

	Amended	Original	Remarks
	be chosen so that peak torque is transmitted with a		
	safety factor of 1.9 in consideration of prestress.		
	(e) Pins are to transmit the peak torque with a safety factor		
	of 1.5 against yielding (See -2(3)(d)).		
	(f) Bolts are to be designed so that blade failure loads F_{ex}		
	(4.4.9) in the backwards direction do not cause		
	<u>yielding.</u>		
<u>(4)</u>	Splined shaft connections may be applied in cases where no		
	axial or bending loads occur. In such cases, a safety factor of		Para. 6.5.4.4
	$\underline{S} = 1.5$ against the allowable contact and shear stresses		
	resulting from <i>Q_{peak}</i> is to be applied.		
6	Gear transmissions	(Newly added)	Para. 6.5.4.5
(1)	Shafts in gear transmissions are to satisfy the same safety		Para. 6.5.4.6
	levels as intermediate shafts, but bending stresses and		
	torsional stresses are to be combined (e.g. by von Mises for		
	static loads) where relevant. Maximum permissible		
	deflection in order to maintain sufficient tooth contact		
	pattern is to be considered for the relevant parts of the gear		
	shafts.		
<u>(2)</u>	Gearing		Para. 6.5.4.7
	(a) The gearing is to satisfy the following three acceptance		
	<u>criteria:</u>		
	i) Tooth root stress		
	<u>ii) Pitting of tooth flanks</u>		
	iii) Scutting		
	(b) In addition to (a) above, criteria subsurface fatigue is to		
	be considered, if necessary.		
	(c) Common tor all criteria is the influence of load		
	distribution over face width. All relevant parameters		
	such as elastic deflections (e.g. of mesh, shafts and gear		

Amended	Original	Remarks
bodies), accuracy tolerances, helix modifications, and		
working positions in bearings (especially for multiple		
input single output gears) are to be considered.		
(d) Load spectrums (See -1 above) are to be applied in such		
a way that the number of load cycles for output wheels		
are multiplied by a factor equaling the number of		
pinions on the wheel divided by number of propeller		
blades Z. For pinions and wheels operating at higher		
speeds, the number of load cycles is found by		
multiplication with the gear ratios. In addition, peak		
torque Qpeak is also to be considered during such		
calculations.		
(e) Cylindrical gears are to be assessed on the basis of the		
ISO 6336 series (i.e. ISO 6336-1:2019, ISO 6336-		
<u>2:2019, ISO 6336-3:2019, ISO 6336-4:2019, ISO</u>		
6336-5:2016 and ISO 6336-6:2019), provided that		
"Method B" is used. Annex 5.3.1, Part D of the Rules		
may be applied provided that it is deemed equivalent		
by the Society.		
(f) The methods and standards applied to bevel gears are		
to be specially considered by the Society.		
(g) Tooth root safety is to be assessed against peak torque,		
torque amplitudes (with the pertinent average torque)		
and ordinary loads (open water free running) by means		
of accumulated fatigue analyses. The resulting safety		
factors are to be at least 1.5.		
(h) Safety against pitting is to be assessed in the same way		
as tooth root stresses but with a minimum resulting		
safety factor of 1.2.		
(i) Scuffing safety (flash temperature method – ref.		

Amended	Original	Remarks
ISO/TR 13989-1:2000 and ISO/TR 13989-2:2000)		
based on peak torque is to be at least 1.2 when the FZG		
class of oil is assumed one stage below specification.		
(j) Safety against subsurface fatigue of flanks for surface		
hardened gears (oblique fractures from active flank to		
opposite roots) is to be at the discretion of the Society.		
(It is, however, to be noted that high overloads can		
initiate subsurface fatigue cracks that may lead to a		
premature failure.)		
(3) Bearings are to be in accordance with -10 below.		
(4) Torque capacity is to be at least 1.8 times the highest peak		
torque Q _{peak} (at the rotational speed) without exceeding the		
permissible hub stresses of 80 % yield.		Para. 6.5.4.8
7 Clutches	(Newly added)	Para. 6.5.4.9
(1) Clutches are to have a static friction torque of at least 1.3		
times the peak torque Q_{peak} and a dynamic friction torque $2/3$		
of the static friction torque.		Para. 6.5.5
(2) Emergency operation of clutches after failure of operating		
pressure is to be made possible within a reasonably short		
time. If this is arranged by bolts, it is to be on the engine side		
of the clutch in order to ensure access to all bolts by turning		
the engine.		
8 Elastic couplings	(Newly added)	
(1) There is to be a separation margin of at least 20% between		
the peak torque and the torque where any twist limitation is		Para. 6.5.6
$\frac{\text{reached.}}{(N-1)(N-1)}$		
$\frac{Q_{peak} < 0.8I_{Kmax}(N = 1)}{(RNM)}$		
(2) I here is to be a separation margin of at least 20% between $(S = F^* + 4.12, 2) = 1$		
the termine where every mechanical truit limit time and		
ine torque where any mechanical twist limitation or the		

Amended	Original	Remarks
permissible maximum torque of the elastic coupling, valid		
for at least a single load cycle $(N=1)$, is reached.		
(3) Sufficient fatigue strength is to be demonstrated at design		
torque level $Q_r(N=x)$ and $Q_A(N=x)$. This may be		
demonstrated by interpolation in a Weibull torque		
distribution (similar to Fig. 4.5.5-1) by the following		
formulae:		
$\frac{Q_r(N=x)}{Q_r(N=x)} = 1 - \frac{\log(x)}{Q_r(N=x)}$		
$\frac{Q_r(N=1)}{Q_A(N=r)} = \frac{\log(Z \cdot N_{ice})}{\log(x)}$		
$\frac{Q_A(N-M)}{Q_A(N=1)} = 1 - \frac{\log(M)}{\log(Z \cdot N_{ice})}$		
where		
$Q_{r}(N=1)$ corresponds to Q_{peak} and $Q_{A}(N=1)$ corresponds to		
<u>QAmax.</u>		
$\underline{Q_r(N=5E4) \cdot S < T_{Kmax}(N=5E4)} (kNm)$		
$\underline{Q_r(N=1E6) \cdot S < T_{KV}(kNm)}$		
$\frac{Q_A(N = 5E4) \cdot S < \Delta I_{max}(N = 5E4)}{(kNm)}$		
<u>Where</u> S: General safety factor for fatigue, taken as 1.5		
(4) Torque amplitude (or range A) is not to lead to fatigue		
(4) Torque amplitude (of range Δ) is not to read to range creeking (i.e. not to exceed permissible vibratory torque)		
Permissible torque is to be determined by interpolation using		
a Weibull torque distribution in which Transfer		
ΔT_{max} refers to 50000 cycles and T_{kk} refers to 10 ⁶ cycles (See		
$\frac{\Delta T_{max}}{100000000000000000000000000000000000$		
$T_{v} = 0$ (5 × 10 ⁴ load cycles) (kNm)		
$\frac{1_{kmax1} - Q_r}{Q_r} = Q_r + 10^{-10} \frac{10}{10} 1$		

Amended-Original Requirements Comparison Table (Machinery of Polar Class Ships)

Amended	Original	Remarks
Fig. 4.5.5-1 Example of T_{Kmax1} , ΔT_{max} and T_{KV}	(Newly added)	Figure 9 - 11
$\begin{array}{c} \begin{array}{c} & & & \\ & & $		
$\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $		
9 Crankshafts	(Newly added)	Para. 6.5.7
Special consideration is to be given to plants with large inertia		
(e.g. flywheels, tuning wheels or PTO) in the non-driving end fronts		
of engines (opposite to main power take off).		
<u>10 Bearings</u>	(Newly added)	Para. 6.5.8
(1) Aft stern tube bearings and next shaft line bearings are to		
withstand the F_{ex} given in 4.4.9 in such a way that allows		
(2) Rolling bearings are to have 110 <i>a</i> lifetimes of at least 40,000		
hours according to ISO 281:2007.		
(3) Thrust bearings and their housings are to be designed to		
withstand with a safety factor $S = 1.0$ the maximum response		
thrusts in 4.4.11 and the axial forces resulting from the blade		

Amended	Original	Remarks		
 <u>failure load F_{ex} in 4.4.9.</u> For the purpose of calculation, except for F_{ex}, shafts are assumed to rotate at rated speed. For pulling propellers, special consideration is to be given to loads from ice interaction on propeller hubs. <u>11</u> Seals (1) Seals are to prevent egress of pollutants and be suitable for operating temperatures. In addition, contingency plans for preventing the egress of pollutants under failure conditions are to be documented. (2) Seals installed are to be suitable for the intended application. <u>Manufacturers are to provide service experience in similar</u> applications or testing results for consideration. 	(Newly added)	Para. 6.5.9		
(Deleted)	4.3.1 General In the design of the propulsion shafting system, the following are to be taken into account. (1) The propulsion shafting system is to have sufficient strength for the loads specified in 4.2. (2) The blade failure load given in 4.2.9 is not to damage the propulsion shafting system other than the propeller blade itself. (3) The propulsion shafting system is to have sufficient fatigue strength.			
 4.5.6 Azimuthing Main Propulsors In the design of the azimuthing main propulsors, the following are to be taken into account in addition to the requirements specified in 4.5.5. (1) Loading cases which are extraordinary for propulsion units are to be taken into account. Estimation of the loading cases	 4.<u>3.2</u> Azimuthing Main Propulsors In the design of the azimuthing main propulsors, the following are to be taken into account in addition to the requirements specified in 4.<u>3.1</u>. (1) Loading cases which are extraordinary for propulsion units are to be taken into account. Estimation of the loading cases	Para. 6.6		
Amended			Original	Remarks
---------	--	----------	---	---------
	is to reflect the operational realities of the ship and the		is to reflect the operational realities of the ship and the	
	thrusters (for example, loads caused by the impact of ice		thrusters.	
	blocks on propeller hubs of pulling propellers). Furthermore,			
	loads resulting from thrusters operating at oblique angles to			
	the flow are to be considered.			
(2)	The steering mechanism, the fitting of the unit and body of	(2)	The steering mechanism, the fitting of the unit and body of	
	the thruster are to be designed to withstand the loss of a blade		the thruster are to be designed to withstand the loss of a blade	
	without damage.		without damage.	
(3)	The loss of a blade is to be considered in the propeller blade	(3)	The plastic bending of a blade is to be considered in the	
	position, which causes the maximum load on the studied		propeller blade position, which causes the maximum load	
	component. Typically, a top-down blade orientation leads to		on the studied component.	
	maximum bending loads acting on thruster bodies.			
(4)	Azimuth thrusters are to be designed for estimated loads	(4)	Azimuth thrusters are to be designed for estimated loads	
	caused by thruster body/ice interaction, and the thruster		specified in 3.4.10.	
	bodies are to withstand the loads obtained when the			
	maximum ice blocks given in 4.4.2 strike the thruster body			
	when ships are at typical ice operating speed. In addition, the			
	design situation in which ice sheets glide along ship hulls			
	and presses against thruster bodies is to be considered in			
	which sheet thicknesses are taken as the thickness of the			
	maximum ice block entering the propeller, as defined in			
	section 4.4.2.			
(Del	eted)	4.3.3	Propeller Blade	
(Du	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	Blade stresses are to be calculated using backward and	
		forward	I loads given in 4.2.2 and 4.2.3. The stresses are to be	
			ted with recognized and well documented FE-analysis or	
			ble alternative methods. The backward load and the forward	
		load are	e to be applied separately.	
		2	The calculated blade stress σ_{calc} for maximum ice load is	

Amended	Original	Remarks
	$\begin{array}{c} \underline{to \ comply \ with \ the \ following.}} \\ \underline{\sigma_{calc} < \frac{\sigma_{ref}}{S}} \\ \underline{Where} \\ \underline{S=1.5} \\ \underline{\sigma_{ref} : 0.7\sigma_u \ or \ 0.6\sigma_{0.2} + 0.4\sigma_u, \ (MPa), \ whichever} \\ \underline{is \ less} \\ \underline{\sigma_u \ and \ \sigma_{0.2} : the \ stresses \ (MPa) \ as \ defined \ in \ 4.2.9-1} \end{array}$	
(Deleted)	4.3.4Blade Edge Thickness1The blade edge thickness and tip thickness are to be greaterthan the values obtained by the following formula. The requirementfor edge thickness is to be applied for the leading edge and in case ofreversible rotation open propellers, also the trailing edge. $S \propto S_{icce} \sqrt{\frac{3 P_{ice}}{\sigma_{ref}}} (mm)$ x :Distance from the blade edge measured along thecylindrical sections from the edge and is to be 2.5%of chord lengthHowever not to be taken greater than 45mm. In thetip area (above 0.975R) the value is to be taken as2.5% of 0.975R section length and is to be measuredperpendicularly to the edge, however not to be takengreater than 45mm.S:Safety factor given below: $S = 2.5$ (for trailing edge) $= 3.5$ (for leading edge) $= 5.0$ (for tip)Sice: Value specified in Table 4.2.2-1 p_{ice} : Ice pressure =16 (MPa)	

Amended	Original	Remarks
	$\frac{\sigma_{ref}}{2} : Value specified in 4.2.9-1$ 2 Tip thickness is to be the maximum measured thickness in the tip area above 0.975 <i>R</i> radius. The edge thickness in the area between the position of maximum tip thickness and edge thickness at 0.975 <i>R</i> radius is to be interpolated between edge and tip thickness values and smoothly distributed.	
(Deleted)	4.3.5 Controllable Pitch Propeller and Built-up Propeller The strengths of the pitch control gear of the controllable pitch propeller and the blade bolts of the controllable pitch propeller, and the built-up propeller are to be evaluated in consideration of the stress generated when the loads in 4.2.4 and 4.2.9 act on the propeller blade. The safety factor is to be deemed appropriate by the Society.	
(Deleted)	 <u>4.3.6</u> Shafting <u>1</u> For evaluating the strength of shafting systems, twisting moment, bending moment and thrust which may be initiated by ice interaction with the propeller are to be taken into account. Safety factors for yielding and fatigue are to be deemed appropriate by the Society. <u>2</u> The strengths of the thrust shaft, intermediate shaft, propeller shaft and stern tube shaft are to be evaluated by calculating the maximum equivalent stresses (von Mises) on the shafts. <u>3</u> The strengths of the propeller shaft and connection parts of the propeller are also to be evaluated in consideration of the stress caused by the load given in 4.2.9 acting on the propeller blade. 	

Amended	Original	Remarks
4. <u>6</u> Prime Movers	4. <u>4</u> Prime Movers	Para. 7
4. <u>6.1 Main Engines</u> <u>1 Main engines are to be capable of being started and running</u> propellers in the bellard condition	4. <u>4</u> .1 Main Engines (Newly added)	Para. 7.1
<u>2</u> <u>Main engines are to be capable of being started and running</u> the propeller with the controllable pitch in full pitch <u>as limited by</u> <u>mechanical stoppers</u> .	The main engine <u>is</u> to be capable of being started and running the propeller with the controllable pitch in full pitch.	
4.6.2 Starting Arrangements 1 The capacities of air receivers are to be sufficient to provide, without recharging, not less than 12 consecutive starts of propulsion engines, and not less than 6 consecutive starts when reversed for going astern in cases where propulsion engines do not need to be reversed for going astern. Air receivers serving other purposes in addition to starting propulsion engines are to have additional capacities sufficient	(Newly added) (Newly added)	Para. 7.2
 <u>2</u> The capacities of air compressors are to be sufficient for charging air receivers from atmospheric to full pressure in 1 <i>hour</i>, except for ice class <i>PC</i>6 to <i>PC</i>1 ships for which propulsion engines need to be reversed for going astern. In such cases, compressors are to be able to charge receivers within 30 <i>minutes</i>. 	(Newly added)	
 4.6.3 Emergency Generating Sets 1 Provisions are to be made for heating arrangements to ensure the ready starting of emergency power units from a cold state at an ambient temperature applicable to the polar class ship. 2 Emergency power units are to be equipped with starting devices with stored energy capabilities of at least three consecutive starts at the temperatures specified in -1 above, and sources of stored 	4. <u>4.2</u> <u>Starting Arrangement for Emergency Generating Sets</u> Provisions are to be made for heating arrangements to ensure <u>that</u> <u>cold emergency power units are able to start</u> at an ambient temperature applicable to the polar class ship. (Newly added)	Para. 7.3

Amended	Original	Remarks
energy are to be protected to preclude critical depletion by automatic		
starting systems, unless a second independent mean of starting is		
provided. In addition, a second source of energy is to be provided for		
an additional three starts within 30 minutes, unless manual starting can		
be demonstrated to be effective.		
4.7 Fastening Loading Accelerations	4.5 Fastening Loading Accelerations	Para. 8
4.7.1 Machinery Fastening Loading Accelerations	4.5.1 Machinery Fastening Loading Accelerations	Para. 8.1
Supports of essential equipment and main propulsion	Supports of essential equipment and main propulsion	
machinery are to be suitable for the accelerations given by the	machinery are to be suitable for the accelerations given by the	
following formulae. Accelerations are to be considered as acting	following formulae. Accelerations are to be considered as acting	
independently.	independently.	
(1) Maximum longitudinal impact acceleration at any point	(1) Maximum longitudinal impact acceleration at any point	Para. 8.2
along the hull girder:	along the hull girder:	
$a_{l} = \left(\frac{F_{IB}}{\Delta}\right) \left\{ \left[1.1 \tan(\gamma + \phi)\right] + \left\lfloor\frac{7H}{L}\right\rfloor \right\} (m/s^{2})$	$a_{l} = \left(\frac{F_{IB}}{\Delta}\right) \left\{ \left[1.1 \tan(\gamma + \phi)\right] + \left[\frac{7H}{L}\right] \right\} (m/s^{2})$	
(2) Combined vertical impact acceleration at any point along the	(2) Combined vertical impact acceleration at any point along the	Para. 8.3
hull girder:	hull girder:	
$a_{\nu} = 2.5 \left(\frac{F_{IB}}{\Lambda}\right) F_X (m/s^2)$	$a_{\nu} = 2.5 \left(\frac{F_{IB}}{\Lambda}\right) F_X (m/s^2)$	
where	Where	
$F_X = 1.3$ (at fore perpendicular)	$F_X = 1.3$ (at fore perpendicular)	
=0.2 (at midships)	=0.2 (at midships)	
=0.4 (at aft perpendicular)	=0.4 (at aft perpendicular)	
=1.3 (at aft perpendicular for vessels conducting ice	=1.3 (at aft perpendicular for vessels conducting ice	
breaking astern)	breaking astern)	
Intermediate values to be interpolated linearly.	Intermediate values to be interpolated linearly.	Para. 8.4
(3) Combined transverse impact acceleration at any point along	(3) Combined transverse impact acceleration at any point along	
hull girder:	hull girder:	
$a_t = 3F_i \frac{r_X}{\Lambda} (m/s^2)$	$a_t = 3F_i \frac{r_X}{\Lambda} (m/s^2)$	

Amended-Original Requirements Comparison Table (Machinery of Polar Class Ships)

Amended	Original	Remarks
where	Where	
$F_X = 1.5$ (at fore perpendicular)	$F_X = 1.5$ (at fore perpendicular)	
=0.25 (at midships)	=0.25 (at midships)	
=0.5 (at aft perpendicular)	=0.5 (at aft perpendicular)	
=1.5 (at aft perpendicular for vessels conducting ice	=1.5 (at aft perpendicular for vessels conducting ice	
breaking astern)	breaking astern)	
Intermediate values to be interpolated linearly.	Intermediate values to be interpolated linearly.	
where	where	
ϕ : Maximum friction angle (<i>deg</i>) between steel and	ϕ : Maximum friction angle (<i>deg</i>) between steel and	
ice, normally taken as 10 degrees	ice, normally taken as 10 degrees	
γ : Bow stem angle (<i>deg</i>) at the <i>UIWL</i>	γ : Bow stem angle (<i>deg</i>) at the <i>UIWL</i>	
Δ : Displacement at the <i>UIWL</i> (<i>t</i>)	Δ : Displacement at the <i>UIWL</i> (<i>t</i>)	
L: Length of ship (m) defined in 2.1.2, Part A of the	L: Length of ship (m) defined in 2.1.2, Part A of the	
Rules	Rules	
<i>H</i> : Distance (<i>m</i>) from the <i>UIWL</i> to the point being	<i>H</i> : Distance (<i>m</i>) from the <i>UIWL</i> to the point being	
considered	considered	
F_{IB} : Vertical impact force (kN) defined in 3.5.2	F_{IB} : Vertical impact force (kN) defined in 3.5.2	
F_i : Force (<i>kN</i>) defined in 3.3.1-1(3)(b)	<i>F_i</i> : Force (kN) defined in 3.3.1-1(3)(b)	

Amended	Original	Remarks
4.8 Auxiliary Systems and Piping Systems	4. <u>6</u> Auxiliary Systems and Piping Systems	Para. 9
 4.8.1 Auxiliary Systems 1 Machinery is to be protected from the harmful effects of ingestion or accumulation of ice or snow. Where continuous operation is necessary, means are to be provided to purge the system of accumulated ice or snow. 2 Means are to be provided to prevent tanks containing liquids to be damaged by freezing. 3 Vent pipes, intake and discharge pipes and associated systems are to be designed to prevent blockage due to freezing or ice and snow accumulation 	 4.6.1 Auxiliary Systems 1 Machinery is to be protected from the harmful effects of ingestion or accumulation of ice or snow. Where continuous operation is necessary, means are to be provided to purge the system of accumulated ice or snow. 2 Means are to be provided to prevent tanks containing liquids to be damaged by freezing. 3 Vent pipes, intake and discharge pipes and associated systems are to be designed to prevent blockage due to freezing or ice and snow accumulation 	
and show accumulation.		
 4.8.2 Sea Inlets and Cooling Water Systems 1 Cooling water systems for machinery that are essential for the propulsion and safety of the vessel, including sea chests inlets are to be designed for the environmental conditions applicable to the polar class 	 4.<u>6.2</u> Sea Inlets and Cooling Water Systems 1 Cooling water systems for machinery that are essential for the propulsion and safety of the vessel, including sea chests inlets are to be designed for the environmental conditions applicable to the polar class 	Para. 10
 The construction of the sea chests is to comply with the following requirements: At least two sea chests are to be arranged as ice boxes for <i>PC1, PC2, PC3, PC4</i> and <i>PC5</i> polar class ships. At least one ice box is to be arranged preferably near the centerline for <i>PC6</i> and <i>PC7</i> polar class ships. The calculated volume for each of the ice boxes is to be at least 1m³ for every 750kW of the engine output of the ship including the output of auxiliary engines. 	 The construction of the sea chests is to comply with the following requirements: At least two sea chests are to be arranged as ice boxes for <i>PC1</i>, <i>PC2</i>, <i>PC3</i>, <i>PC4</i> and <i>PC5</i> polar class ships. At least one ice box is to be arranged preferably near the centerline for <i>PC6</i> and <i>PC7</i> polar class ships. The calculated volume for each of the ice boxes is to be at least 1m³ for every 750kW of the engine output of the ship including the output of auxiliary engines. 	
 (4) Ice boxes are to be designed for an effective separation of ice and venting of air. (See example of Fig. 4.8.2-1) 3 Sea inlet valves are to be secured directly to the ice boxes or 	 (4) Ice boxes are to be designed for an effective separation of ice and venting of air. (See example of Fig. 4.<u>6</u>.2-1) 3 Sea inlet valves are to be secured directly to the ice boxes or 	

Amended	Original	Remarks
the sea bays. The valve is to be a full bore type.	the sea bays. The valve is to be a full bore type.	
4 Ice boxes and sea bays are to have vent pipes and to have shut	4 Ice boxes and sea bays are to have vent pipes and to have shut	
off valves connected direct to the shell.	off valves connected direct to the shell.	
5 Means are to be provided to prevent freezing of sea bays, ice	5 Means are to be provided to prevent freezing of sea bays, ice	
boxes, ship side valves and fittings above the <i>LIWL</i> .	boxes, ship side valves and fittings above the LIWL.	
6 Efficient means are to be provided to re-circulate cooling	6 Efficient means are to be provided to re-circulate cooling	
seawater to the ice box. Total sectional area of the circulating pipes is	seawater to the ice box. Total sectional area of the circulating pipes is	
not to be less than the area of the cooling water discharge pipe.	not to be less than the area of the cooling water discharge pipe.	
7 Detachable gratings or manholes are to be provided for ice	7 Detachable gratings or manholes are to be provided for ice	
boxes. Manholes are to be located above the UIWL.	boxes. Manholes are to be located above the UIWL.	
8 Openings in ship sides for ice boxes are to be fitted with	8 Openings in ship sides for ice boxes are to be fitted with	
gratings, or holes or slots in shell plates. The net area through these	gratings, or holes or slots in shell plates. The net area through these	
openings is to be not less than 5 times the area of the inlet pipe. The	openings is to be not less than 5 times the area of the inlet pipe. The	
diameter of holes and width of the slot in shell plating is to be not less	diameter of holes and width of the slot in shell plating is to be not less	
than 20 <i>mm</i> .	than 20 <i>mm</i> .	
9 Gratings of the ice boxes are to be provided with a means of	9 Gratings of the ice boxes are to be provided with a means of	
cleaning with a low pressure steam connection. Cleaning pipes are to	cleaning with a low pressure steam connection. Cleaning pipes are to	
be provided with screw-down type non return valves.	be provided with screw-down type non return valves.	
483 Ballast Tanks	463 Ballast Tanks	Dara 11
Efficient means are to be provided to prevent freezing in fore	Efficient means are to be provided to prevent freezing in fore	1 dia. 11
and after neak tanks and wing tanks located above the <i>LIWL</i> and	and after peak tanks and wing tanks located above the <i>LIWL</i> and	
where otherwise found necessary	where otherwise found necessary	
4. <u>9</u> Ventilation System	4.7 Ventilation System	Para. 12
4.9.1 Ventilation System	4. <u>7.1</u> Ventilation System	
1 The air intakes for machinery and accommodation	1 The air intakes for machinery and accommodation	
ventilation are to be located on both sides of the ship at locations	ventilation are to be located on both sides of the ship.	
where manual de-icing is possible.	-	

Amended	Original	Remarks
2 The air intakes specified in -1 <u>above may</u> be provided with	2 The air intakes specified in -1 are to be provided with a means	
a means equivalent to the manual de-icing required in -1 above	of heating.	
when deemed appropriate by the Society.		
3 <u>Multiple air intakes are to be provided for emergency</u>	3 The temperature of inlet air provided to machinery from the	
generating sets, and such intakes are to be as far apart as possible.	air intakes is to be suitable for the safe operation of the machinery.	
4 Temperature of inlet air is to be suitable for the following	(Newly added)	
purposes. In addition, accommodation and ventilation air inlets are, if		
necessary, to be provided with means of heating.		
(1) Safe operation of machinery		
(2) Thermal comfort in accommodation spaces		
4. <u>10</u> Rudders and Steering Arrangements	4. <u>8</u> Rudders and Steering Arrangements	
4.10.1 Rudders and Steering Arrangements	4.8.1 Rudders and Steering Arrangements	
1 An ice knife is to be fitted to protect the rudder in the centre	1 An ice knife is to be fitted to protect the rudder against ice	
position against ice pressure. The ice knife is to be extended below the	pressure. The ice knife is to be extended below the LIWL.	
LIWL.		
2 Rudder stops to protect steering arrangements are to be	2 Rudder stoppers to protect <u>the</u> steering arrangements are to	
provided, and the design ice force acting on rudders is to be	be <u>effective</u> .	
transmitted to said rudder stops without damaging steering systems.		
3 The components of the steering gear are to be dimensioned	3 The components of the steering gear are to be dimensioned	
to stand the yield torque of the rudder stock.	to stand the yield torque of the rudder stock.	
4 Relief valves for hydraulic pressure of the steering	4 Relief valves for hydraulic pressure of the steering	
arrangements are to be effective.	arrangements are to be effective.	
4 10 2 Rudder Actuators	(Newly added)	Down 12.2
1 Rudder actuators are to be designed for holding torque	(Newly added)	rara. 15.2
obtained by multiplying the open water torque specified in 15.2.2(1).		
Part D of the Rules (in consideration of a maximum speed of 18		

Amended	Original	Remarks
knots) by the factors specified in Table 4.10.2-1.		
2 Design pressures for calculations to determine the scantlings	(Newly added)	
of rudder actuators are to be at least 1.25 times the maximum working		
pressure corresponding to the holding torque defined in -1 above.		
3 Rudder actuators are to be protected by torque relief	(Newly added)	
arrangements, assuming the turning speeds (deg/s) specified in Table		
4.10.2-2 without undue pressure rise. If, however, rudder and actuator		
designs can withstand such rapid loads, such special relief		
arrangements are not necessary and conventional ones may be used		
instead.		
4 For ship affixed with the additional notation " <i>Icebreaker</i> "	(Newly added)	
(abbreviated to ICB), fast-acting torque relief arrangements are to be		
fitted in order to provide effective protection of rudder actuators in		
case where rudders are rapidly forced hard over against the stops.		
5 For hydraulically operated steering gear, fast-acting torque	(Newly added)	
relief arrangements are to be so designed that pressures cannot exceed		
<u>115% of the set pressures of safety valves when rudders are forced to</u>		
move at the speeds indicated in Table 4.10.2-3, and when taking into		
account oil viscosity at the lowest expected ambient temperatures in		
steering gear compartments.		
6 For alternative steering systems, fast-acting torque relief	(Newly added)	
arrangements are to demonstrate degrees of protection equivalent to		
that required for hydraulically operated arrangements.		
7 Arrangements are to be designed such that steering capacity	(Newly added)	
can be speedily regained.		
Table 4 10.2.1 Fraters for Ualding Taylor	(Norsely added)	
$\frac{1 \text{ able 4.10.2-1}}{PC_1 + PC_2} = \frac{PC_2 + PC_2}{PC_2 + PC_2}$	(Inewiy added)	
$\underline{PC1}$ and $\underline{PC2}$ $\underline{PC3}$ to $\underline{PC5}$ $\underline{PC6}$ and $\underline{PC7}$ Factor5315		
<u>1'actor</u> <u>2</u> <u>1.3</u>		

Amended				Original	Remarks
Table 4.10.2-2 Turning Speeds of Steering Gear (Torque relief)			(Torque relief	(Newly added)	Table 17
	arrangem	ents)			
	<u>PC1 and PC2</u>	<u>PC3 to PC5</u>	<u>PC6 and PC7</u>		
<u>Turning speeds</u> (deg/s)	<u>10</u>	<u>7.5</u>	<u>6</u>		
Table 4.10.2-3 Turni	ing Speeds of S	Steering Gear (I	Fast-acting torqu	e (Newly added)	Table 18
	<u>relief arrang</u>	ement)			
	<u>PC1 and PC2</u>	<u>PC3 to PC5</u>	<u>PC6 and PC7</u>		
<u>Turning speeds</u> (deg/s)	<u>40</u>	<u>20</u>	<u>15</u>		
4.11 Alternative Design			(Newly added)	Para. 14	
4.11.1 Alternat	ive Design			(Newly added)	Para. 14.1
As an altern	ative to this cl	hapter, a comp	orehensive desig	<u>n</u>	
study may be submitt	ted and may be	e requested to b	e validated by	<u>m</u>	
agreed test programme.					

Amended	Original	Remarks
EFFECTIVE DATE AND APPLICATION		
1. The effective date of the amendments is 1 July 2024.		
2. Notwithstanding the amendments to the Rules, the current		
requirements apply to ships for which the date of contract for		
construction* is before the effective date.		
* "contract for construction" is defined in the latest version		
of IACS Procedural Requirement (PR) No.29.		
IACS PR No.29 (Rev.0, July 2009)		
 The date of "contract for construction" of a vessel is the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. This date and the construction numbers (i.e. hull numbers) of all the vessels included in the contract are to be declared to the classification society by the party applying for the assignment of class to a newbuilding. The date of "contract for construction" of a series of vessels, including specified optional vessels for which the option is ultimately exercised, is the date on which the contract to build the series is signed between the prospective owner and the shipbuilder. For the purpose of this Procedural Requirement, vessels built under a single contract for construction are considered a "series of vessels" if they are built to the same approved plans for classification purposes. However, vessels within a series may have design alterations from the original design provided: such alterations do not affect matters related to classification, or If the alterations requirements in effect on the date on which the alterations are contracted between the prospective owner and the shipbuilder or, in the absence of the alteration contract, comply with the classification requirements in effect on the date on which the alterations are submitted to the Society for approval. The optional vessels will be considered part of the same series of vessels if the option is exercised not later than 1 year after the contract to build the series was signed. 		
 date of "contract for construction" for such vessels is the date on which the amendment to the contract, is signed between the prospective owner and the shipbuilder. The amendment to the contract is to be considered as a "new contract" to which 1. and 2. above apply. If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessels, is the date on which revised contract or new contract is signed between the Owner, or Owners, and the shipbuilder. 		
Note: This Procedural Requirement applies from 1 July 2009.		