Amendment on 27 June 2024 Resolved by Technical Committee on 30 January 2024

Survey and Construction of Steel Ships Part C

Object of Amendment

Rules for the Survey and Construction of Steel Ships Part C Guidance for the Survey and Construction of Steel Ships Part C

Reason for Amendment

The Society received various feedback, including requests for clarification and suggestions for improvement from relevant industry members. After reviewing this feedback, the Society decided to incorporate some of the suggestions it received and amend relevant requirements accordingly.

Outline of Amendment

- (1) Specifies guidelines for external pressure considerations in hydrostatic tests when predetermined values are unavailable.
- (2) Clarifies the cases of flooding to be considered.
- (3) Specifies that for tankers in the harbour condition, strength evaluations may be based on the planned draught as documented in the Loading Manual for the loading condition.
- (4) Specifies buckling strength assessment criteria for the cargo hold analysis of ships carrying liquefied gases in bulk (membrane tanks) in the 30-degree static heel condition and the collision condition.
- (5) Clarifies the application of steel material categories for hatch coamings.
- (6) Revises the allowable stress values used in bending strength evaluations of double hull structures.
- (7) Clarifies an acceptable alternative evaluation method to the prescriptive formula used to calculate the moment of inertia of girders
- (8) Revises the application scope of minimum thickness requirements.
- (9) Revises the corrosion addition values for the cargo holds of PCC.
- (10) Clarifies some definitions and corrects typographical errors.

Effective Date and Application

- 1. Effective date of this amendment is 27 June 2024.
- 2. Notwithstanding 1 above, the version of Part C of the Rules in effect prior to its comprehensive revision (hereinafter referred to as "old Part C") may still be applied to the sister ships of those ships constructed under old Part C in cases where the date of the contract for construction of the sister ships is before 1 January 2025.

ID: DH23-08

An asterisk (*) after the title of a requirement indicates that there is also relevant information in the corresponding Guidance.

Amended	Original	Remarks
RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS	RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS	Clarifies the cases of flooding to be considered when determining the head to be considered.
Part C HULL CONSTRUCTION AND EQUIPMENT	Part C HULL CONSTRUCTION AND EQUIPMENT	
Part 1 GENERAL HULL REQUIREMENTS	Part 1 GENERAL HULL REQUIREMENTS	
Chapter 1 GENERAL	Chapter 1 GENERAL	
1.3 Principles for Strength Assessment	1.3 Principles for Strength Assessment	
1.3.2 Factors to Be Considered for Strength Assessment	1.3.2 Factors to Be Considered for Strength Assessment	
1.3.2.8 Design Load Scenarios	1.3.2.8 Design Load Scenarios	
The design load scenarios to be considered for the strength	The design load scenarios to be considered for the strength	
assessment are in accordance with the following (1) through (5).	assessment are in accordance with the following (1) through (5).	
However, when it is evident that structural responses under the	However, when it is evident that structural responses under the	
scenarios concerned are not dominant over the structural strength,	scenarios concerned are not dominant over the structural strength,	
depending on the location of the member and the type of strength to	depending on the location of the member and the type of strength to	
be assessed, the assessment of the scenarios may be omitted.	be assessed, the assessment of the scenarios may be omitted.	
(1) Maximum load condition: The maximum values of the	(1) Maximum load condition: The maximum values of the	
structural responses that may occur in the hull during the	structural responses that may occur in the hull during the	
in-service period of the ship are to be assessed. The	in-service period of the ship are to be assessed. The	
anticipated sea states are to be taken as those in the North	anticipated sea states are to be taken as those in the North	
Atlantic (all seasons), and the in-service period is to be	Atlantic (all seasons), and the in-service period is to be	

	Amended		Original	Remarks
(2) (3) (4)	Amended taken as 25 years. Harbour condition: Structural responses during cargo loading/unloading in harbour and during anchorage in sheltered waters are to be assessed. The purpose of assessment of the former is to assess the significant temporary structural responses that may occur in the cargo loading/unloading sequence, while the purpose of the latter is to assess the effect of waves in sheltered waters. Testing condition: The structural responses during the tank test are to be assessed. Flooded condition: Structural responses in the flooded condition are to be assessed. That is, <u>for ships applying</u> <u>probabilistic damage stability requirements,</u> the object of the assessment is the structural responses in the final equilibrium state (in which the probability of survival exceeds 0) in a damage stability calculation. <u>For ships</u> <u>applying deterministic damage stability requirements,</u> the object of the assessment is the structural responses in the final	(2) (3) (4) (5)	taken as 25 years. Harbour condition: Structural responses during cargo loading/unloading in harbour and during anchorage in sheltered waters are to be assessed. The purpose of assessment of the former is to assess the significant temporary structural responses that may occur in the cargo loading/unloading sequence, while the purpose of the latter is to assess the effect of waves in sheltered waters. Testing condition: The structural responses during the tank test are to be assessed. Flooded condition: Structural responses in the flooded condition are to be assessed. That is, the object of the assessment is the structural responses in the final equilibrium state (in which the probability of survival exceeds 0) in a damage stability calculation. In addition, the structural responses during the voyage to the port of repair after flooding are also to be assessed. Cyclic load condition: For stress concentration areas where	Remarks
(5)	however, the object of the assessment is the structural responses in the flooding cases considered under those requirements. In addition, the structural responses during the voyage to the port of repair after flooding are also to be assessed. Cyclic load condition: For stress concentration areas where crack damage may occur, structural responses under cyclic load condition are to be assessed.	(5)	Cyclic load condition: For stress concentration areas where crack damage may occur, structural responses under cyclic load condition are to be assessed.	

A	Amended	Original	Remarks
4 Symbols and Definit 4.4 Glossary 4.4.1 Definition of Ter			Clarifies the definition o deep tanks.
	Table 1.4.4-1 Defin	ition of Terms	
Terms	Definition		
(Omitted)			
Deep tank	A tank used for the carriage of water, fuel oil, or other liqu	uids, forming a part of the hull in holds or tween deeks .	
(Omitted)	Chapter 3 STRUCTURA	DESIGN PRINCIPI ES	Clarifies the requirement
2 Materials 2.2 Application of St		L DESIGN PRINCIPLES	Clarifies the requirement based on UR S6.
2 Materials		L DESIGN PRINCIPLES	-
2 Materials 2.2 Application of St	teels	L DESIGN PRINCIPLES	-
2 Materials 2.2 Application of St	teels Table 3.2.2-1 Application of Mild S Application		-

	Amended		Remark	
	Longitudinal coamings over 0.15 Lo-(including top plate and its flange, but excluding other stiffeners; See Fig. 3.2.2.1) and end brackets and deckhouse	D D	E	
Hatch coaming	transition Within 0.6 L amidships	e D	Ε	
	stiffeners) (See Fig. 3.2.2-1) Other than those End brackets and deckhouse mentioned above transitions mentioned above	D		
Hatch cover	Top plates, bottom plates and primary supporting members	g A	B D	
	(Omitte	ed)		
(Remarks) (Omitted)				
(Notes) (Omitted)				

Table 3.2.2-2	Application of Tensile Steels for Structural Members
---------------	--

Struc	tural member	Application		Thickne	ss of plate: t (mm)			
				<i>t</i> ≤15	$15 < t \leq$	$20 < t \leq$	$25 < t \leq$	$30 < t \leq$	$40 < t \leq$
				1 ≤ 13	20	25	30	40	50
(Omi	tted)								
		Longitudinal coamings over 0.15 Lo-(including top plate and its flange, but excluding	Within 0.4 L _C amidships	DH				EH	
Cargo hatch	Hatch coaming	other stiffeners) and end brackets and deelchouse transition	Within 0.6 L _C amidships excluding the above	DH					EH

(Survey and Construction of Steel Ships Part C)

Amen	nded			Original		Remarks	
	and their tlanges but evoluting	her than those Intioned DH ove					
Hatch cover	Top plates, bottom plates and prima members	ary supporting AH			DH		
(Omitted) (Notes) (Omitted)							
Table 3.2.2-3 Ap Structural member	plication of Tensile Steels w	vith Thickness o	Thickness of plate	:: <u>t (</u> mm)	an 70 <i>mm</i>		
		vith Thickness o			an 70 <i>mm</i>		
Structural member (Omitted) Face plate and web of cargo hHatch coaming longitudinally	Application Longitudinal coarnings over 0.15 and end brackets and deeldw transition Longitudinal coarnings over 0.15 (includinal coarnings over 0.15)	Within 0.6 amidships	Thickness of plate $50 < t \le 60$:: <u>t (</u> mm)	an 70 mm		
Structural member (Omitted) Face plate and web of cargo h <u>H</u> atch coaming	Application Longitudinal coarnings over 0.15 and end brackets and deeldw transition Longitudinal coarnings over 0.15 (includinal coarnings over 0.15)	<i>Lc</i> Within 0.6 amidships <u>Lc</u> Fig. Other than mentioned abc	those DH	:: <u>t (</u> mm)	an 70 mm		
Structural member (Omitted) Face plate and web of cargo hHatch coaming longitudinally extended on the strength deck (Omitted)	Application Longitudinal coarnings over 0.15 and end brackets and decklar transition Longitudinal coarnings over 0.15 (including top plates and their flat but excluding other stiffeners) (See 3.2.2-1)	<i>Lc</i> Within 0.6 amidships <u>Lc</u> Fig. Other than mentioned abc	those DH	:: <u>t (</u> mm)	an 70 <i>mm</i>		
Structural member (Omitted) Face plate and web of cargo hHatch coarning longitudinally extended on the strength deck	Application Longitudinal coarnings over 0.15 and end brackets and decklar transition Longitudinal coarnings over 0.15 (including top plates and their flat but excluding other stiffeners) (See 3.2.2-1)	<i>Lc</i> Within 0.6 amidships <u>Lc</u> Fig. Other than mentioned abc	those DH	:: <u>t (</u> mm)	an 70 mm		

Amended	Original	Remarks
3.3 Net Scantling Approach	3.3 Net Scantling Approach	Clarifies the requirement on
3.3.3 Corrosion Model for Strength Assessment	3.3.3 Corrosion Model for Strength Assessment	corrosion deduction of stiffeners.
3.3.3.1 The scantlings to be considered in this Part C are as	3.3.3.1 The scantlings to be considered in this Part C are as	
follows:	follows:	
 (1) Net offered thickness of plating is to be equal to or greater than the net required thickness of plating. (2) The required net section modulus, moment of inertia and shear area properties of local supporting members are to be calculated using the net thickness of the attached plate, web and flange. The net sectional dimensions of local supporting members are as specified in Fig. 3.3.3-1. The net cross-sectional area, the moment of inertia about the axis parallel to the attached plate and the associated neutral axis position are to be <u>obtained</u> by deducting 50 % of the applicable corrosion magnitude from the surface of the profile cross section. The required section modulus and required web thickness are to apply to areas clear of the end brackets. Local supporting members other than shown in Fig. 3.3.3-1 are to be at the Society's discretion. 	 Net offered thickness of plating is to be equal to or greater than the net required thickness of plating. The required net section modulus, moment of inertia and shear area properties of local supporting members are to be calculated using the net thickness of the attached plate, web and flange. The net sectional dimensions of local supporting members are as specified in Fig. 3.3.3-1. The net cross-sectional area, the moment of inertia about the axis parallel to the attached plate and the associated neutral axis position are to be determined through applying a corrosion magnitude of 0.5 <i>t_c</i> deducted from the surface of the profile cross section. The required section modulus and required web thickness are to apply to areas clear of the end brackets. Local supporting members other than shown in Fig. 3.3.3-1 are to be at the Society's discretion. 	
((3) to (5) are omitted.)	((3) to (5) are omitted.)	

(Survey and Construction of Steel Ships Part C) Original Remarks Amended Revises the corrosion **Corrosion Addition Determination** 3.3.4.3 addition values for the When a local structural member/plate is affected by more than one value of corrosion addition, the most onerous value is to be cargo holds of PCC. applied to the entire strake. The corrosion addition of a stiffener is to be determined according to the location of its connection to the attached plating. 2 Corrosion Addition for One Side of a Structural Member Table 3.3.4-1 t_{c1} or t_{c2} (*mm*) Compartment type Details (Omitted) (Omitted) Cargo hold or 0.50.25 Void cargo hold spaces (car carriers (Part 2-6)) cargo tank (Omitted) (Omitted) (Omitted) **Minimum Requirements Minimum Requirements** 3.5 3.5 Revices the term from "cargo hold region" to Minimum Thicknesses 3.5.1 3.5.1 Minimum Thicknesses "cargo region". **Double Bottom, Deep Tanks and Cargo Oil Tanks Double Bottom, Deep Tanks and Cargo Oil Tanks** 3.5.1.2 3.5.1.2 The minimum thicknesses of girders, struts and their end The minimum thicknesses of girders, struts and their end 1 1 brackets, bulkhead plates in double bottoms, ballast tanks and tanks brackets, bulkhead plates in double bottoms, ballast tanks and tanks carrying liquids within the cargo region are to be in accordance with carrying liquids within the cargo hold region are to be in accordance Table 3.5.1-1. with Table 3.5.1-1. Except for the members specified in -1 above, no structural Except for the members specified in -1 above, no structural 2 2

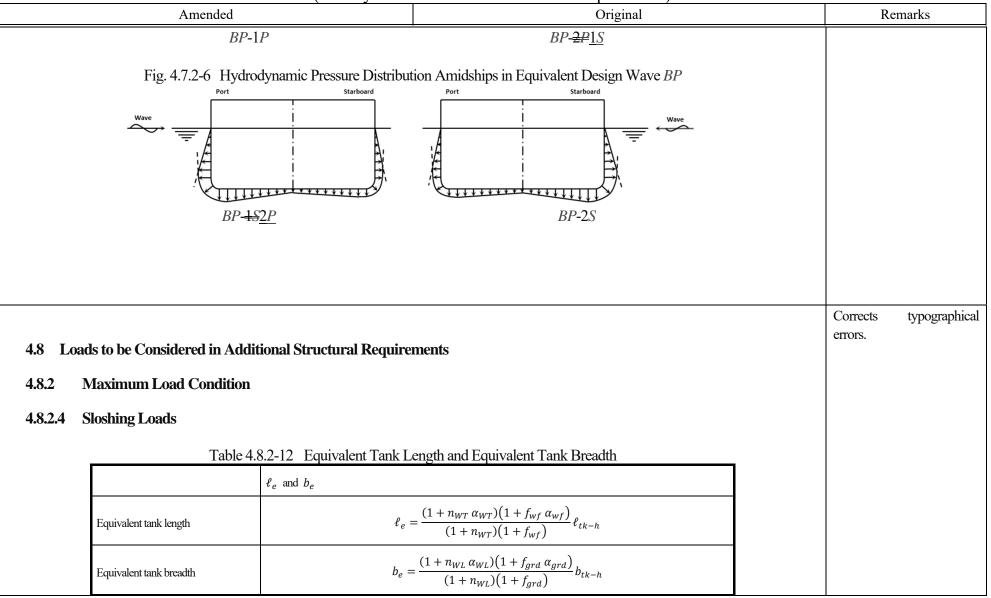
Amended							Rei	narks									
 members in double bottoms, ballast tan within the cargo region are to be less the scantling). 3.5.1.3 Structural Members withi The minimum thicknesses of g brackets and bulkhead plates in the accordance with Table 3.5.1-1. Except for the members specific members in the bulkhead and side struct are to be less than 6 <i>mm</i> in thickness (growth) 	an 6 <i>mm</i> in thi in Cargo Regio girders, struts a cargo region ed in -1 above, ures within the	on and the are to , no str	eir end be in uctural	with (ground) 3 1 brace acco 2 men	hin the biss scar 3.5.1.3 I TI ckets a ordance E mbers i	cargo_ ntling). Strue ne mini nd bulk e with T scept fo in the b	hold re ctural l imum t chead p Fable 3 or the n ulkhead	Memb thicknee blates in 5.5.1-1. nember d and s	ers wit ers wit sses of n the c s speci ide stru	e less t hin Ca girder argo <u>h</u> fied in ctures	han 6 <i>n</i> rgo-Ho rs, struts <u>old</u> regi -1 abov	carrying liquids from in thickness Hel Region is and their end on are to be in ve, no structural he cargo region					
	Table	e 3.5.1-	-1 M	inimur	n Thic	knesses						_	Revises th	e application			
Ship length (111)	2 <	90 105	105 120	120 135	135 150	150 165	165 180	180 195	195 <u>225</u>	225 275	275		scope of minim thickness requirements.				
Double bottoms, ballast tanks, and	Girders, struts and their end brackets and bulkhead plates	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10						
within the cargo hold region	within the cargo hold Structural																
Within the cargo	$\widehat{\Xi}$ Girders, struts and their end brackets and 4.5 5 5.5 6 6.5 7 7.5 8 8 $\frac{8.5}{9}$																
S hold region											·						

	Amended				Original	Remarks
			pter 4 LOA	ADS		Clarifies the title of the table.
4.4 Loads to b	e Considered in Loo	cal Strength				
4.4.2 Maxin	num Load Condition	n				
4.4.2.8 Green	Sea Pressure Acting	g on Weather Deck	X			
	Tab	ble 4.4.2-13 Values	s of a and Minimu	m Values of P _{GW_mi}	<u>n</u>	
Line	Position of deck	а	D	С		
Line	Position of deck	Stiffener ⁽¹⁾ and deck	P _{GW_min}	Stiffener ⁽¹⁾ and deck		
Ι	$x/L_C \ge 0.85$	14.7	$C\sqrt{L_{C230}+50}$	4.20		
Π	$0.7 \le x/L_C < 0.85$	11.8		4.20		
III	$0.2 \le x/L_C < 0.7$	6.90		2.05		
IV	$x/L_{C} < 0.2$	9.80	$-C\sqrt{L_{C230}}$	2.95		
Second	tier superstructure deck above	e freeboard deck ⁽²⁾	$C_{V}L_{C230}$	1.95		
ob 0.5	r ships with L_C not exceedin tained by the following formu $55\left(\frac{L_C}{100}\right) + 0.175$ we values in line I through line ck.	la:				

	Amended	Original	Remarks
.4.3 Testing Condition .4.3.2 Internal Pressure			Clarifies the definition o Z_{PV} .
	Table 4.4.3-2 Design Testin	ng Water Head Height z_{ST}	
	Compartment	Z _{ST}	
	(Omitt	ted)	
	Cargo oil tanks	$z_{ST} = \max(z_{top} + h_{air}, z_{top} + 2.4, z_{top} + z_{PV})^{(3)}$	
	(Omitt	ted)	
	Ballast ducts	$z_{ST} = \max(z_{bp}, z_{PV})$	
	Fuel oil tanks	$z_{ST} = \max(z_{top} + h_{air}, z_{top} + 2.4, z_{top} + z_{PV}, z_{bd})^{(3)}$	
	Cargo tanks of ships carrying dangerous chemicals in bulk ⁽²⁾	$z_{ST} = \max(z_{top} + 2.4, z_{top} + z_{PV})^{(3)}$	
	(Omitt	ted)	
	Notes: z_{top} : Z coordinate of the top of tank (<i>m</i>) (the highest point of the tank excluding z_{bd} : Z coordinate of the bulkhead deck (<i>m</i>) z_{PV} : Z coordinate of the bulkhead deck (<i>m</i>) corresponding to set preserving z_{hc} : Z coordinate of the top of hatch coarning (<i>m</i>) z_c : Z coordinate of the top of chain pipe (<i>m</i>) z_{bp} : Z coordinate of the top of chain pipe (<i>m</i>) z_{bp} : Z coordinate of the test water head (<i>m</i>) corresponding to maximum preserving h_{air} : Height of the air pipe or overflow pipe (<i>m</i>) above the top of the tank		
	(Omitt		

(Survey and Construction	of Steel Ships Part C)	
--------------------------	------------------------	--

	Amended	Original		Remarks		
4.4.4.1 In	looded Condition nternal Pressure (kN/m^2) acting on the watertight water than 0.	all in flooded compartments is to be in accordance with		Clarifies the cases of flooding to be considered when determining the head to be considered.		
 r		e P_{FD-in} in Flooded Condition				
		$-\rho g h_{FD}$				
	P _{FD-in} (kN/m ²) P _{FD-in} = ρgh _{FD} Notes: h _{FD} : Assumed draught height (m) at the time of flooding from the position under consideration, as given by the following formula ⁴⁰ : h _{FD} = max(z _{FB} - z, y sin θ _{FD} + (z _{FD} - z) cos θ _{FD}) z _{FB} : Z coordinate (m) of the freeboard deck at side in way of the transverse section of the hullunder consideration z _{FB} : Z coordinate (m) of the greatest value among the deepest equilibrium waterline at the centreline amidships, evoluting flooded conditions where the probability of survival in damage stability calculations is 0 ⁽¹⁾ 2 ⁽²⁾ θ _{FD} : The greatest value among the deepest equilibrium heel angle (<i>rad</i>), evolutiong flooded conditions where the probability of survival in damage stability calculations is 0 ⁽¹⁾ 2 ⁽²⁾ 01 When the maximum draught was obtained based on the combination of $\frac{p_{FD}}{p_{FD}}$ and $\frac{p_{FD}}{2}$ and $\frac{p_{FD}}{2}$ in each case to be considered in damage stability calculations, the said draught may be regarded as the assumed draught height. (2) For ships applying the damage stability requirements specified in 2.3, the case where the probability of survival is 0 is excluded (i.e. is not to be considered). In addition, the case where the compartment adjacent to members being assessed does not flood and the case where two adjacent compartments simultaneously flood may be excluded. (3) For ships other than (2) above (i.e. ships not applying probabilitic damage stability requirements), the case where the compartment adjacent to members being assessed does not flood and the case					


	Amended	Original	Remarks
4.6 Lo	ads to be Considered in Strength Assessment by Ca	argo Hold Analysis	Clarifies the definition of
4.6.4	Testing Condition		Z_{PV} .
4.6.4.3	Internal Pressure		
	Table 4.6.4-2 Design	Testing Water Head Height Z_{ST}	
	Compartment	Z_{ST}	
		(Omitted)	
	Cargo oil tanks	$z_{ST} = \max(z_{top} + h_{air}, z_{top} + 2.4, z_{top} + z_{PV})^{(3)}$	
		(Omitted)	
	Ballast ducts		
	Fuel oil tanks	$z_{ST} = \max(z_{top} + h_{air}, z_{top} + 2.4, z_{top} + z_{PV}, z_{bd})^{(3)}$	
	Cargo tanks of ships carrying dangerous chemicals in bulk ⁽²⁾	$z_{ST} = \max(z_{top} + 2.4, z_{top} + z_{PV})^{(3)}$	
		(Omitted)	
	Notes: z_{top} : Z coordinate of the top of tank (m) (highest point of tank excluded z_{bd} : Z coordinate of the bulkhead deck (m) z_{PV} : Z coordinate of the bulkhead deck (m) corresponding to set z_{hc} : Z coordinate (m) at the top of the hatch coarning z_c : Z coordinate (m) at the top of chain pipe z_{bp} : Z coordinate of the test water head (m) corresponding to maximum h_{air} : Height of the air pipe or overflow pipe (m) above the top of the tag		
		(Omitted)	

Amended	Original	Remarks
 4.6.5 Flooded Condition 4.6.5.1 Loading Condition and Flooded Compartment The compartment to be flooded is to be determined so as to maximise the stress in the member being evaluated. The water head of the compartment to be flooded is to be set so as to obtain Z coordinate where the deepest equilibrium waterline is the greatest or the height of the freeboard deck. For ships applying the damage stability requirements specified in 2.3, flooded conditions in which the survival probability is 0 may not be considered. For ships applying damage stability requirements different from 2.3, the condition is to be based on the flooding cases considered in those requirements. 2 In principle, the cargo load need not be considered. 	Original 4.6.5 Flooded Condition 4.6.5.1 Loading Condition and Flooded Compartment The compartment to be flooded is to be determined so as to maximise the stress in the member being evaluated. The water head of the compartment to be flooded is to be set so as to obtain Z coordinate where the deepest equilibrium waterline is the greatest. However, flooded conditions in which the survival probability is 0 may not be considered.	Clarifies the cases of flooding to be considered when determining the head to be considered.
	s to be in accordance with Table 4.6.5-1 , but is not to be less than 0. re P_{FD-ex} in Flooded Condition	Clarifies the cases of flooding to be considered when determining the head to be considered.
$FD1^{(1)(2)}$	$P = -\alpha a h$	
$\frac{FD1^{(3,2)}}{FD2^{(1)(2)}}$	$P_{FD-ex} = \rho g h_{FD1}$	
FD3 ⁽¹⁾	$P_{FD-ex} = \rho g h_{FD2}$ $P_{FD-ex} = \rho g (z_{FB} - z)$	
	FD-ex = Pg(2FB = 2)	

Amended Original		Remarks
 Notes: h_{FD1}, h_{FD2}: Assumed draught height (<i>m</i>) in the flooded condition from the position under consideration, as given by the following f h_{FD1} = y sin θ_{FD} + (z_{FD} - z) cos θ_{FD} h_{FD2} = -y sin θ_{FD} + (z_{FD} - z) cos θ_{FD} z_{FD}: Z coordinate (<i>m</i>) of the greatest value among deepest equilibrium waterline at the centreline amidships, excluding conditions where the probability of survival in damage stability calculations is θ^{(1),Cl,Cl} θ_{FD}: Greatest value among the deepest equilibrium heel angle (<i>rad</i>), excluding floeded conditions where the probabilit damage stability calculations is θ^{(1),Cl,Cl} θ_{FD}: Greatest value among the deepest equilibrium heel angle (<i>rad</i>), excluding floeded conditions where the probabilit damage stability calculations is θ^{(1),Cl,Cl} <i>d_{FD}</i>: Z coordinate (<i>m</i>) of the freeboard deck at side in way of the transverse section under consideration⁽⁶⁾ (1) In case of z_{FD} ≥ z_{FB}, <i>FD</i>3 may not be considered. (2) For ships with structure symmetrical about centreline, either <i>FD</i>1 or <i>FD</i>2 may be considered. (3) When the maximum draught was obtained based on the combination of z_{FD} and θ_{FD} in each case to be considered in calculations, the said draught may be regarded as the assumed draught height. (4) For ships applying probabilistic damage stability requirements, the case where the probability of survival is 0 is excluded considered). In addition, the case where the compartment adjacent to members being flood and the case where two adjacent compartments simultaneously flood may be excluded. (5) For ships not applying probabilistic damage stability requirements, the case where the compartment adjacent to members being flood and the case where two adjacent compartments simultaneously flood may be excluded. (6) In situations where unintended structural responses are caused by loads acting on compartments other than the target hold, a satisfact	coded cof survival in damage stability (i.e. is not to be here two adjacent assessed does not	
4.6.5.3 Internal Pressure Internal pressure P_{FD-in} (kN/m^2) acting on watertight walls in a flooded compartment is to be in accubut is not to be less than 0.	ordance with Table 4.6.5-2 , flow	arifies the cases of oding to be considered ten determining the head be considered.

Amended	Original	Remarks
Table 4.6.5-2 Internal F	Pressure P_{FD-in} in Flooded Condition	
Internal pressure P_{FD-in} (kN/m ²)		
FD1 ⁽¹⁾⁽²⁾	$P_{FD-in} = \rho g h_{FD1}$	
FD2 ⁽¹⁾⁽²⁾	$P_{FD-in} = \rho g h_{FD2}$	
FD3 ⁽¹⁾	$P_{FD-in} = \rho g(z_{FB} - z)$	
Notes: h_{FD1} , h_{FD2} : As specified in Table 4.6.5-1 ^{\oplus} Z_{FB} : As specified in Table 4.6.5-1 (1) In case of $Z_{FD} \ge Z_{FB}$, FD3 may not be considered.		
(2) For ships with structure symmetrical about centreline, either	combination of z_{FF} and θ_{FF} in each case to be considered in damage stability	

Original Amended Remarks Loads to be Considered in Fatigue 4.7 Corrects typographical errors. **Cyclic Load Condition** 4.7.2 Fig. 4.7.2-3 Hydrodynamic Pressure Distribution Amidships in Equivalent Design Wave BR Starboard Starboard Ŧ = T_{LC} <u>* 1 1 1 / </u> *BR*-1*P* BR-2₽1S Fig. 4.7.2-4 Hydrodynamic Pressure Distribution Amidships in Equivalent Design Wave BR Starboard Starboard Wave = 11111 ----*****††† BR-1\$2P **BR-2**S Fig. 4.7.2-5 Hydrodynamic Pressure Distribution Amidships in Equivalent Design Wave BP Starboard Starboard Port Port Ŧ = 1111111111111

(Survey and Construction of Steel	Ships Part C)
-----------------------------------	---------------

Amended	Original	Remarks					
Notes: (Omitted)							
((1) is omitted.)							
(2) For tanks whose shape changes along their breadth and/or with longitude	dinal wash bulkheads of different shapes, α_{WL} is to be taken as the average						
of all longitudinal wash bulkheads in the tank, as given by the following $ \frac{\sum_{i=1}^{n_{WL}} \frac{A_{WUL}}{A_{tk-L-h_i}}}{n_{WL}} \alpha_{WL} = \frac{\sum_{i=1}^{n_{WL}} \frac{A_{0WL_i}}{A_{tk-L-h_i}}}{n_{WL}} $ ((2) is omitted)	g formula:						
((3) is omitted.)(4) For tanks whose shape changes shape along their breadth and/or with 1	longitudinal girders of different shape, α_{grd} is to be taken as the average of						
all longitudinal girders in the tank, as given by the following formula: $\frac{\sum_{i=1}^{n} \frac{\Delta grad}{A_{tk-l-h_i}}}{\frac{n}{grad}} \frac{\alpha_{grd}}{\alpha_{grd}} = \frac{\sum_{i=1}^{n} \frac{\Delta A_{tk-l-h_i}}{A_{tk-l-h_i}}}{n_{grd}}$	all longitudinal girders in the tank, as given by the following formula: $\sum_{i=1}^{n_{great}A_{Great}} \sum_{i=1}^{n_{great}A_{Great}} \sum_{i=1}^{n_{great}A_{Great}$						
Chapter 6 LOCAL STRENGTH	Chapter 6 LOCAL STRENGTH	Corrects typographical errors.					
6.3 Plates	6.3 Plates						
6.3.3 Corrugated Bulkheads	6.3.3 Corrugated Bulkheads						
6.3.3.1 Thickness of Corrugated Bulkheads 1 The thickness of the flange and web of corrugated bulkheads under all applicable design load scenarios specified in Table 6.2.2-1 is to be the largest of the values obtained by the following formula. Application of gross or net scantlings in the values obtained from following formula is specified in Table 6.3.3-1 :	6.3.3.1 Thickness of Corrugated Bulkheads 1 The thickness of the flange and web of corrugated bulkheads under all applicable design load scenarios specified in Table 6.2.2-1 is to be the largest of the values obtained by the following formula. Application of gross or net scantlings in the values obtained from following formula is specified in Table 6.3.3-1:						

An	nended					Driginal	/		Remarks
Amended $t = C_{safety} \sqrt{\frac{4}{1.15\sigma_Y}} \sqrt{\frac{ P b^2\gamma}{f_P} \times 10^{-3} (mm)}$ C_{safety} : Safety factor as specified in Table 6.3.3-1. σ_Y : Specified minimum yield stress (<i>N/mm²</i>)P: Lateral pressure (<i>kN/m²</i>) corresponding to each design load scenario specified in Table 6.3.3-1, to be calculated at the load calculation point specified in 3.7.b: Width (<i>mm</i>) of the flange (face plate) or web, respectively, to be taken as in Table 6.3.3-1. γ : Coefficient as specified in Table 6.3.3-1. f_P : Strength coefficient given in Table 6.3.3-1.2Notwithstanding -1 above, horizontal corrugated bulkheads are to be as deemed appropriate by the Society.			$t = C_{safety} \sqrt{\frac{4}{1.15\sigma_Y}} \sqrt{\frac{ P b^2\gamma}{f_P} \times 10^{-3} (mm)}$ $C_{safety}: \text{Safety factor as specified in Table 6.3.3-1.}$ $\sigma_Y: \text{ Specified minimum yield stress } (N/mm^2)$ $P: \text{ Lateral pressure } (kN/m^2) \text{ corresponding to each design load scenario specified in Table 6.3.3-1, to be calculated at the load calculation point specified in 3.7.}$ $b: \text{ Width } (mm) \text{ of the flange } (\text{face plate}) \text{ and web, respectively, to be taken as } \frac{b_f \text{ or } b_w (mm)}{m} \text{ in Fig. 6.3.3-1}.$ $\gamma: \text{ Coefficient as specified in Table 6.3.3-1.}$					Remarks	
Table 6.3.3-1 Applicat	ion of Gross of Application of gross or net	or Net Scantlings and Eac Lateral load P (kN/m^2)	ch Parame γ	ter in the Eva	aluation fo C _{safety}	or Each D	Design Load Scena	ario	Clarifies the definition of "b" used in each design load scenario.and corrects
Maximum load condition	scantlings Net scantling	P_{ex} , P_{in} , P_{dk} and P_{GW} To be in accordance with 4.4.2.2-1 to -4 corresponding to compartments/members to be assessed in Table 6.2.2-1	$\frac{\alpha + \beta^3}{\alpha + \beta}$	Flange and Web	1.0	<u>b</u> _f	12		typographical errors.
								-	

		An	nended	(Survey and C				Original	-)		Remarks
	Testing		Gross scantling	P_{ST-in1} To be in accordance with 4.4.3.2	$\frac{\alpha + \beta^3}{\alpha + \beta}$	Flange and Web	1.0	<u>b</u> _f	12		
	condition	Case 2	Net scantling	P_{ST-in2} To be in accordance with	1.0	Flange	1.15	<u>b</u> _f	$8\left[1+\left(\frac{t_w}{t_f}\right)^2\right]$		
		Case 2	Net scanting	4.4.3.2	1.0	Web	1.07	<u>b</u>	16		
	Flooded condition		Net scantling	P_{FD-in} scantling To be in accordance with	1.0	Flange	1.15	<u>b</u> _	$8\left[1+\left(\frac{t_w}{t_f}\right)^2\right]$		
	Flooded condition		The scanting	4.4.4.1	1.0	Web	1.07	<u>b</u>	16		
	Notes: $\alpha = \frac{t_w^3}{t_f^3}, \beta = \frac{b_w}{b_f}$ $t_f \text{ and } t_w: \text{Thickness } (mm) \text{ of the flange and web, respectively}$ $b_f \text{ and } b_w: \text{Width } (mm) \text{ of the flange and web, respectively } (See \text{ Fig. 6.3.3-1})$										
Cha	Chapter 7 STRENGTH OF PRIMARY SUPPORTING STRUCTURES			Chapter 7 STRENGTH OF PRIMARY SUPPORTING STRUCTURES					RY	Revises the definition of D_{DB} and D_{DS} .	
Symbols	Symbols			Symbols							
•	For symbols not defined in this Chapter, refer to 1.4 . (Omitted)			For symbols not defined in this Chapter, refer to 1.4 . (Omitted)							
22	ℓ_{DB} : Length (<i>m</i>) of double bottom as specified in 7.3.1.6-1 ℓ_{DS} : Length (<i>m</i>) of double side as specified in 7.3.1.6-3				ℓ_{DB} : Length (<i>m</i>) of double bottom as specified in 7.3.1.6-1 ℓ_{DS} : Length (<i>m</i>) of double side as specified in 7.3.1.6-3						

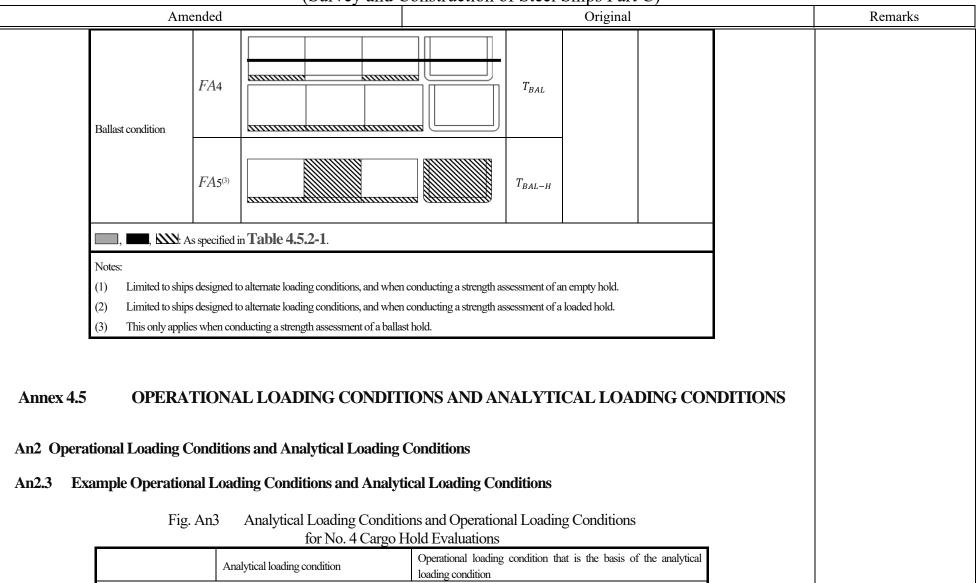
21/44

		Remarks
Amended	Original	Remarks
$\ell_{DH}: \text{ Length } (m) \text{ of double hull, given as } \ell_{DB} \text{ or } \ell_{DS},$ $depending \text{ on whether assessing a double bottom or a double side}$ $B_{DB}: \text{ Breadth } (m) \text{ of double bottom as specified in 7.3.1.6-2}$ $B_{DS}: \text{ Height } (m) \text{ of double side as specified in 7.3.1.6-4}$ $B_{DH}: \text{ Breadth or height } (m) \text{ of double hull, given as } B_{DB} \text{ or } B_{DS}, \text{ depending on whether assessing a double bottom or a double side}$ $D_{DB}: \text{ When considering bending stiffness, depth } (m) \text{ of double bottom is to be taken as the value at } x_{DH} = 0 \text{ and } y_{DH} = 0$ $D_{DS}: \text{ When considering bending stiffness, breadth } (m) \text{ of double side}$ (Omitted)	 \$\emptyselow\$_{DH}\$: Length (m) of double hull, given as \$\emptyselow\$_{DB}\$ or \$\emptyselow\$_{DS}\$, depending on whether assessing a double bottom or a double side \$B_{DB}\$: Breadth (m) of double bottom as specified in 7.3.1.6-2 \$B_{DS}\$: Height (m) of double side as specified in 7.3.1.6-4 \$B_{DH}\$: Breadth or height (m) of double hull, given as \$B_{DB}\$ or \$B_{DS}\$, depending on whether assessing a double bottom or a double side \$D_{DB}\$: Depth (m) of double bottom \$D_{DS}\$: Breadth (m) of double bottom \$D_{DS}\$: Breadth (m) of double side \$(Omitted)\$ 	
 7.3 Double Hull Structures 7.3.2 Requirements for Scantlings 7.3.2.1 Bonding Strongth 		Revises the allowable stress used in bending strength evaluations of double hull structures.
(2). The thickness of plating according to these requirements is to be un	ble hull is to be in accordance with the following requirements (1) and niform at any point in the double hull under assessment.	
((1) is omitted.)		
	pecified in 2.4.1.2-6(1) and 2.4.1.3-1(1) for the spacing of girders and	
floors in double bottom is not satisfied, the thickness of the	e bottom shell plating and inner bottom plating constituting a double	
bottom is to be not less than that obtained from the following	g formula. Similarly, if any of the requirements specified in 2.4.2.1(1)	

(Survey and Construction of Steel Ships Part C))
---	---

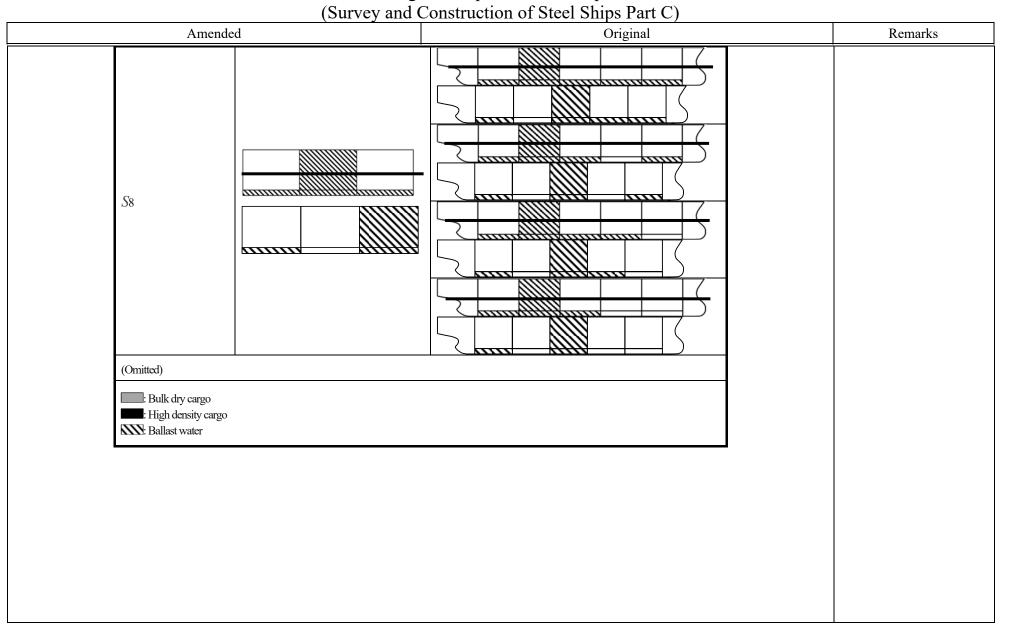
Amended	Original	Remarks
and 2.4.2.2(1) for the spacing of side transverses and side	stringers is not satisfied, the thickness of the side shell plating and	
	less than that obtained from the following formula. However, $C_{EX} =$	
1.0 where no longitudinal girders are provided, while C_{EY} =	-	
$\frac{1}{1-v^2}$ ($\frac{1}{1-v^2}$	$\frac{ M_v }{ M_v }$	
$t_{n50} = \frac{b_{ay}c_{by}}{c_{end}} \frac{1}{D_{DH}} \times \max\left(\frac{1}{\gamma_{etf=x}} \frac{1}{c_{bt=x}} \frac{1}{c_{ext}} \frac{1}{c_{ext}} \right)$	$-\sigma_{BM}$ ' $\gamma_{etf=y}C_{BI=y}C_{EY}\sigma_{att}$ (mm)	
$C_{Safety} (1 - \nu^2) \qquad (1 - 1)$	$ M_X $ 1 $ M_Y $ ()	
$t_{n50} = \frac{C_{Safety}}{C_{cnd}} \frac{(1-\nu^2)}{D_{DH}} \times \max\left(\frac{1}{\min(C_{bi-x}, C_{EX})} \cdot \frac{\gamma_{st}}{\gamma_{st}}\right)$	$f_{f-x}(\sigma_{all} - \sigma_{BM})$, $\overline{\min(C_{bi-y}, C_{EY})}$, $\overline{\gamma_{stf-y}\sigma_{all}}$	
C_{Safety} : Safety factor to be taken as 1.2		
$\gamma_{stf-x}, \gamma_{stf-y}, C_{bi-x}, C_{bi-y}, M_X, M_Y \text{ and } \sigma_{BM}$: As	s specified in (1) above.	
Annex 8.6 BUCKLING STRENGTH ASSES	SMENT BASED ON CARGO HOLD ANALYSIS	Corrects typographical
		errors.
An2 Buckling Strength Assessment Methods for Different Type	es of Structures	
An2.1 Buckling Strength Assessments for Stiffened Panels		
An2.1.2 Buckling Strength Assessment under Compressive Lo	ads in Shorter Side Direction	
(Omitted)		
2 The minimum multiplier $\gamma_c(>0)$ that satisfies the buckling	criteria obtained according to the procedure from the following (1) to	
(4) is to be obtained by iterative calculation. For the value of α_c , howe		
((1) to (3) are omitted.)		
(4) Judgement of buckling		
Judgement of buckling is to be made according to the following	ng formula:	
$\max(\lambda_a, \lambda_b) = 1$		
$\lambda_a = \frac{\sqrt{(\sigma_x' + \sigma_{xb})^2 - (\sigma_x' + \sigma_{xb})(\sigma_y' + \sigma_{yb}) + (\sigma_y' + \sigma_{yb})}}{\sigma_{yp}}$	$\sigma_{y'} + \sigma_{yb} \Big)^2 + 3{\tau'}^2$	
$\lambda_a = - \sigma_{YP}$		

Amended	Original	Remarks
$\lambda_{b} = \sqrt{\frac{2Q_{n} + 2.75Q_{m} + 3 Q_{nm} + \sqrt{0.25Q_{m}^{2} + Q_{n}}}{2}}$ Where: $Q_{n} = n_{x}^{2} - n_{x}n_{y} + n_{y}^{2} + 3n_{xy}^{2}$ Where: $n_{x} = \frac{\sigma_{x}'}{\sigma_{YP}}, n_{y} = \frac{\sigma_{y}' + \sigma_{yb2}}{\sigma_{YP}} \text{ and } n_{xy} = \frac{\tau'}{\sigma_{YP}}$ $Q_{m} = m_{y}^{2}$ Where: $m_{y} = \frac{M_{y}}{M_{p}}$ $M_{p} = \frac{t_{p}^{2}}{4}\sigma_{YP}$ $Q_{nm} = m_{y}(n_{y} - 0.5n_{x})$		
Chapter 10 ADDITIONAL ST 10.6 Strengthened Bottom Forward	TRUCTURAL REQUIREMENTS	Revises the symbol from " L' " to " L_{C230} ".
10.6.1 General		
Table 10.6.1-2 Transverse Area of (Coordinate System)	6	
	or Ship with $L_c \le 150 \ m$ and Ship with $L_c \le 150 \ m$ and w $0.6 < C_B \le 0.7$, and the bow $C_B \le 0.6$, and the bow draught	

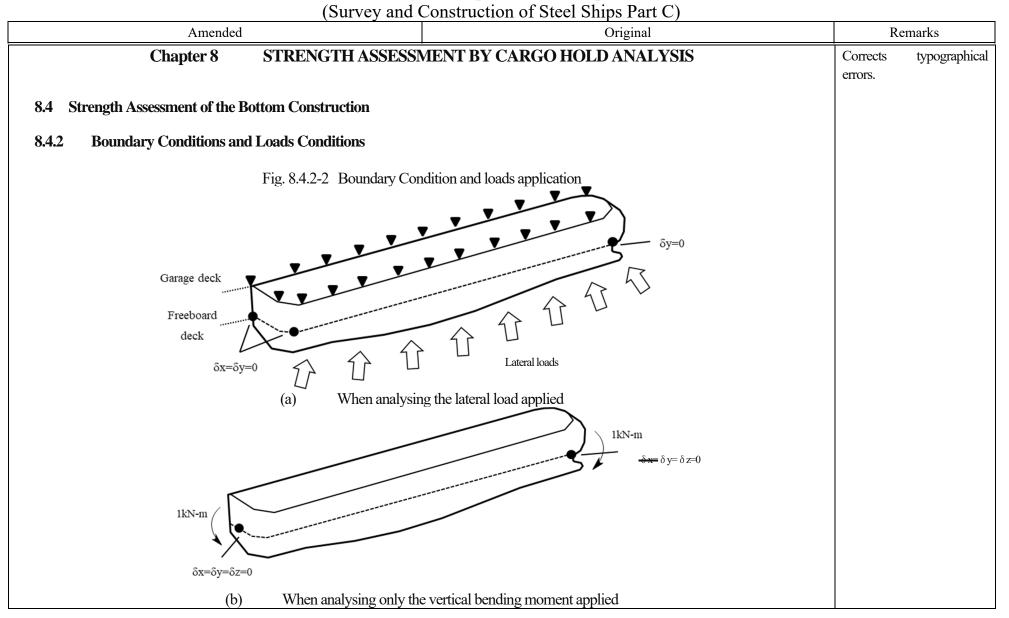

Amended	Original	Remarks
$V/\sqrt{L_c}$ draught in the ballast conlarger than $0.025\frac{L}{L_{C2}}$		
X-direction (Omitted) Y-direction (Omitted)		
Z-direction (Omitted)		
Chapter 14 EQUIPMENT	Chapter 14 EQUIPMENT	Clarifies the requirement basesd on gross scantling.
14.7 Small Hatchway	14.7 Small Hatchway	
14.7.2 Machinery Space Openings	14.7.2 Machinery Space Openings	
14.7.2.2 Exposed Machinery Space Casings	14.7.2.2 Exposed Machinery Space Casings	
1 Exposed machinery space casings are to have scantlings	not 1 Exposed machinery space casings are to have scantlings not	
less than that those required in 4.9.2.2 , taking the <i>c</i> -value as 1.0.	less than that those required in 4.9.2.2, taking the <i>c</i> -value as 1.0.	
2 The thickness (gross scantlings) of the top plating	of 2 The thickness of the top plating of exposed machinery space	
exposed machinery space casings is not to be less than that obtain	hed casings is not to be less than that obtained from the following	
from the following formulae:	formulae:	
Position I: $6.3S + 2.5$ (mm)	Position I: $6.3S + 2.5$ (<i>mm</i>)	
Position II: $6.0S + 2.5$ (<i>mm</i>)	Position II: $6.0S + 2.5$ (<i>mm</i>)	
Where:	Where:	
S: Spacing of stiffeners (m)	S: Spacing of stiffeners (m)	
14.7.2.3 Machinery Space Casings below Freeboard Deck within Enclosed Spaces	or 14.7.2.3 Machinery Space Casings below Freeboard Deck or within Enclosed Spaces	
The scantlings of machinery space casings below	the The scantlings of machinery space casings below the	
freeboard deck or within enclosed superstructures or deckhouses		
to comply with the following (1) and (2):	to comply with the following (1) and (2):	
(1) The thickness (gross scantlings) of the plating is to be		

Amended	Original	Remarks
 least 6.5 <i>mm</i>; where the spacing of stiffeners is greater than 760 <i>mm</i>, the thickness is to be increased at the rate of 0.5 <i>mm</i> per 100 <i>mm</i> excess in spacing. In accommodation spaces, the thickness of the plating may be reduced by 2 <i>mm</i>. (2) The section modulus of stiffeners is not to be less than that obtained from the following formula: 1.2<i>S</i>ℓ³ (<i>cm</i>³) Where: ℓ : Tween deck height (<i>m</i>) <i>S</i> : Spacing of stiffeners (<i>m</i>) 	 the spacing of stiffeners is greater than 760 mm, the thickness is to be increased at the rate of 0.5 mm per 100 mm excess in spacing. In accommodation spaces, the thickness of the plating may be reduced by 2 mm. (2) The section modulus of stiffeners is not to be less than that obtained from the following formula: 1.2<i>S</i>ℓ³ (<i>cm</i>³) Where: ℓ : Tween deck height (m) <i>S</i> : Spacing of stiffeners (m) 	
14.10 Doors 14.10.1 Bow Doors and Inner Doors	14.10 Doors14.10.1Bow Doors and Inner Doors	Revises the symbol from " L " to " L_{C230} ".
 14.10.1.4 Design Loads (Omitted) 2 The design load of the inner door is to be as follows: (1) The design external pressure P_e and P_h considered for the scantlings of primary members, securing and supporting devices and surrounding structure of inner doors is to be taken as the greater of the following: P_e = 0.45L_{C200} (kN/m²) hydrostatic pressureP_h = 10h₂ (kN/m²) h₂ : Distance, in m, from the load point to the top of the cargo space (2) The design internal pressure P_b considered for the scantling devices of inner doors is not to be less than 25	 14.10.1.4 Design Loads (Omitted) 2 The design load of the inner door is to be as follows: (1) The design external pressure P_e and P_h considered for the scantlings of primary members, securing and supporting devices and surrounding structure of inner doors is to be taken as the greater of the following: P_e = 0.45<u>L'</u> (kN/m²) hydrostatic pressureP_h = 10h₂ (kN/m²) h₂ : Distance, in <i>m</i>, from the load point to the top of the cargo space <u>L'</u> : Length as specified in-1(1). (2) The design internal pressure P_b considered for the	

	Amended			Original	Remarks
kN/	//m ² .			scantling devices of inner doors is not to be less than 25 kN/m^2 .	
		Pa	rt 2-1 CONTAIN	NER CARRIERS	Revises the reference and wording.
			Chapter 4	LOADS	
		_	n of Primary Supporting Str	ructures	
	Harbour Conditi	ion			
	External Pressur the requirements of		ne hydrostatic pressure at the c	draught_specified in Table 4.4.3-12 are to be considered.	
			ne hydrostatic pressure at the c	draught-specified in Table 4.4.3-12 are to be considered.	
				draught-specified in <u>Table</u> 4.4.3-42 are to be considered. Pressure to be Considered	
		of double hull, th			
	the requirements of Structures to be	of double hull, th	4.3-2 External and Internal	Pressure to be Considered	
	the requirements of Structures to be assessed	of double hull, th Table 4.	4.3-2 External and Internal $P_{DB}(kN/m^2)^{(1)}$	Pressure to be Considered $P_{DS}(kN/m^2)^{(1)}$	
	the requirements of Structures to be assessed Double bottom Double side Notes: P_{exs} : Hydrostatic p	Table 4.	4.3-2 External and Internal $P_{DB}(kN/m^{2})^{(1)}$ P_{exs} P_{exs}	Pressure to be Considered $P_{DS}(kN/m^2)^{(1)}$ P_{exs}	
	the requirements of Structures to be assessed Double bottom Double side Notes: P_{exs} : Hydrostatic p accordance w	Table 4. Table 4. P1 P2 pressure (kN/m^2) act or with 4.6.2.4, Part 1.	4.3-2 External and Internal $P_{DB}(kN/m^{2})^{(1)}$ P_{exs} P_{exs}	Pressure to be Considered $P_{DS}(kN/m^{2})^{(1)}$ P_{exs} e act on side shell in case of P_{DS} . Each value is calculated in	


Amended	Original	Remarks
4.6 Loads to be Considered in Fatigue	4.6 Loads to be Considered in Fatigue	Clarifies the requirements
4.6.4 Loads to be Considered in Fatigue Strength Assessment by Simplified Stress Analysis and Finite Element Analysis Using Partial Structural Model	4.6.4 Loads to be Considered in Fatigue Strength Assessment by Simplified Stress Analysis and Finite Element Analysis Using Partial Structural Model	on the draught used in the loading condition to be considered.
4.6.4.4 Hull Girder Loads	4.6.4.4 Hull Girder Loads	
1 Vertical still water bending moment M_{SV} is to be in	1 Vertical still water bending moment M_{SV} is to be in	
accordance with the requirements of 4.6.3.2-1 instead of the	accordance with the requirements of 4.6.3.2-1 instead of the	
requirements of 4.7.2.10, Part 1.	requirements of 4.7.2.10, Part 1.	
2 The vertical wave bending moment in hogging condition	2 The vertical wave bending moment in hogging condition	
M_{WV-h} (kN-m) and vertical wave bending moment M_{WV-s}	M_{WV-h} (kN-m) and vertical wave bending moment M_{WV-s}	
(<i>kN-m</i>) in sagging condition are to be determined in accordance with	(kN-m) in sagging condition are to be determined in accordance with	
the requirements of 4.6.3.2-2 instead of the requirements of 4.7.2.10,	the requirements of 4.6.3.2-2 instead of the requirements of 4.7.2.10,	
Part 1.	Part 1.	
3 When calculating the horizontal bending moment M_{WH} , it	3 <u>The horizontal bending moment M_{WH} is to be calculated</u>	
is necessary to apply 4.7.2.10, Part1 and use the value obtained by	by multiplying the value according to the formula specified in	
multiplying the structural draught T_{LC} (m) by 0.82.	<u>4.7.2.10, Part 1 by 0.82</u> .	

	Am	ended			Original			Remarks
		Par	t 2-2 BOX-SHAPED BULI Chapter 4 LOADS		ERS			
	s to be Considere vclic Load Condi		gue					
ч.0.2 Су		ble 4.6.2-	1 Loading Conditions to be Considered	in Cyclic Lo	ad Condition		1	
	Loading condition	Loading p	attern	Draught	Vertical still water bending moment	Equivalent design wave		
	Full load condition (homogeneously loaded)	FA1		T_{SC}				
	Full load condition	FA2 ⁽¹⁾		$\int T_{SC}$	Values in the loading conditions under consideration	HM FM BR BP		
	(alternate loading)	FA3 ⁽²⁾		$\int T_{SC}$				


(Survey and Construction of Steel Ships Part C)

(Omitted)

Amended	Original	Re	emarks
Part 2-5 GENERAL CARGO SHIPS AND REFRIGERATED CARGO SHIPS	Part 2-5 GENERAL CARGO SHIPS AND REFRIGERATED CARGO SHIPS	Corrects errors.	typographical
Chapter 1 GENERAL	Chapter 1 GENERAL		
1.1 General	1.1 General		
1.1.1 Application	1.1.1 Application		
1.1.1.2 Application of Chapter XII of the SOLAS Convention Ships to which this part applies, those deemed to be bulk carriers as defined in An <u>1.2.1(1)</u> in Annex 1.1 "Additional Requirements for Bulk Carriers in Chapter XII of the SOLAS Convention" of Chapter 1, Part 2-2, are to also comply with the annex.	1.1.1.2 Application of Chapter XII of the SOLAS Convention Ships to which this part applies, those deemed to be bulk carriers as defined in An <u>1.1.2(1)</u> in Annex 1.1 "Additional Requirements for Bulk Carriers in Chapter XII of the SOLAS Convention" of Chapter 1, Part 2-2, are to also comply with the annex.		

Amended	Original	Remarks
Part 2-6 VEHICLES CARRIERS AND ROLL-ON/ROLL-OFF SHIPS	Part 2-6 VEHICLES CARRIERS AND ROLL-ON/ROLL-OFF SHIPS	Clarifies the reference.
Chapter 3 STRUCTURAL DESIGN PRINCIPLES	Chapter 3 STRUCTURAL DESIGN PRINCIPLES	
3.1 Minimum Requirements	3.1 Minimum Requirements	
3.1.2 Car Deck	3.1.2 Car Deck	
 3.1.2.1 Application Plates, stiffeners and girders of car decks solely loaded with wheeled vehicles <u>need not</u> comply with the <u>minimum</u> requirements of 3.5, Part1. However, the plates and stiffeners of such decks are to comply with 3.1.2.2. 3.1.2.2 Minimum Thickness of the Car Deck 1 The gross thickness of the car deck is not to be less than 5 mm. 2 The gross thickness of web and flange of stiffeners attached to the car deck is not to be less than 5 mm.	 3.1.2.1 Application The car deck solely loaded with wheeled vehicles is to comply with the requirements of 3.1.2.2. 3.1.2.2 Minimum Thickness of the Car Deck 1 The gross thickness of the car deck is not to be less than 5 mm. 2 The gross thickness of web and flange of stiffeners attached to the car deck is not to be less than 5 mm.	

Amended	Original	Remarks
Chapter 10 ADDITIONAL ST	TRUCTURAL REQUIREMENTS	Clarifies the reference.
10.1 Car Deck		
10.1.1 Plates and Beams		
10.1.1.2 Section Modulus of Beams		
	l vehicles (hereinafter referred to as "car decks") is not to be less than length or moment of inertia changes along the continuous beam, the on as specified in -2.	
P_{Ii} , P_{IIj} , P_{IIk} : The wheel load at each support point,	$\frac{P_{CDFF}}{EDFF}$ (kN) as specified in 4.7.2.1 and 4.7.3.1. Subscript " Ii " means	
the <i>i</i> th load point from left end of the	Ith beam (See Fig. 10.1.1-2). Subscript " Πj (or Πr)" means the <i>j</i> th	
point from left end of the IIIth beam (the IIth beam (<i>See</i> Fig. 10.1.1-2). Subscript " <i>IIIk</i> " means the <i>k</i> th load <i>See</i> Fig. 10.1.1-2). It to the point of action of wheel load (<i>See</i> Fig. 10.1.1-2), when wheels	
are so arranged that M may be at its N_{II} , N_{II} , N_{III} ; Number of wheel loads betwee	maximum value.	
R_{II} : The value obtained from following the formula N_{II}		
$R_{II} = \frac{1}{\ell} \sum_{j=1}^{N_{II}} P_{IIj} \left(\ell - \alpha_{IIj} \right)$		
10.1.1.3 Thickness of Car Deck The thickness of car deck is to be in accordance with (1) or (2)) below.	
(1) Where the distance between the centres of wheel prints in a p	anel is not less than $2S + a$:	

Amended	Original	Re	marks
value is to be multiplied by S/b . b': b or S , whichever is the smaller $(m)b$: Length (m) of wheel print measured at right angle to bear a: Length (m) of wheel print measured in parallel with beam However, for vehicles with ordinary pneumatic tires, values of C: Coefficient determined as follows. $C = \frac{1}{2} \sqrt{\frac{C_{coll}C_{load}}{C_a \sigma_Y}}$ C_{coll} : The safety factor in relation to the plastic of C_{load} : The safety factor in relation to dynamical conditions, and 1.2 under harbour conditions (vehicle C_a : Axial force influence coefficient, according to Table ((2) is omitted.)	ns. (See Fig. 10.1.1-1) f a and b in Table 10.1.1-1 may be used. collapse load of the plate, which is 1.7 influence caused by ship motion, which is 1.0 under maximum load les used for cargo handling only).		
10.2 Movable Car Deck10.2.2 Support Structures of Movable Car Deck		Corrects errors.	typographical
 10.2.2.1 (Omitted) 5 Gross scantlings of supporting structural members are to be det the allowable stresses (<i>N/mm²</i>) shown in Table 10.2.2-2. 	termined to withstand the design loads defined in 10.2.1.2-3 (1), using		

Ame	ended	× • •	(Driginal	Remarks
			Iarbour condition (vehicles used a argo handling only)	for	
	Bending stress σ Shear stress τ	$\frac{0.50\sigma_F}{0.34\sigma_F}$	$\frac{0.42\sigma_F}{0.28\sigma_F}$		
	Equivalent stress σ_e	$0.64\sigma_F$	$0.23\sigma_F$		
	Notes: Equivalent stress: σ_F : Minimum upp	$\sigma_e = \sqrt{\sigma^2 + 3\tau^2} (N/mm^2)$ er yield stress or proof stress (N/mm	m^2) of the material		
		Part 2-7 TA	NKERS		Specifies that for tankers in the harbour condition,
4.3 Loads to be Considered4.3.3 Harbour Condition		L.	.OADS actures		strength evaluations may be based on the planned draught as documented in the Loading Manual for the loading condition.
4.3.3.1 General					
	Table 4.3.3-1	Loads to be Consider	red in Harbour Condition		
	Loading patterns ⁽¹⁾			Difference between	
Structures to be assessed	Draught(<i>m</i>)	Vertical bending moment in harbour(<i>kN-m</i>)	n Loaded to be considered	external and internal pressure to be considered (kN/m²)	
Double P1 ⁽¹⁾	T _{SC}	M _{PT_max}	None	Double bottom: P _{DB}	
bottom $P2^{(2)}$	T_{BAL}	M_{PT_min}	Liquid cargo	Double side: P _{DS}	

				Survey and		tion of Steel	- · · · ·			1
Amended					Original		Re	marks		
	Double	P3(1)	T _{SC}	M _{PT_max}	No	one				
	side	P 4 $^{(2)}$	T_{BAL}	M_{PT_min}	Lie	quid cargo				
	<u>Notes:</u>	designed as th	act thesin durable is suscilla	uthan Types the a	anao tan'i ta ha	according another that		In		
(1) For ships designed so that their draught is smaller than T_{SC} when the cargo tank to be assessed is empty, the smaller draught may be considered. In such cases, it is to be clearly stated in the Loading Manual that exceeding the smaller draught is not allowed when the cargo tank is empty.										
		-			-		greater draught may be considered when the cargo tank is loaded.	<u>. In</u>		
								_		
C	Chapter 6	LO	CAL STRENG	ТН		Chapter 6	LOCAL STREN	GTH	Corrects	typographical
									errors.	
6.1 Ind	ependent Pr	ismatic T	anks		6.1	Independent Pri	smatic Tanks			
	Supporting Tanks	Structur	res in Independ	ent Prismatic	6.1.2	Supporting Tanks	Structures in Indepen	ndent Prismatic		
6.1.2.3	Strength Cr	iteria			6.1.2.3	3 Strength Cri	teria			
	-		(N/mm^2) acting	-		-	esses $\sigma_a(N/mm^2)$ actin			
-	oses the supp the following	•	uctures, excluding	g top plate, is to		omposes the supp with the following	orting structures, exclud g criteria:	ing top plate, is to		
$\sigma_a < \sigma_a$						$a < \sigma_{cr}$				
σ_a :	composes	the supp	ress acting on ead orting structures,	1		composes t	essive stress acting on the supporting structure	-		
	plate, as giv F_a	•	tollowing:			1 _ 0	en by the following:			
0	$\sigma_a = \frac{F_a}{A_{min}} (N/m)$	1 <i>m</i> ²)				$\sigma_a = \frac{F_a}{A_{min}} (N/m)$	<i>m</i> ²)			
	Where: $E \cdot L$ order	acting on	the supporting stru	ictures as given		Where: $E \cdot L$ order	cting on the supporting s	tructures as given		
		following				•••	following:	a de da given		

Amended	Original	Remarks
$F_a = (\rho_L V_t \times 10^3 + m_T)(g + a_{ze}) \ (N)$	$F_a = (\rho_L V_t \times 10^3 + m_T)(g + a_{ze}) \ (N)$	
ρ_L : Cargo density (ton/m ³)	ρ_L : Cargo density (ton/m ³)	
V_t : Tank volume (m^3) supported by the	V_t : Tank volume (m^3) supported by the	
supporting structure under consideration	supporting structure under consideration	
m_t : Mass of tank, insulation and equipment (kg)	m_t : Mass of tank, insulation and equipment (kg)	
a_{Ze} : Vertical envelope acceleration acting on the	a_{Ze} : Vertical envelope acceleration acting on the	
centre of gravity of the cargo tank under	centre of gravity of the cargo tank under	
consideration, according to 4.2.2.1, Part 2 <u>-7</u>	consideration, according to 4.2.2.1, Part 2-7	
A _{min} : Minimum horizontal sectional area	A _{min} : Minimum horizontal sectional area	
(mm^2) which is obtained by subtracting half	(mm^2) which is obtained by subtracting half	
of corrosion addition t_c from all side of the	of corrosion addition t_c from all side of the	
plates (See Fig. 6.1.2-1)	plates (<i>See</i> Fig. 6.1.2-1)	
σ_{cr} : Allowable stress obtained as follows, whichever is	σ_{cr} : Allowable stress obtained as follows, whichever is	
smaller.	smaller.	
$\frac{\sigma_{yd}}{1.33} (N/mm^2)$	$\frac{\sigma_{yd}}{1.33} (N/mm^2)$	
$C_x \sigma_{yd}$ (N/mm ²)	$C_x \sigma_{yd}$ (N/mm ²)	
Where:	Where:	
σ_{yd} : Yield stress (<i>N/mm²</i>) of the material used for the	σ_{yd} : Yield stress (<i>N/mm²</i>) of the material used for the	
supporting structure	supporting structure	
C_{x} : Reduction factor for each plate which composes the	C_x : Reduction factor for each plate which composes	
supporting structures, excluding top plates, as obtained by Table	the supporting structures, excluding top plates, as	
6.1.2-1. Assessed plate which is not rectangular may be	obtained by Table 6.1.2-1. Assessed plate which	
approximated using Table 6.1.2-2.	is not rectangular may be approximated using	
	Table 6.1.2-2.	

Amended-Original Requirements Comparison Table (Survey and Construction of Steel Ships Part C)

Amended	Original	Remarks
Part 2-11 SHIPS CARRYING LIQUEFIED GASES IN BULK (MEMBRANE TANKS) Chapter 8 STRENGTH ASSESSMENT BY CARGO HOLD ANALYSIS	Part 2-11 SHIPS CARRYING LIQUEFIED GASES IN BULK (MEMBRANE TANKS) Chapter 8 STRENGTH ASSESSMENT BY CARGO HOLD ANALYSIS	Specifies buckling strength assessment criteria for the cargo hold analysis of ships carrying liquefied gases in bulk (membrane tanks) in the 30-degree static heel condition and the collision
8.5 Strength Assessment 8.5.1 Yield Strength Assessment 8.5.1.1 Criteria The permissible yield utilisation factor λ_{yperm} for the 30-degree static heel condition and collision condition is to be in	8.5 Strength Assessment 8.5.1 Yield Strength Assessment 8.5.1.1 Criteria The permissible yield utilisation factor λ_{yperm} for the 30-degree static heel condition and collision condition is to be in	
accordance with Table 8.5.1-1. <u>8.5.2</u> Buckling Strength Assessment <u>8.5.2.1 Criteria</u> The permissible buckling usage factor η_{all} for the <u>30-degree static lateral inclination condition and the collision</u> <u>condition is to be taken as 1.0.</u>	accordance with Table 8.5.1-1.	

Amended	Original	Remarks
EFFECTIVE DATE AND APPLICATION		
 Effective date of this amendment is 27 June 2024. Notwithstanding 1. above, the version of Part C of the Rules in effect prior to its comprehensive revision (hereinafter referred to as "old Part C") may still be applied to the sister ships of those ships constructed under old Part C in cases where the date of the contract for construction of the sister ships is before 1 January 2025. 		

Amended	Original	Remarks
GUIDANCE FOR THE SURVEY AND	GUIDANCE FOR THE SURVEY AND	Specifies guidelines for
CONSTRUCTION OF STEEL SHIPS	CONSTRUCTION OF STEEL SHIPS	external pressure
		considerations in
		hydrostatic tests when
Part C HULL CONSTRUCTION AND	Part C HULL CONSTRUCTION AND	predetermined values are unavailable.
EQUIPMENT	EQUIPMENT	
Part 1 GENERAL HULL REQUIREMENTS	Part 1 GENERAL HULL REQUIREMENTS	
C4 LOADS	(Newly added)	
C4.4 Loads to be Considered in Local Strength		
C4.4.3 Testing Condition		
C4.4.3.1 External Pressure		
In the application of 4.4.3.1 , Part C of the Rules , it may be assumed that the external pressure is 0 or a draught less than that of		
Case 1 (i.e. a value set with some margin to the minimum draught in		
the test plans of existing ships) in cases where the information for		
Case 1 cannot be obtained beforehand.		

(Survey	and	Construction	of Steel	Ship	s Part C))

Amended	Original	Remarks
C7 STRENGTH OF PRIMARY SUPPORTING STRUCTURES C7.2 Simple Girders C7.2.6 Bending Stiffness C7.2.6 Bending Stiffness C7.2.6 Bending Stiffness C7.2.6.2 Moment of Inertia of Girders For the stiffeners supported by girders, 7.2.6.2, Part C of the Rules need not be applied in cases where the hot spot stress, including stress due to relative displacement, specified in 9.3.5, Part C of the Rules (See 9.3.2, Part C of the Rules) is considered and the fatigue strength assessment required by 9.5, Part C of the Rules is satisfactory.	(Newly added)	Clarifies an acceptable alternative evaluation method to the prescriptive formula used to calculate the moment of inertia of girders
C9 FATIGUE C9.1 General C9.1.2 Application of Fatigue Strength Assessment C9.1.2 Application	(Newly added)	Clarifies an acceptable alternative evaluation method to the prescriptive formula used to calculate the moment of inertia of girders

Amended	Original	Remarks
EFFECTIVE DATE AND APPLICATION		
 Effective date of this amendment is 27 June 2024. Notwithstanding 1. above, the version of Part C of the Rules in effect prior to its comprehensive revision (hereinafter referred to as "old Part C") may still be applied to the sister ships of those ships constructed under old Part C in cases where the date of the contract for construction of the sister ships is before 1 January 2025. 		