Amendment on 27 June 2024 Resolved by Technical Committee on 30 January 2024

Hatch Covers, Hatch Coamings and Closing Arrangements

Object of Amendment

Rules for the Survey and Construction of Steel Ships Parts C and CS Guidance for the Survey and Construction of Steel Ships Parts B and CS

Reason for Amendment

IACS Unified Requirements (UR) S21 and S21A specify requirements for hatch covers, hatch coamings and closing arrangements. UR S21 applies to hatch covers of certain types of bulk carriers, whereas UR S21A applies to all ships not subject to UR S21.

Since some of the requirements for buckling assessment methods specified in these URs were different, IACS decided to review not only just these requirements, but also the URs as a whole, including requirements not related to buckling. As a result of its review, IACS adopted UR S21(Rev.6) in February 2023 to harmonise UR S21 and UR S21A. This harmonised version eliminated any differences in general requirements, but it also retained those requirements specific to certain ship types.

Accordingly, relevant requirements are amended in accordance with UR S21(Rev.6).

Outline of Amendment

- (1) Delete requirements related to hatch covers specified in Part 2, Part C of the Rules for the Survey and Construction of Steel Ships.
- (2) Define ships subject to UR S21A as Type 1 ships and ships subject to UR S21 as Type 2 ships and specify common requirements and requirements for each ship type in Part 1, Part C of the Rules for the Survey and Construction of Steel Ships.
- (3) Specify requirements for modelling in finite element analysis and buckling assessments of hatch covers with U-type stiffeners.
- (4) Specify requirements for buckling assessments of the webs of hatch cover primary supporting members with openings.
- (5) Delete requirements for grillage model analysis specified in Chapter 14, Part 1, Part C of the Rules for the Survey and Construction of Steel Ships.

Effective Date and application

This amendment applies to ships for which the date of contract for construction is on or after 1 July 2024. This includes those ships to which Part C of the Rules for the Survey and Construction of Steel Ships applied prior to its comprehensive revision.

An asterisk (*) after the title of a requirement indicates that there is also relevant information in the corresponding Guidance.

ID: DH23-07

Ame		<u> </u>	14010 (11400	Original		Remarks
RULES FOR TH	ULES FOR THE SURVEY AND			ULES FOR THE SURVEY A	ND	UR S21 7.1
CONSTRUCTION OF STEEL SHIPS			CO	NSTRUCTION OF STEEL S	HIPS	
Part C HULL CONSTRUCTION AND EQUIPMENT			Part	C HULL CONSTRUCTION EQUIPMENT	AND	
Part 1 GENERAL HULL REQUIREMENTS			Part 1	GENERAL HULL REQUIR	EMENTS	
Chapter 3 STRUCTURAL DESIGN PRINCIPLES			Chapter 3	STRUCTURAL DESIGN	PRINCIPLES	
3.3 Net Scantling Approach			3.3 Net S	Scantling Approach		
Table 3.3.4-2 Corrosion Additions for Bot			1 Sides of Hatch	Covers and Hatch Coamings		
Ship type	Framing system			t_e (mm)		
Container carrier Car carrier	Hateh covers (in general)			1.0		
	Hatch coamings			15		
Ships other than the-	Single skin hateh covers			2.0		
above	above Double skin hatch Top, side and bottom		plating	1.5		
	eovers	Internal structural me	mbers	1.0		
	Hatch coarnings, hatch co	aming stays and stiffen	ers	1.5		

	Table 3.3.4-2 Corrosion Additions for Both Sides of Hatch Covers and Hatch Coamings							
<u>Type</u>	Ship type							
		Single skin hatel	h covers	<u>2.0</u>				
	Ships other than the below	Double skin	Top, side and bottom plating	<u>1.5</u>				
Type 1		hatch covers	Internal structural members	<u>1.0</u>				
<u>Ship</u>		Hatch coamings, hatch coaming stays and stiffeners		<u>1.5</u>				
	Container carrier	Hatch covers (in general) <u>1.0</u>		<u>1.0</u>				
	Car carrier	Hatch coamings 1.5		<u>1.5</u>				
	Ore carrier	Single skin hatel	h covers	<u>2.0</u>				
Type 2	Combination carriers which are designed to carry either oil or solid cargoes in bulk, like ore/oil carriers.	Double skin	Top, side and bottom plating	<u>2.0</u>				
ship	Self-unloading ships (Ships specified in 1.3.1(13), Part B(excluding those	hatch covers	Internal structural members	<u>1.5</u>				
	affixed with the notation "CSR") and (19))	Hatch coamings	s, hatch coaming stays and stiffeners	<u>1.5</u>				
<u>No</u> (1) (2)		-	s on non-exposed decks are to be as deemed appropriate	e by the Society.				

Amended	Original	Remarks
Chapter 4LOADS4.10Loads to be Considered in Equipment4.10.1General4.10.1.1General1Loads to be considered in the requirements for hatch covers,etc., in 14.6 are to be in accordance with this 4.10.2In the application of the requirements in this 4.10, thepositions of exposed deck openings (Position I, Position II, etc.) are tobe as specified in 1.4.3.2.3Loads to be considered in strength assessments of steel hatchcovers, steel pontoon covers, and hatch coamings are to be inaccordance with 4.10.2.(Omitted)	Chapter 4LOADS4.10Loads to be Considered in Equipment4.10.1General4.10.1.1General1Loads to be considered in the requirements for hatch covers,etc., in 14.6 are to be in accordance with this 4.10.2In the application of the requirements in this 4.10, thepositions of exposed deck openings (Position I, Position II, etc.) are tobe as specified in 1.4.3.2.3Loads to be considered in strength assessments of steel hatchcovers, steel pontoon covers, steel weathertight hatch covers, hatchbeamsand hatch coamings are to be in accordance with 4.10.2.(Omitted)	
<u>4.10.1.2 Definitions</u> <u>The definitions of the terms used in the requirements of 4.10</u> <u>are defined in 14.6.1.2.</u>	(Newly added)	(Newly added)

		Amended	• •		Original	Remarks	
4.10.2.1 1 Vert Table 4.10 simultaneous	Steel Hatch Covers, Steel Pontoon Covers, and Hatch Coamings4.10.2.1 Vertical Wave Load 1 Vertical wave load $P_{\underline{HC}}$ (kN/m^2) is to be in accordance with Table 4.10.2-1. However, this load may not be considered simultaneously with the cargo loads specified in 4.10.2.3 and 4.10.2.4. (Omitted)4.1 Table				 4.10.2 Loads to be Considered in Strength Assessment Steel Hatch Covers, Steel Pontoon Covers, <u>Steel Weathertight Hatch Covers, Hatch Beams</u> an Hatch Coamings 4.10.2.1 Vertical Wave Load 	th ed	
			Table 4.10.2-1 Vertical V	Vave L	Load $P_{\underline{\psi}_{HC}}$ (kN/m ²)	UR S21 2.1	
	$L_f \le 100 \qquad \qquad L_f > 100$						
	Position I For $0.25L_f^{(1)}$ $\frac{9.81}{76} \Big[(4.28L_f + 28) \frac{x_{Lf}}{L_f} - 1.71L_f \Big]$			+ 95]	For type B ships according to ICLL, 9.81 $\left\{ (0.0296L_{f1} + 3.04) \frac{x_{Lf}}{L_f} - 0.0222L_{f1} + 1.22 \right\}$ For types B-60 and B-100 ships according ICLL, 9.81 $\left\{ (0.1452L_{f1} - 8.52) \frac{x_{Lf}}{L_f} - 0.1089L_{f1} + 9.89 \right\}$		
	Others $\frac{9.81}{76} (1.5L_f + 116)$ Position II $\frac{9.81}{76} (1.1L_f + 87.6)$				9.81 × 3.5		
	Position II $\frac{9.81}{76}(1.1L_f + 87.6)$ $9.81 \times 2.6^{(2)}$						
	Notes: x_{Lf} : Distance (m) of the mid length of the hatch cover from the aft end of L_f L_{f1} : L_f (m), but to be taken as 340 when L_{f1} exceeds 340 m.						
	 For a hatchway located at least one superstructure standard height above the freeboard deck, the load for Others at Position I is to be used. For ships having an unusually large freeboard, "freeboard deck" may be read alternatively as "assumed freeboard deck." For the hatchway of an exposed superstructure deck located at least one superstructure standard height above deck Position II, <i>P_V</i> may be taken as 						
		\times 2.1 (<i>kN/m</i> ²).	xposed parts other than at Positions I and II a	ure to be as	as deemed appropriate by the Society.		

Amended-Original Requirements Comparis	ison Table (Hatch Covers, Hatch C	Coamings and Closing Arrangements)

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

4.10.2.2 Horizontal Wave Load 1 Horizontal wave load $P_{\underline{d}}$ (kN/m^2) is to be obtained from the following formula. However, $P_{\underline{d}}$ is is not to be less than the minimum values given in Table 4.10.2-2. $P_{\underline{d}}$ may not be included in strength assessments by finite element analysis for hatch covers except where structures supporting stoppers are assessed. $P_{\underline{d}} = \underline{f_n f_L} \left[\underline{f_b} C_1 - (z - T_{SC}) \right]$ $\underline{f_n}$: A specified in Table 4.10.2-3 x: X coordinate (m) of the hatch coarning or hatch cover edge member to be considered, or the respective mid- points of the side plating. However, where the length of the side plating exceeds $0.15L_c$, the side hatch. f_c : As given by the following formula: $\underline{f_c} = \max\left(0.475, 0.3 + 0.7 \frac{b_1}{B_1}\right)$ b_1 : Breadth (m) of hatch coarnings at the position under consideration B_1 : Breadth (m) of ship on the exposed deck at the position under consideration $\underline{f_b}$: As given by the following formula: $\underline{f_c} = \max\left(0.475, 0.3 + 0.7 \frac{b_1}{B_1}\right)$ b_1 : Breadth (m) of ship on the exposed deck at the position under consideration $\underline{f_b}$: As given by the following formula: $\underline{f_c} = \max\left(0.475, 0.3 + 0.7 \frac{b_1}{B_1}\right)$ b_1 : Breadth (m) of ship on the exposed deck at the position under consideration $\underline{f_b}$: As given by the following formula: $\underline{f_b} = x (0.475, 0.3 + 0.7 \frac{b_1}{B_1})$ b_1 : Breadth (m) of ship on the exposed deck at the position under consideration $\underline{f_b}$: As given by the following formula: $\underline{f_b} = x (0.475, 0.4 + 0.4 (0.455 - x/L_c)^2$
For $x/L_C < 0.45$, $\underline{f_b} = 1.0 + \left(\frac{0.45 - x/L_C}{C_{B4} + 0.2}\right)^2$ For $x/L_C \ge 0.45$, $\underline{f_b} = 1.0 + 1.5 \left(\frac{x/L_C - 0.45}{C_{B4} + 0.2}\right)^2$ z: Z coordinate (m) of the position under consideration, at the mid-point of the span of the stiffeners when $z: Z$ coordinate (m) of the position under consideration, at the mid-point of the span of the stiffeners when $z: Z$ coordinate (m) of the position under consideration, at the mid-point of the span of the stiffeners when $z: Z$ coordinate (m) of the position under consideration, at the mid-point of the span of the stiffeners when $z: Z$ coordinate (m) of the position under consideration, at the mid-point of the span of the stiffeners when $z: Z$ coordinate (m) of the position under consideration, at the mid-point of the span of the stiffeners when $z: Z$ coordinate (m) of the position under consideration, at the mid-point of the span of the stiffeners when $z: Z$ coordinate (m) of the position under consideration, at the mid-point of the span of the stiffeners when $z: Z$ coordinate (m) of the position under consideration, at the mid-point of the span of the stiffeners when $z: Z$ coordinate (m) of the position under consideration, at the mid-point of the span of the stiffeners when $z: Z$ coordinate (m) of the position under consideration, at the mid-point of the span of the stiffeners when $z = 0$.

Amended	quitements Comparison		Original	ings and crossing i in	Remarks
		.1 .1		6 4 4 00 1	Keinarks
	gs of stiffeners, and at the mid-			of the stiffeners when	
	determining the thickness of		0	stiffeners, and at the mid-	
boundary wall plating		1	y wall plating	mining the thickness of	
		boundary	y wan plaung		
					UR S21 2.2.1
	Table 4.10.2-2 Minimum	n Values of P_{HA} (kN/m ²	⁽)		
	Unprotected front hatch coamings a	and	0.1		
	front hatch cover skirt plates		Others		
<i>L<u>c</u>≤</i> ≤ 250	$25 + \frac{L_c}{10}$	1'	$2.5 + \frac{L_c}{20}$		
	-	1.	$\frac{2.3}{20}$		
<i>L<u>c</u>→≥</i> 250	50	25			
	T 11 4 10 2 2				
	Table 4.10.2-3	Values of $\frac{df_n}{dt_n}$			
	Member		a <u>f</u>		
Unprotected front coan	nings and hatch cover skirt plates		$20 + \frac{L_{C300}}{12}$		
	ings and hatch cover skirt plates, where the d		Lease		
deck to the summer loa superstructure standard	d line exceeds the minimum non-corrected height	tabular freeboard by at least one	$10 + \frac{L_{C300}}{12}$		
Side and protected from	t coamings and hatch cover skirt plates		$5 + \frac{L_{C300}}{15}$		
Aft ends of coamings a	nd aft hatch cover skirt plates abaft amidship	os	$7 + \frac{L_{C300}}{100} - 8\frac{x}{L_C}$		
Aft ends of coamings a	nd aft hatch cover skirt plates forward of ami	idships	$5 + \frac{L_{C300}}{100} - 4\frac{x}{L_C}$		
			6		
2 The wave load P_{coam} to	be considered in strength	(Newly added)			(Newly added)
assessments of the hatch coaming of	of Type 2 ships is to be in				UR S21 2.2.2
accordance with the following (1) or (2	<u>2).</u>				
(1) Front-end hatch coaming of	of the foremost cargo hold:				

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
$290 (kN/m^2)$		
However, where a forecastle is installed in accordance with		
the requirements of 11.1, Part 2-3, this value may be 220		
<u>kN/m².</u>		
(2) Hatch coarning other than (1) above: $220 (kN/m^2)$		
		UR S21 2.3
4.10.2.3 Cargo Loads	4.10.2.3 Cargo Loads	
Loads due to cargoes loaded on hatch covers are to be in	Loads due to cargoes loaded on hatch covers are to be in	
accordance with the following (1) and (2). The partial loading condition is also to be considered. However, container cargo loads are	accordance with the following (1) and (2). The partial loading condition is also to be considered. However, container cargo loads are	
to comply with 4.10.2.4 .	to comply with 4.10.2.4.	
(1) Distributed load P_L (kN/m^2) acting on the hatch cover due	(1) Distributed load P_{cargo} (kN/m^2) acting on the hatch cover	
to heave and pitch, without roll, is to obtained from the	due to heave and pitch, without roll, is to obtained from the	
following formula:	following formula:	
$P_L = P_{Cargo}(1 + a_V)$	$P_{cargo} = P_C(1 + a_V)$	
P_{Cargo} : Static uniform cargo load (kN/m^2)	$\overline{P_C}$: Static uniform cargo load (kN/m^2)	
a_{V} : Vertical acceleration addition, as given by the	$\overline{a_V}$: Vertical acceleration addition, as given by the	
following formula:	following formula:	
0.11 mV'	$a_V = \frac{0.11mV'}{\sqrt{Lc}}$	
$a_V = \frac{0.11mV'}{\sqrt{L_C}}$	$a_V = \frac{1}{\sqrt{L_C}}$	
m: As given by the following formulae:	m: As given by the following formulae:	
	For $0 \le x/L_C \le 0.2$, $m = m_0$	
For $0 \le x/L_C \le 0.2, m = m_0$ $-5(m_0 - 1)\frac{x}{L_C}$	For $0 \le x/L_C \le 0.2$, $m = m_0 - 5(m_0 - 1)\frac{x}{L_C}$	
For $0.2 < x/L_C \le 0.7, m = 1.0$	For $0.2 < x/L_C \le 0.7, m = 1.0$	
For $0.7 < x/L_c \le 1.0, m$	For $0.7 < x/L_c \le 1.0, m$	
$= 1 + \frac{m_0 + 1}{0.3} \left(\frac{x}{L_c} - 0.7 \right)$	$= 1 + \frac{m_0 + 1}{0.3} \left(\frac{x}{L_c} - 0.7 \right)$	
m_0 : As given by the following formula:	m_0 : As given by the following formula:	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
$m_0 = 1.5 + \frac{0.11V'}{\sqrt{L_c}}$ $V' : \text{Speed of ship (knot) specified in 2.1.8, Part A. However, where V' is less than \sqrt{L_c}, V' is to be taken as \sqrt{L_c}.x: As specified in 4.10.2.2(2) Point load P (kN) acting on the hatch cover due to heave and pitch, without roll, is to be obtained from the following formula:\underline{P} = \underline{P_S}(1 + a_V) \underline{P_S}: Static point load (kN) due to cargo a_V: As specified in (1) above$	$m_{0} = 1.5 + \frac{0.11V'}{\sqrt{L_{C}}}$ $V' : \text{Speed of ship (knot) specified in 2.1.8, Part A. However, where V' is less than \sqrt{L_{C}}, V' is to be taken as \sqrt{L_{C}}.x: \text{As specified in 4.10.2.2} (2) Point load F_{cargo} (kN) acting on the hatch cover due to heave and pitch, without roll, is to be obtained from the following formula:F_{cargo} = F_{S}(1 + a_{V}) F_{S}: \text{Static point load (kN) due to cargo a_{V}: \text{As specified in (1) above}$	
4.10.2.4 Container Cargo Loads 1 When containers are stowed on hatch covers, the following (1) to (3) are to be considered: (1) Vertical supporting force A_Z and B_Z (<i>kN</i>) and transverse supporting force B_Y (<i>kN</i>) acting on each corner of a container stack due to the heave, pitch and roll motion of the ship are to be obtained from the following formulae (<i>See</i> Fig. 4.10.2-3). When the load case of a partially loaded container is considered, 4.10.2.4-2 is to be followed. $A_Z = 9.81 \frac{M}{2} (1 + a_V) \left(0.45 - 0.42 \frac{h_m}{b} \right)$ $B_Z = 9.81 \frac{M}{2} (1 + a_V) \left(0.45 + 0.42 \frac{h_m}{b} \right)$ $B_Y = 2.4M$	4.10.2.4 Container Cargo Loads 1 When containers are stowed on hatch covers, the following (1) to (3) are to be considered: (1) Vertical supporting force A_Z and B_Z (kN) and transverse supporting force B_Y (kN) acting on each corner of a container stack due to the heave, pitch and roll motion of the ship are to be obtained from the following formulae (<i>See</i> Fig. 4.10.2-3). When the load case of a partially loaded container is considered, 4.10.2.4-2 is to be followed. $A_Z = 9.81 \frac{M}{2} (1 + a_V) \left(0.45 - 0.42 \frac{h_m}{b} \right)$ $B_Z = 9.81 \frac{M}{2} (1 + a_V) \left(0.45 + 0.42 \frac{h_m}{b} \right)$ $B_Y = 2.4M$	UR S21 2.4.2 UR S21 2.4.3

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended		Original	Remarks
M: Maximum designed mass (t) of container stack, as given		M: Maximum designed mass (t) of container stack, as given	
by the following formula:		by the following formula:	
$M = \sum W_i$		$M = \sum W_i$	
W_i : Weight of <i>i</i> -th container		W_i : Weight of <i>i</i> -th container	
a_V : As specified in 4.10.2.3		a_V : As specified in 4.10.2.3	
h_m : Design height of the centre of gravity (m) above the hatch		h_m : Design height of the centre of gravity (m) above the hatch	
cover top plates to be calculated by the following formula		cover top plates to be calculated by the following formula	
where the centre of gravity of each container is assumed to		where the centre of gravity of each container is assumed to	
be the centre of the container:		be the centre of the container: $(-W)$	
$h_m = \sum \frac{(z_i W_i)}{M}$		$h_m = \sum \frac{(z_i W_i)}{M}$	
z_i : Distance (m) from hatch cover top plate to centre of		z_i : Distance (m) from hatch cover top plate to centre of	
<i>i</i> -th container		<i>i</i> -th container	
b: Distance (m) between midpoints of foot points		b: Distance (m) between midpoints of foot points	
(2) Application of (1) above is to be in accordance with the	(2)	Application of (1) above is to be in accordance with the	
following (a) to (c).		following (a) to (c).	
		(a) When the strength of a hatch cover is assessed by a	
		grillage model analysis according to 14.6.6.1, h_m and	
		$\underline{z_i}$ are to be measured from the hatch cover supports,	
		not from the hatch cover top plates. Force B_Y does not	
		need to be considered in this analysis.	
(a) The values of A_Z and B_Z applied for the assessment		(b) The values of A_Z and B_Z applied for the assessment	
of hatch cover strength are to be shown in the drawings		of hatch cover strength are to be shown in the drawings	
of the hatch covers.		of the hatch covers.	
(b) The value of the supporting force acting on the corner		(c) The value of the supporting force acting on the corner	
of the lowermost part of the container stack used in the		of the lowermost part of the container stack used in the	
calculation of cargo lashing is, in principle, not to be		calculation of cargo lashing is, in principle, not to be	
more than the value given by (1) above.		more than the value given by (1) above.	
(3) Stack point load P_{stack} (kN) acting on each corner of the	(3)	Stack point load P_{stack} (kN) acting on each corner of the	
lowermost part of the container stack due to the heave, pitch,		lowermost part of the container stack due to the heave, pitch,	
is the matter of the container stack due to the near c, pitch,		to methods part of the container stater are to the neuve, pitch,	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
without roll, is to be obtained from the following formula: $P_{stack} = 9.81 \frac{M}{4} (1 + a_V)$ a_V : As specified in 4.10.2.3 <i>M</i> : As specified in (1) above	without roll, is to be obtained from the following formula: $P_{stack} = 9.81 \frac{M}{4} (1 + a_V)$ a_V : As specified in 4.10.2.3 <i>M</i> : As specified in (1) above	
4.10.5 Loads to be Considered in Strength Assessment of Hatch Cover Supports and Stoppers	4.10.5 Loads to be Considered in Strength Assessment of Hatch Cover Supports and Stoppers	UR S21 6.2.1
4.10.5.1 Horizontal Loads for Strength Assessment of Stopper Securing Devices The larger of the following (1) and (2) is to be considered as the horizontal load for strength assessment of stoppers: (1) For the design of securing devices for prevention of shifting, the horizontal forces $F(kN)$ obtained from the following formula are to be considered. Acceleration in the longitudinal direction $a_X(m/s^2)$ and in the transverse direction $a_Y(m/s^2)$ does not need be considered as acting simultaneously. F = ma m: Sum of mass (t) of cargo lashed on the hatch cover and the mass of the hatch cover a : Acceleration (m/s^2) obtained from the following formulae: Longitudinal direction: $a_X = 0.2g$ Transverse direction $a_Y = 0.5g$ (2) P_A as specified in 4.10.2.2	4.10.5.1 Horizontal Loads for Strength Assessment of Stopper Securing Devices The larger of the following (1) and (2) is to be considered as the horizontal load for strength assessment of stoppers: (1) For the design of securing devices for prevention of shifting, the horizontal forces $F(kN)$ obtained from the following formula are to be considered. Acceleration in the longitudinal direction a_X (m/s^2) and in the transverse direction a_Y (m/s^2) does not need be considered as acting simultaneously. F = ma m: Sum of mass (t) of cargo lashed on the hatch cover and the mass of the hatch cover a : Acceleration (m/s^2) obtained from the following formulae: Longitudinal direction: $a_X = 0.2g$ Transverse direction $a_Y = 0.5g$ (2) $P_{\underline{H}}$ as specified in 4.10.2.2	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
 4.10.5.2 Loads Acting on Hatch Cover Supports Loads acting on hatch cover supports are to be in accordance with the following (1) to (3). (1) The nominal surface pressure P_{n max} (N/mm²) acting on hatch cover supports is not to be greater than that obtained from the following formulae: P_{n max} = dP_n, in general P_{n max} = 3P_n, for metallic supporting surface not subjected to relative displacements d: As given by the following formula. Where d exceeds 3, d is to be taken as 3. However, d is not to be less than the following values depending on the loading condition: d = max(3.75 - 0.015L_c, d_{min}) d_{min} = 1.0, in General d_{min} = 2.0, for partial loading condition P_n: As specified in Table 4.10.5-1	4.10.5.2 Loads Acting on Hatch Cover Supports Loads acting on hatch cover supports are to be in accordance with the following (1) to (3). (1) The nominal surface pressure $p_{n max}$ (<i>N/mm</i> ²) acting on hatch cover supports is not to be greater than that obtained from the following formulae: $p_{n max} = dp_n$, in general $p_{n max} = 3p_n$, for metallic supporting surface not subjected to relative displacements d: As given by the following formula. Where d exceeds 3, d is to be taken as 3. However, d is not to be less than the following values depending on the loading condition: $d = \max(3.75 - 0.015L_c, d_{min})$ $d_{min} = 1.0$, in General $d_{min} = 2.0$, for partial loading condition p_n : As specified in Table 4.10.5-1	UR S21 6.2.2
(2) When the manufacturer of the hatch cover support member material can provide proof that the material has sufficient strength for the maximum stress, not only under static loads but also under dynamic loads, the $P_{n max}$ specified in (1) above may be relaxed. However, the long-term distributions of the stresses generated by the vertical loads and relative horizontal motion between hatch covers and hatch supports are to be as deemed appropriate by the Society.	(2) When the manufacturer of the hatch cover support member material can provide proof that the material has sufficient strength for the maximum stress, not only under static loads but also under dynamic loads, the $p_{n \max}$ specified in (1) above may be relaxed. However, the long-term distributions of the stresses generated by the vertical loads and relative horizontal motion between hatch covers and hatch supports are to be as deemed appropriate by the Society.	UR S21 6.2.2
(3) Irrespective of the arrangement of stoppers, the supports are to be able to transmit the force $\underline{P_h}$ according to the	(3) Irrespective of the arrangement of stoppers, the supports are to be able to transmit the force \underline{p}_h according to the	UR S21 6.2.2

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)
--

Amended	Original	Remarks
following formula in the longitudinal and transverse directions:	directions:	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended		,	Original	Remarks
Table 4.10.5-1 Permissi	ble Nominal Surf	ace Pressure $\frac{1}{2}$	1	UR S21 Tab.7
	P .	$\overline{P_n}$	1	
Material	Vertical	Horizontal		
Hull structure steel	25	40		
Hardened steel	35	50	-	
Lower friction materials	50	-		(b) 1 1 1 1)
4.10.6 Wave Load to be Considered in Stree		ly added)		(Newly added) UR S21 6.2.3
Assessments of Stoppers				UK 521 6.2.5
The designed wave load P _{stopper} to be considered	d in			
strength assessments of stoppers of Type 2 ships is to be in accord				
with the following (1) or (2).				
(1) Stoppers for the hatch cover to the foremost cargo hold				
(a) Pressure acting in the direction of the stern on the f	ront-			
end of the hatch cover: $230 (kN/m^2)$				
However, where a forecastle is installed in accord	ance			
with the requirements of 11.1, Part 2-3, this value	may			
<u>be 175 kN/m^2.</u>				
(b) Pressure in the transverse direction of the ship:	175			
$\underline{kN/m^2}$				
(2) Stoppers for hatch covers other than that specified in	<u>n (1)</u>			
above				
Pressure acting in the direction of the stern on the front				
of the hatch cover and pressure in the transverse direction	n the			
$\underline{\text{ship:}} 175 kN/m^2$				

Amended	Original	Remarks
Chapter 14 EQUIPMENT	Chapter 14 EQUIPMENT	UR S21 1.1
14.6 Hatch Cover 14.6.1 Application	14.6 Hatch Cover 14.6.1 Application	
 14.6.1.1 General 1 The construction and the means for closing of cargo and other hatchways <u>on exposed decks</u> are to comply with the requirements in 14.6. 2 Where the loading condition or the type of construction differs from that specified in 14.6, the calculation method used is to be as deemed appropriate by the Society. 3 Hatch covers and hatch coamings on non-exposed decks of ships and those of fishing vessels are to be as deemed appropriate by the Society. 	 14.6.1.1 General 1 The construction and the means for closing of cargo and other hatchways are to comply with the requirements in 14.6. 2 Where the loading condition or the type of construction differs from that specified in 14.6, the calculation method used is to be as deemed appropriate by the Society. (Newly added) 	(Newly added)
14.6.1.2 Definitions The terms used in 14.6 are defined as follows. (1) "Type 1 ship" means any ship other than "Type 2 ship". (2) "Type 2 ship" means ore carriers and combination carriers designed to carry either oil or solid cargoes in bulk(e.g. ore/oil carriers) defined in 1.3.1(13), Part B (excluding those affixed with the notation "CSR"), and self-unloading ships defined in 1.3.1(19), Part B.	(Newly added)	(Newly added) UR S21 1.1

Amended	Original	Remarks
14.6.2 General Requirement	14.6.2 General Requirement	UR S21 1.4
 14.6.2.1 General Primary supporting members and stiffeners of hatch covers are to be continuous over the breadth and length of hatch covers. When this is impractical, appropriate arrangements are to be adopted to ensure sufficient load carrying capacity and sniped end connections are not to be allowed. The spacing of primary supporting members parallel to the direction of stiffeners is not to exceed 1/3 of the span of the primary supporting members. When strength calculation is carried out by finite element method, this requirement is not applied. Stiffeners of hatch coarnings are to be continuous as far as practical over the breadth and length of said hatch coarnings. Where hatch covers serve as helicopter decks, it is to comply with the requirements in 10.4.6. 	 14.6.2.1 General Primary supporting members and <u>secondary</u> stiffeners of hatch covers are to be continuous over the breadth and length of hatch covers. When this is impractical, appropriate arrangements are to be adopted to ensure sufficient load carrying capacity and sniped end connections are not to be allowed. The spacing of primary supporting members parallel to the direction of <u>secondary</u> stiffeners is not to exceed 1/3 of the span of the primary supporting members. When strength calculation is carried out by finite element method, this requirement is not applied. <u>Secondary stiffeners</u> of hatch coamings are to be continuous over the breadth and length of said hatch coamings. Where hatch covers serve as helicopter decks, it is to comply with the requirements in 10.4.6. 	
 14.6.3 Net Scantling Approach 14.6.3.1 Application (Omitted) 4 Strength calculations using finite element method are to be performed with net scantlings. 	 14.6.3 Net Scantling Approach 14.6.3.1 Application (Omitted) 4 Strength calculations using <u>grillage model analysis or</u> finite element method are to be performed with net scantlings. 	UR S21 1.5

Amended	Original	Remarks
14.6.5 Strength Criteria of Hatch Covers	14.6.5 Strength Criteria of Hatch Covers	UR S21 3.1.1
14.6.5.1 Permissible stresses and deflections	14.6.5.1 Permissible stresses and deflections	
1 <u>All hatch cover structural members are to comply with the</u>	1 The equivalent stress σ_E (N/mm ²) in steel hatchway covers	
following formulae:	and steel weathertight covers is to comply with the criteria in the	
$\sigma_{vm} \leq \sigma_a$ for shell elements in general.	following (1) and (2).	
$\sigma_{axial} \leq \sigma_a$ for rod or beam elements in general.	(1) For grillage model analysis:	
Where:	$\underline{\sigma_E} = \sqrt{\sigma^2 + 3\tau^2} \le 0.8\sigma_F$	
σ_a : Allowable stress as defined in Table 14.6.5-1	σ : Nominal stress (N/mm ²)	
σ_{vm} : Von Mises stress (<i>N/mm²</i>) to be taken as follows:	$\underline{\tau}$: Shear stress (<i>N/mm²</i>)	
$\underline{\sigma_{vm}} = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2}$	σ_F : Minimum upper yield stress (<i>N/mm²</i>) or proof stress	
σ_{axial} : Axial stress (<i>N/mm²</i>) in rod or beam elements	(<i>N/mm²</i>). However, when material with a σ_F of more	
	than 355 N/mm^2 is used, the value for σ_F is to be as	
	deemed appropriate by the Society.	
	(2) For finite element method calculations	
	Where the calculations use shell or plane strain elements, the	
	stresses are to be taken from centre of the individual	
	$\frac{\text{element.}}{\sqrt{2} + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	
	$\underline{\sigma_E} = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau^2} \le 0.8\sigma_F \qquad \text{when}$	
	assessed using the design load specified in 4.10.2.1	
	$\underline{\sigma_E} = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau^2} \le 0.9\sigma_F \qquad \text{when}$	
- Normal transform 2 in 4 and 1 in 4	assessed using any other design loads	
σ_x : Normal stress (<i>N/mm²</i>) in the <i>x</i> -direction (<i>N/mm²</i>)	σ_x : Normal stress (<i>N/mm²</i>) in the <i>x</i> -direction (<i>N/mm²</i>)	
σ_y : Normal stress (<i>N/mm²</i>) in the <i>y</i> -direction (<i>N/mm²</i>)	σ_y : Normal stress (<i>N/mm²</i>) in the <i>y</i> -direction (<i>N/mm²</i>)	
$\tau_{\underline{xy}}$: Shear stress (<i>N/mm</i> ²) in the <i>x</i> - <i>y</i> plane	$\underline{\tau}$: Shear stress (<i>N/mm</i> ²) in the <i>x</i> - <i>y</i> plane	
x, y: Coordinates of a two-dimensional Cartesian system	x, y: Coordinates of a two-dimensional Cartesian system	
in the plane of the considered structural element	in the plane of the considered structural element	
σ_Y : Specified minimum yield stress (<i>N/mm2</i>) of the	σ_F : As specified in (1) above	
material. However, when material with σ_Y of more		

Amended		X	Original		Remarks	
	than 355 <i>N/mm2</i> is u deemed appropriate l	used, the value for σ_Y is to be as by the Society.				
		Table 14.6.5-1 A	Allowable Stresses		_	UR S21 3.1.1
	<u>Members of</u>	Subject to		<u>σ_a (N/nm²)</u>		
		External pressure, as defined in 4.10.2.1		$0.80\sigma_Y$		
	Hatch cover structure	Other loads, as defined in 4.10.2.2 to 4.10.2.5		$\frac{0.90\sigma_{Y} \text{ for static+dynamic load case}}{0.72\sigma_{Y} \text{ for static load case}}$		
2		(N/mm^2) in steel pontoon covers		valent stress $\sigma_{\underline{E}}$ (<i>N/mm</i> ²) in steel pontoon c		International
	hatch beams is not to be great bified in -1 above.	er than 0.68 $\underline{\sigma_Y}$, where $\underline{\sigma_Y}$ is as	and hatch beams specified in -1 ab	is not to be greater than 0.68 σ_F , where σ_F		Convention on Load Lines, AnnexI ChapterII
spec	specified in -1 above.		specifica în 1 do			Reg.15(4)(6)
acco (1	 (<i>N/mm</i>²) in girders with hway covers and steel weather ording to the following (1) or (2) Finite element method cal for fine mesh elements; or 2) Finite element method cal 	culations using the stress obtained	 (N/mm²) in girder covers and steel w the following (1) a (1) Finite electron for fine r (2) Finite electron edge of the 	e element method calculations, equivalent stress ers with unsymmetrical flanges of steel hate veathertight covers is to be determined accord or (2): ement method calculations using the stress obt mesh elements; or lement method calculations using the stress a the element or the stress at the centre of the ele- ver is greater.	tained at the	UR S21 3.1.1

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Original	V omor ¹ ZG
	Remarks
14.6.5.2 Local net plate thickness of steel hatch covers 1 The local net thickness t_{net} (<i>mm</i>) of steel hatch cover top	UR S21 3.2
$t_{net} = 15.8F_p S \sqrt{\frac{P_{HC}}{0.95\sigma_F}} (mm)$	
F_p : Coefficient given by the following formula:	
1.9 σ/σ_a ($\sigma/\sigma_a \ge 0.8$ for the attached plate flange of primary supporting members)	
1.5 ($\sigma/\sigma_a < 0.8$ for the attached plate flange of primary supporting members)	
following formula:	
$\underline{\sigma_a = 0.8\sigma_F}$	
$P_{\underline{HC}}$: Design load (kN/m ²) specified in 4.10.2.1 and	
(Omitted)	
5 When cargo likely to cause shear buckling is intended to be	UR S21 3.2.2
carried on a hatch cover, the net thickness t_{net} (<i>mm</i>) is not to be less than that obtained from the following formulae. In such cases "cargo	
	1 The local net thickness t_{net} (<i>mm</i>) of steel hatch cover top plating is not to be less than that obtained from the following formula, and it is not to be less than 1% of the spacing of the stiffeners or 6 <i>mm</i> , whichever is greater: $\frac{t_{net} = 15.8F_pS}{\sqrt{\frac{P_{HC}}{0.95\sigma_F}}} (mm)}$ $F_p: \text{Coefficient given by the following formula:}$ $1.9 \ \sigma/\sigma_a (\sigma/\sigma_a \ge 0.8 \text{ for the attached plate flange of} primary supporting members)\\1.5 (\sigma/\sigma_a < 0.8 \text{ for the attached plate flange of} primary supporting members)\sigma: \text{Maximum normal stress} (N/mm^2) \text{ of the attached plate flange of primary supporting members)}\sigma: \text{Maximum normal stress} (N/mm^2) \text{ of the attached plate flange of primary supporting members} (See Fig. 14.6.5-1)\sigma_a: \text{Permissible stress} (N/mm^2) \text{ is to be as given by} following formula:}\frac{\sigma_a = 0.8\sigma_F}{S} \le \text{Stiffener spacing}(m)P_{\underline{HC}}: \text{Design load} (kN/m^2) \text{ specified in 4.10.2.1 and} 4.10.2.3-1(1)\sigma_F: \text{Minimum upper yield stress} (N/mm^2) \text{ or proof} stress} (N/mm^2) \text{ of the material}}(Omitted)$

Amended	Original	Remarks
likely to cause shear buckling" refers particularly to large or bulky cargo lashed to the hatch cover, such as parts of cranes or wind power stations, turking, state Cause that is causidand to be uniformly	likely to cause shear buckling" refers particularly to large or bulky cargo lashed to the hatch cover, such as parts of cranes or wind power stations, turbing, at a Cargo, that is considered to be writered.	
stations, turbines, etc. Cargo that is considered to be uniformly distributed over the hatch cover (e.g. timber, pipes or steel coils) does	stations, turbines, etc. Cargo that is considered to be uniformly distributed over the hatch cover (e.g. timber, pipes or steel coils) does	
not need to be considered.	not need to be considered.	
$t_{net} = 6.5 s \times 10^{-3}$	$t_{net} = 6.5S$	
\underline{s} : As specified in -1 above	\underline{S} : As specified in -1 above	
14.6.5.3 Net scantling of Hatch Covers	14.6.5.3 Net scantling of Hatch Covers	UR S21 3.3
1 The net section modulus Z_{net} of the stiffeners of hatch	1 The net section modulus Z_{net} of the <u>secondary</u> stiffeners of	
cover top plates, based on stiffener net member thickness, is not to be	hatch cover top plates, based on stiffener net member thickness, is not	
less than that obtained from the following formula. The net section	to be less than that obtained from the following formula. The net	
modulus of the stiffeners is to be determined based on an attached	section modulus of the secondary stiffeners is to be determined based	
plate width that is assumed to be equal to the stiffener spacing.	on an attached plate width that is assumed to be equal to the stiffener	
$Z_{net} = \frac{Ps\ell^2}{f_{bc}\sigma_a} (cm^3)$	spacing.	
$f_{bc}\sigma_a$	for the design loads specified in 4.10.2.1 above	
ℓ : Stiffener span (m) is to be taken as the spacing of	$Z_{net} = \frac{104SP_{HC}\ell^2}{\sigma_F} (cm^3)$	
primary supporting members or the distance between a		
primary supporting member and the edge support, as applicable. When brackets are fitted at both ends of all	for the design loads specified in 4.10.2.3-1(1) above $\frac{1}{2}$	
stiffener spans, the stiffener span may be reduced by an	$Z_{net} = \frac{93SP_{HC}\ell^2}{\sigma_F} (cm^3)$	
amount equal to 2/3 of the minimum brackets arm		
length, but not greater than 10% of the gross span, for	ℓ : <u>Secondary stiffener</u> span (<i>m</i>) is to be taken as the spacing of primary supporting members or the distance	
each bracket.	between a primary supporting member and the edge	
	support, as applicable.	
<u>s</u> : Stiffener spacing (\underline{mm})	\underline{S} : Stiffener spacing (m)	
\overline{P} : Design load (kN/m^2) as specified in 14.6.5.2-1 above	$P_{\underline{HC}}$: Design load (kN/m^2) as specified in 14.6.5.2-1 above	
σ_a : Permissible stress (<i>N/mm²</i>) specified in Table 14.6.5-	σ_F : Minimum upper yield stress (<i>N/mm²</i>) or proof	

Amended	Original	Remarks
Image: Antified $\underline{1}$ $\underline{f_{bc}:}$ Boundary coefficient of stiffener, taken equal to: $\underline{f_{bc}} = 12$, in the case of stiffener clamped at both $\underline{ends.}$ $\underline{f_{bc}} = 8$, in the case of stiffener simply supported $\underline{at both ends or simply supported at one end}$ $\underline{and clamped at the other end}$	stress (N/mm ²) of the material	Remarks
2 The net shear sectional area A_{net} (cm ²) of the stiffener webs of hatch cover top plates is not to be less than that obtained from the following formula: $\frac{A_{net}}{\sigma_a} = \frac{8.7Ps\ell}{\sigma_a} 10^{-3} (cm^2)$ ℓ , <u>s</u> and P : As specified in -1 above	2 The net shear sectional area A_{net} (cm^2) of the <u>secondary</u> stiffener webs of hatch cover top plates is not to be less than that obtained from the following formula: <u>for the design loads specified in 4.10.2.1 above</u> $\frac{A_{net} = \frac{10.8SP_{HC}\ell}{\sigma_F} (cm^2)}{\frac{\text{for the design loads specified in 4.10.2.3-1(1) f above}}{A_{net}} = \frac{9.6SP_{HC}\ell}{\sigma_F} (cm^2)}{\ell, S \text{ and } P_{\underline{HC}} : \text{As specified in -1 above}}$	UR S21 3.3
(Deleted)	3 For flat bar secondary stiffeners and buckling stiffeners, the following formula is to be applied: $\frac{h}{t_{W,net}} \le 15\sqrt{k}$ $\frac{h: \text{Height } (mm) \text{ of the stiffener}}{t_{W,net}: \text{ Net thickness } (mm) \text{ of the stiffener}}$ $\frac{k = 235/\sigma_{E}}{\sigma_{E}: \text{ As specified in -1 above}}$	(Deleted) UR S21 3.3

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
<u>3</u> Stiffeners parallel to primary supporting members are to be continuous at crossing primary supporting member and may be regarded for calculating the cross sectional properties of primary supporting members.	<u>4</u> Stiffeners parallel to primary supporting members <u>and</u> <u>arranged within the effective breadth according to 14.6.5.5-2</u> are to be continuous at crossing primary supporting member and may be regarded for calculating the cross sectional properties of primary supporting members.	UR S21 3.3
<u>4</u> The combined stress of those stiffeners induced by the bending of primary supporting members and lateral pressures is not to exceed the permissible stresses according to 14.6.5.1-1.	<u>5</u> The combined stress of those stiffeners induced by the bending of primary supporting members and lateral pressures is not to exceed the permissible stresses according to 14.6.5.1-1.	UR S21 3.3
<u>5</u> For hatch cover stiffeners under compression, sufficient safety against lateral and torsional buckling according to 14.6.5.6 is to be verified.	<u>6</u> For hatch cover stiffeners under compression, sufficient safety against lateral and torsional buckling according to 14.6.5.6 <u>-3</u> is to be verified.	UR S21 3.3
<u>6</u> For stiffeners of the lower plating of double skin hatch covers, the requirements in -1 and -2 above do not need to be applied due to the absence of lateral loads <u>and the requirements in 14.6.5 do</u> not need to be applied to stiffeners in cases where the lower plating is not considered to be a strength member.	<u>7</u> For <u>secondary</u> stiffeners of the lower plating of double skin hatch covers, the requirements in -1 and -2 above do not need to be applied due to the absence of lateral loads.	UR S21 3.3
$\underline{7}$ The net thickness (<i>mm</i>) of a stiffener (except for U-type stiffeners) web is not to be taken as less than 4 <i>mm</i> .	<u>8</u> The net thickness (mm) of a stiffener (except for U-type stiffeners) web is not to be taken as less than $4 mm$.	UR S21 3.3
(Deleted)	9 Single-side welding is not permitted for secondary stiffeners, except for U-type stiffeners.	(Deleted)
(Deleted)	<u>10</u> The requirements in 14.6.5 do not need to be applied to stiffeners of the lower plating of double skin hatch covers in cases where the lower plating is not considered to be a strength member.	(Deleted) UR S21 3.3

Amended	Original	Remarks
14.6.5.4 Primary supporting members of steel hatch covers 1 Scantlings of the primary supporting members of steel hatch covers are to be determined according to 14.6.5.1-1 below taking into consideration the permissible stresses specified in 14.6.5.5 .	 14.6.5.4 Primary supporting members of steel hatch covers and hatch beams 1 Scantlings of the primary supporting members of steel hatch covers and hatch beams are to be determined according to 14.6.5.1-1 below taking into consideration the permissible stresses specified in 14.6.5.5. 	UR S21 3.4.1
(Deleted)	2Scantlings of the primary supporting members of steel hatch covers and hatch beam with variable cross-sections are to be not less than that obtained from the following formulae. For steel hatchway covers, S and ℓ are to be read as b and S, respectively. The net section modulus (cm^3) of hatch beams or primary supporting members at the mid-point $Z_{net} = Z_{net_{cs}}$ $Z_{net} = k_1 Z_{net_{cs}}$ The net moment of inertia (cm^4) of hatch beams or primary supporting members at the mid-point 	(Deleted)

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arr	rangements)	
--	-------------	--

Amended	Original	Remarks
	<u>given in Table 14.6.5-1</u>	
Table 14.6.5-1 C	oefficient k1 and k2	
k_1 $1 + \frac{3.2\alpha - \gamma - 0.8}{7\gamma + 0.4}$ k_2 $1 + 8\alpha^3 \frac{1 - \beta}{0.2 + 3\sqrt{\beta}}$	k_1 is not to be taken as less than 1.0 $\alpha = \frac{\ell_1}{\ell} \qquad \beta = \frac{I_1}{I_0} \qquad \gamma = \frac{Z_1}{Z_0}$	
$ \begin{array}{c} \varrho & \text{Orecall length of portable beam (m)} \\ \varrho & \text{= Distance from the end of parallel part to the end of portable beam (m)} \\ I_0^{-1} & \text{Moment of inertia at mid-span (} cm^4) \\ I_1 & \text{= Moment of inertia at ends (} cm^4) \\ Z_0 & \text{= Section modulus at mid-span (} cm^3) \\ Z_1 & \text{= Section modulus at ends (} cm^3) \\ \end{array} $	<i>l</i> ₀ 7	
	e	
<u>2</u> In addition to -1, the scantlings of the primary supporting members of steel hatch covers are to comply with the requirements specified in 14.6.5.6.	<u>3</u> In addition to -1 <u>and -2 above</u> , the scantlings of the primary supporting members of steel hatch covers are to comply with the requirements specified in 14.6.5.6.	UR S21 3.4.1
(Deleted)	4 When biaxial compressed flange plates are considered, the effective width of flange plates is to comply with 14.6.5.6-3.	(Deleted) UR S21 3.4.1
<u>3</u> In addition to -1 <u>and -2</u> above, net thickness t_{net} (<i>mm</i>) of the webs of primary supporting members is not to be less than that obtained from the following formulae, whichever is greater:	<u>5</u> In addition to $-1 \underline{\text{to } -4}$ above, net thickness t_{net} (<i>mm</i>) of the webs of primary supporting members is not to be less than that obtained from the following formulae, whichever is greater:	UR S21 3.4.1

Amended	Original	Remarks
$t_{net} = 6.5 s \times 10^{-3}$	$t_{net} = 6.5S$	
$t_{net} = 5$	$t_{net} = 5$	
\underline{s} : Stiffener spacing ($\underline{m}\underline{m}$)	\underline{S} : Stiffener spacing (m)	
4 In addition to -1 to $\underline{-3}$ above, the net thickness t_{net} (mm) of	<u>6</u> In addition to -1 to <u>-5</u> above, the net thickness t_{net} (<i>mm</i>) of	UR S21 3.4.1
edge girders exposed to sea wash is not to be less than that obtained	edge girders exposed to sea wash is not to be less than that obtained	
from the following formulae, whichever is greater:	from the following formulae, whichever is greater:	
$t_{net} = 0.0158s \sqrt{\frac{P_A}{0.95\sigma_Y}}$ $t_{net} = 8.5\underline{s \times 10^{-3}}$	$t_{net} = 15.8S \sqrt{\frac{P_H}{0.95\sigma_F}}$	
$t_{net} = 8.5 s \times 10^{-3}$	$t_{net} = 8.5 \underline{S}$	
P_A : Design horizontal wave load (kN/m^2) as specified in	P_H : Design horizontal wave load (kN/m ²) as specified in	
- 4.10.2.2 <u>-1</u>	4.10.2.2	
\underline{s} : Stiffener spacing (m <u>m</u>)	\underline{S} : Stiffener spacing (m)	
σ_Y : Minimum yield stress (<i>N/mm²</i>) of the material	σ_F : Minimum upper yield stress (<i>N/mm²</i>) or proof stress	
	(N/mm^2) of the material	
(Deleted)	7 The moment of inertia (cm^4) of the edge elements of hatch	(Deleted)
(Deleted)	<u>7</u> The moment of inertia (cm^4) of the edge elements of hatch covers is not to be less than that obtained from the following formula:	UR S21 3.4.2
	$covers is not to be less than that obtained from the following formula.$ $I = 6pa^4 (cm^4)$	UK 521 5.4.2
	a : Maximum of the distance (m), a_i , between two	
	\underline{u} . Maximum of the distance (<i>m</i>), u_i , between two consecutive securing devices, measured along the hatch	
	cover periphery, not to be taken as less than $2.5a_{c}$ (m),	
	(See Fig. 14.6.5-2).	
	$a_{c}: \max(a_{1,1}, a_{1,2})$ (m) (See Fig. 14.6.5-2).	
	<i>p</i> : Packing line pressure (<i>N/mm</i>), minimum 5 <i>N/mm</i>	
	When calculating the actual gross moment of inertia of edge	
	elements, the effective breadth of the attached plating of	
	hatch covers is to be taken as equal to the lesser of the	
	following values:	
	(1) 0.165a	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	(2) Half the distance between the edge element and the adjacent primary member	
Fig. 14.6.5-2 Distance between Securing Devi	ces, Measured Along Hatch Cover Periphery	(Deleted)
$a_{1} = a_{1,1} + a_{1,2}$ a_{2} a_{3} $a_{1,1}$ $a_{1,1}$ $a_{1,2}$ a_{2} a_{3} a_{3} $a_{1,1}$ $a_{1,1$		
$\bar{a} = (a_i + a_{i+1})/2$		
14.6.5.5 Strength calculation	14.6.5.5 Strength calculation	UR S21 3.5
(Deleted)	<u>1</u> Strength calculation for steel hatch covers may be carried out by using grillage model analysis or finite element method. Net scantlings are to be used for modeling. Strength calculations for	(Deleted)

Amended	Original	Remarks
(Deleted)	 double skin hatch covers or hatch covers with box girders are to be assessed using finite element method, as specified in 14.6.5.5-3. 2 Effective cross-sectional properties for calculation by grillage model analysis are to be determined by the following (1) to (5): (1) The effective breadth of the attached plating e_m of the primary supporting members specified in Table 14.6.5-2 according to the ratio of ℓ and e is to be considered for the calculation of effective cross-sectional properties. For intermediate values of ℓ/e, e_m is to be obtained by linear interpolation. (2) Separate calculations may be required for determining the effective breadth of one-sided or non-symmetrical flanges (3) The effective cross sectional areas of plates is not to be less than the cross sectional area of the face plate. (4) The cross sectional area of secondary stiffeners parallel to the primary supporting member under consideration within the effective breadth may be included in the calculations (See Fig. 14.6.5-3). (5) For flange plates under compression with secondary stiffeners perpendicular to the web of the primary supporting member, the effective width is to be determined according to 14.6.5.6-3. 	(Deleted)

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

		mended	1				(110001		· ·	ginal	igs and Closing Al	Remarks
Table 14.6.5-2 Effective Breadth em of Plating of Primary Supporting Members							(Deleted)					
	{/e	θ	ŧ	글	÷	4	ŧ	6	₽	8 and over		
	e_{m1}/e	θ	0.36	0.64	0.82	0.91	0.96	0.98	1.00	1.00		
	e_{m2}/e	θ	0.20	0.37	0.52	0.65	0.75	0.84	0.89	0.90		
	(Notes)											
			. (19119) to be - smood singl		e primary sup	porting men	ibers are load	ed by uniforn	nly distribute	ed loads or by not		
	em- : Effe		+ spaced singr + (19119) to be	· route	e primary su r	worting men	ibers are load	ed by 3 or lei	s single load	ls i		
	€÷-Ler	ngth between	zero points o	fbending me	ment eurve (17	ial to:					
	Fe	s simply sup	ported primar	y supporting	members : l	Ŧ						
	Fe د الس	r primary suj	pporting men	bers with bot	t h ends consta in a manul and	int : 0.68						
	¢₀÷ Un e÷ Wi	supported ter dth of plating	; supported, m	nary support	ng memoers reentre to eer	(777) t re of the adj	acent unsupp	orted fields				
1 Strength calcu	ulation fo	or hatch o	covers is t	to be carri	ied out by	3	Genera	l require	ements f	<u>or finite ele</u>	ement method are as	UR S21 3.5.1
using the following f	inite eler	ment met	hod. Tho	se not sp	ecified in	_		-				
14.6.5.5 are to comply	y with th	e require	ments in (Chapter 8	8							
(1) Loads						1)	Newly add	ded)				(Newly added)
		•	eel hatch			-						
			n the type			·						
			ned neces		e Society.	2						
(b) No dyna			<u>d to act jo</u>	•								
			heeled ve			-						
		ng while i			ly used for	-						
(2) Modelling of			<u>n port.</u>									
· · ·			to be abl	e to repr	oduce the	;	(1) T	he struct	ural mod	del is to be	able to reproduce the	
· — /			e with th	-								
fidelity.	Stiffene	ers and p	rimary su	pporting	members							
subject	to press	sure load	s are to 1	be includ	led in the							
modelli	ng. Hov	wever, b	uckling a	stiffeners	may be	modelling. However, buckling stiffeners may be						
disregar	ded for s	stress calc	ulation.				d	isregarde	d for stre	ss calculatior	1.	

Amended	Original	Remarks
(b) Net scantlings which exclude corrosion additions are to be used for modelling.	(2) Net scantlings which exclude corrosion additions are to be used for modelling.	
(Deleted)	(3) <u>Element size is to be suitable to take effective breadth</u> into account.	(Deleted)
 (c) In no case is element width to be larger than stiffener spacing. The ratio of element length to width is not to exceed <u>3</u>. 	(<u>4</u>) In no case is element width to be larger than stiffener spacing. The ratio of element length to width is not to exceed <u>4</u> .	
(<u>d</u>) The element height of the webs of primary supporting members is not to exceed one-third of the web height.	(5) The element height of the webs of primary supporting members is not to exceed one-third of the web height.	
(e) Stiffeners may be modelled using shell elements, plane stress elements or beam elements.	(<u>6</u>) Stiffeners may be modelled using shell elements, plane stress elements or beam elements.	
(f) Hatch covers fitted with U-type stiffeners as shown in Fig. 14.6.5-2 are to be assessed by means of FE analysis.	(Newly added)	(Newly added)
(g) The geometry of the U-type stiffeners is to be accurately modelled using shell/plate elements.		
(h) Nodal points are to be properly placed on the intersections between the webs of a U-type stiffener and the hatch cover plate, and between the webs and flange of the U-type stiffener.		
(3) Boundary Conditions		
Wherever applicable the following boundary conditions are to be applied to the FE model:		
(a) Boundary nodes in way of a bearing pad on the hatch coamings are to be fixed against displacement in the		
<u>direction perpendicular to the pad.</u> (b) Lifting stoppers are to be fixed against displacements in		
<u>the direction determined by the stoppers.</u> (c) For a folding type hatch cover, the FE nodes connected through a binge are to have the same translational		
through a hinge are to have the same translational		

Amended	Original	Remarks
displacement in the direction perpendicular to the hat	h	
cover top plating.		
2 In addition to -1, the details for steel hatch covers carryi	<u>ig</u>	
cargoes are to comply with the following (1) to (6):		
(1) To prevent damage to hatch covers and the ship structu	<u>e,</u>	
the location of stoppers is to be compatible with the relation	<u>/e</u>	
movements between hatch covers and the ship structure.		
(2) Hatch covers and supporting structures are to be adequate	ly ∣	
stiffened to accommodate the load from hatch covers.		
(3) At the cross-joints of multi-panel covers, vertical guid		
(male/female) are to be fitted to prevent excessive relation	<u>/e</u>	
vertical deflections between loaded/unloaded panels.		
(4) The construction and scantlings of hatchways on expos		
parts or on the lower deck are to comply with the following	ng l	
requirements in addition to those of 14.6.		
(a) The loading arrangement is to be clearly shown	—	
drawings submitted for approval. In the case of freig		
containers, the type and location are to be additional	LΣ	
described.		
(b) Girders or stiffeners are to be provided the state of		
reinforcement beneath the corner fittings of freig	<u>ht</u>	
<u>containers.</u>		
(5) The scantlings of sub structures subject to concentrat		
loads acting on steel hatch covers are to be determin	—	
taking into consideration the design cargo loads a		
permissible stresses specified in 14.6.	1	
(6) The scantlings of top plates and stiffeners of steel hat	—	
covers subject to wheel loads may be determined by fin	te	
element method or in accordance with 10.1, Part 2-6		

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	Cover Fitted with U-type Stiffeners	(Newly added) UR S21 Fig.5
14.6.5.6 Buckling strength of steel hatch covers (Deleted)	14.6.5.6 Buckling strength of steel hatch covers The buckling strength of the structural members of steel hatch covers is to be in accordance with the following (1) to (3): (1) The buckling strength of a single plate panel of the top and lower steel hatch cover plating is to comply with the following formulae: $\left(\frac{ \sigma_x C_{sf}}{\kappa_x\sigma_F}\right)^{e_1} + \left(\frac{ \sigma_y C_{sf}}{\kappa_y\sigma_F}\right)^{e_2} - B\left(\frac{\sigma_x\sigma_yC_{sf}^2}{\sigma_F^2}\right) + \left(\frac{ \tau C_{sf}\sqrt{3}}{\kappa_\tau\sigma_F}\right)^{e_3} \le 1.0$ $\frac{\left(\frac{\sigma_xC_{sf}}{\kappa_x\sigma_F}\right)^{e_1} \le 1.0}{\left(\frac{ \tau C_{sf}\sqrt{3}}{\kappa_\tau\sigma_F}\right)^{e_3} \le 1.0}$ $\frac{\sigma_x, \sigma_y: \qquad \text{Membrane stress in the x-direction}}{and the y-direction (N/mm^2). In cases where the 31/207$	(Deleted)

Amended	Original	Remarks
	stresses are obtained from finite element method	
	and already contain the Poisson-effect, the	
	following modified stress values may be used. Both	
	stresses σ_x^* and σ_y^* are to be compressive stress	
	in order to apply stress reduction according to the	
	following formulae:	
	$\sigma_x = (\sigma_x^* - 0.3\sigma_y^*)/0.91$	
	$\sigma_y = (\sigma_y^* - 0.3\sigma_x^*)/0.91$	
	σ_x^* , σ_y^* : Stresses containing the Poisson-effect.	
	These values are to comply with the following	
	<u>formulae:</u>	
	$\sigma_y = 0$ and $\sigma_x = \sigma_x^*$ for $\sigma_y^* < 0.3\sigma_x^*$	
	$\sigma_x = 0$ and $\sigma_y = \sigma_y^*$ for $\sigma_x^* < 0.3\sigma_y^*$	
	τ : Shear stress (<i>N/mm²</i>) in <i>x</i> - <i>y</i> plane	
	σ_F : Minimum yield stress (<i>N/mm²</i>) of the material.	
	Compressive and shear stresses are to be taken as positive	
	values and tension stresses are to be taken as negative	
	values.	
	C_{sf} : Safety factor taken as equal to:	
	$C_{sf} = 1.25$: for hatch covers when subjected to	
	design vertical wave loads according to 4.10.2.1	
	$C_{sf} = 1.10$: for hatch covers when	
	subjected to loads according to 4.10.2.3-3 to -5.	
	$\underline{F_1}$: Correction factor for the boundary condition of	
	stiffeners on the longer side of elementary plate panels	
	according to Table 14.6.5-3.	
	e_1, e_2, e_3 and B : Coefficient obtained from Table	
	<u>14.6.5-4.</u>	
	κ_x, κ_y and κ_τ : Reduction factor obtained from Table	
	14.6.5-5. However, these values are to	
	22/207	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	comply with the following formulae:	
	$\kappa_x = 1.0$ for $\sigma_x \le 0$ (tension stress)	
	$\kappa_y = 1.0$ for $\sigma_y \le 0$ (tension stress)	
	<u>a</u> : Length (<i>mm</i>) of the longer side of the partial plate field	
	(x-direction)	
	\underline{b} : Length (<i>mm</i>) of the shorter side of the partial plate field	
	(<i>y</i> -direction)	
	<u><i>n</i></u> : Number of the elementary plate panel breadths within	
	the partial or total plate panel (See Fig. 14.6.5-3)	
	α : Aspect ratio of a single plate field obtained from the	
	<u>following formula:</u> a	
	$\alpha = \frac{\pi}{h}$	
	λ : Reference degree of slenderness, taken as equal to:	
	$\lambda = \sqrt{\frac{\sigma_F}{K\sigma_e}}$	
	<u> </u>	
	<u><i>K</i></u> : Buckling factor according to Table 14.6.5-5	
	σ_e : Reference stress (N/mm ²), taken as	
	$\frac{\text{equal to:}}{(t)^2}$	
	$\sigma_e = 0.9E \left(\frac{t}{b}\right)^2$	
	<u><i>E</i></u> : Modulus of elasticity (N/mm^2) of the	
	material, taken as equal to: $E = 2.06 \times 105$	
	t: Net thickness (mm) of plate under	
	consideration (mm)	
	ψ : Edge stress ratio taken as equal to:	
	$\psi = \frac{\sigma_2}{\sigma_1}$	
	$\underline{o_1}$	
	σ_1 : Maximum compressive	
	33/207	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

stress (N/mm²) σ_2 : Minimum compressive stress or tension stress (N/mm²) (2) The buckling strength of non-stiffened webs and the flanges of primary supporting members are to be according to requirement of -1 above. (3) The buckling strength of partial and total fields included in the structural members of steel hatch covers is to comply	
or tension stress (N/mm²) (2) The buckling strength of non-stiffened webs and the flanges of primary supporting members are to be according to requirement of -1 above. (3) The buckling strength of partial and total fields included in the structural members of steel hatch covers is to comply	
 (2) The buckling strength of non-stiffened webs and the flanges of primary supporting members are to be according to requirement of -1 above. (3) The buckling strength of partial and total fields included in the structural members of steel hatch covers is to comply 	
 of primary supporting members are to be according to requirement of -1 above. (3) The buckling strength of partial and total fields included in the structural members of steel hatch covers is to comply 	
 <u>requirement of -1 above.</u> (3) The buckling strength of partial and total fields included in the structural members of steel hatch covers is to comply 	
(3) The buckling strength of partial and total fields included in the structural members of steel hatch covers is to comply	
the structural members of steel hatch covers is to comply	
with the following (a) to (e):	
(a) The buckling strength of longitudinal and transverse	
secondary stiffeners is to comply with following (d)	
and (e). For U-type stiffeners, however, the	
requirements in (e) below may be omitted.	
(b) When buckling calculation is carried out according to	
(d) and (e), the effective breadth of steel hatch cover	
plating may be in accordance with following i) and ii):	
i) The effective breadth a_m or b_m of attached	
plating may be determined by the following	
formulae (See Fig. 14.6.5-3). However, the	
effective breadth of plating is not to be taken	
greater than the value obtained from $14.6.5.5$.	
$\frac{b_m = \kappa_x b}{a_m = \kappa_y a}$ for longitudinal stiffeners for transverse stiffeners	
κ_x and κ_y : As obtained from Table	
<u>14.6.5-5</u>	
a and b: As specified -1 above	
ii) The effective breadth e_m' of the stiffened flange	
plates of primary supporting members may be	
determined according to the following i) and ii).	
However, a_m and b_m for flange plates are in 34/207	

Amended	Original	Remarks
	general to determined for $\psi = 1$.	
	1) Stiffening parallel to the webs of primary	
	supporting members (See Fig. 14.6.5-4).	
	$\underline{b} \ge e_m$, b and a have to be exchanged.	
	$b < e_m$	
	$\underline{e_m}' = nb_m$	
	<u><i>n</i></u> : Integer number of stiffener spacing <i>b</i>	
	inside the effective breadth e_m according	
	to 14.6.5.5, taken as equal to:	
	$\frac{100 \text{ Finite as equal to:}}{n = \text{int}\left(\frac{e_m}{b}\right)}$	
	2) Stiffening perpendicular to the webs of	
	primary supporting members (See Fig.	
	14.6.5-5). For $a < e_m$, a and b have to	
	be exchanged.	
	$\underline{a \ge e_m}$	
	$\underline{e_m}' = \underline{na_m} < \underline{e_m}$	
	$n = 2.7 \frac{e_m}{a} \le 1$	
	(c) Stresses obtained from the calculation of the scantlings	
	of plating and the stiffeners of steel hatch covers are to	
	comply with the following:	
	i) The scantlings of plates and stiffeners are in	
	general to be determined according to the	
	maximum stresses $\sigma_x(y)$ at the webs of primary	
	supporting members and stiffeners respectively.	
	ii) For stiffeners with spacing b under compression	
	arranged parallel to primary supporting members,	
	no value less than $0.25\sigma_F$ is to be inserted for	
	$\frac{\sigma_x(y=b)}{m}$	
	iii) The stress distribution between two primary	
	35/207	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	supporting members may be obtained by the	
	following formula:	
	$\sigma_x(y) = \sigma_{x1} \left\{ 1 - \frac{y}{e} \left[3 + c_1 - 4c_2 - 2\frac{y}{e} (1 + c_1 - 2c_2) \right] \right\}$	
	c_1 : As given by the following formula:	
	$c_1 = \frac{\sigma_{x_1}}{\sigma_{x_2}}, \text{however } 0 \le c_1 \le 1$	
	c_2 : As given by the following formula:	
	$c_2 = \frac{1.5}{e}(e_{m1}'' + e_{m2}'') - 0.5$	
	σ_{x1} and σ_{x2} : Normal stresses in the flange	
	plates of adjacent primary	
	supporting members 1 and 2 with	
	spacing e, based on cross-sectional	
	properties considering the effective	
	breadth or effective width, as appropriate	
	$\underline{e_{m1}}''$: Proportionate effective breadth $\underline{e_{m1}}$	
	or proportionate effective width e_{m1}' of	
	primary supporting member 1 within the	
	distance <i>e</i> , as appropriate	
	e_{m2}'' : Proportionate effective breadth e_{m2}	
	or proportionate effective width e_{m2}' of	
	primary supporting member 2 within the	
	distance e, as appropriate	
	y: Distance from girder member 1 to the	
	position to be considered	
	iv) The shear stress distribution in flange plates may	
	be assumed to be linear.	
	(d) For lateral buckling, longitudinal and transverse	
	36/207	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	stiffeners are to comply with following i) to iii):	
	i) Secondary stiffeners subject to lateral loads are to	
	comply with the following criteria:	
	$\frac{\sigma_a + \sigma_b}{\sigma_F} C_{sf} \le 1$	
	σ_a : Uniformly distributed compressive	
	stress (N/mm^2) in the direction of the stiffener axis,	
	given by the following formula: $\sigma_a = \sigma_x$ for longitudinal stiffeners	
	$\sigma_a = \sigma_y$ for transverse stiffeners	
	σ_h : Bending stress (N/mm ²) in the stiffeners,	
	given by the following formula:	
	$\sigma_b = \frac{M_0 + M_1}{Z_{st} 10^3}$	
	$\frac{O_{b}}{Z_{st}} = \frac{Z_{st}}{Z_{st}} \frac{10^{3}}{2}$	
	M_0 : Bending moment (N-mm) due to	
	deformation w of stiffener, given by the	
	$\frac{\text{following formula:}}{p_r w_r}$	
	$M_0 = F_{Ki} \frac{p_z w}{c_f - p_z} \text{with} (c_f - p_z) > 0$	
	M_1 : Bending moment (<i>N-mm</i>) due to lateral	
	load P given by the following formula:	
	$M_1 = \frac{Pba^2}{24 \cdot 10^3}$ for longitudinal stiffeners	
	$\overline{M_1 = \frac{P(nb)^2}{8c_5 10^3}}$ for transverse stiffeners. Where <i>n</i> is to	
	be taken as equal to 1 for ordinary transverse	
	$\frac{\text{stiffeners}}{Z_{st}}:$ Section modulus of stiffener (<i>cm</i> ³),	
	$\underline{z_{st}}$. Section modulus of sufference (<i>cm</i>), including the effective breadth of plating	
	according to 14.6.5.6-3	
	c_{s} : Factor accounting for the boundary conditions of	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	the transverse stiffener taken as equal to:	
	$c_s = 1.0$ for a stiffener that is simply supported	
	<u>stiffener</u>	
	$c_s = 2.0$ for a stiffener that is partially	
	$\frac{\text{constrained}}{P:}$ Lateral load (<i>kN/m</i> ²) as specified in 4.10.2	
	according to the condition under consideration	
	F_{Ki} : Ideal buckling force (N) of the stiffener	
	given by the following formula:	
	$F_{Kix} = \frac{\pi^2}{a2} E I_x 10^4 \qquad \text{for longitudinal stiffeners}$	
	$\frac{T_{Kix} - \frac{1}{a2} L_{x}^{T}}{a2} = \frac{1}{a2} L_{x}^{T} L_{x}^{$	
	$\overline{F_{Kiy}} = \frac{\pi^2}{(nb)^2} EI_y 10^4 \text{for transverse stiffeners}$	
	I_x , I_y : Net moments of inertia (cm ⁴) of the	
	longitudinal or transverse stiffener, including	
	the effective breadth of attached plating	
	according to 14.6.5.6-3. I_x and I_y , are to	
	<u>comply with the following criteria:</u>	
	$I_x \ge \frac{\beta t^3}{12 \cdot 10^4}$	
	$\frac{12\cdot10^{1}}{at^{3}}$	
	$\frac{I_x \ge \frac{bt^3}{12 \cdot 10^4}}{I_y \ge \frac{at^3}{12 \cdot 10^4}}$	
	p_z : Nominal lateral load (N/mm ²) of the	
	stiffener due to $\sigma_x \sigma_y$ and τ	
	$p_{zx} = \frac{t_a}{b} \left[\sigma_{xl} \left(\frac{\pi b}{a} \right)^2 + 2c_y \sigma_y + \tau_1 \sqrt{2} \right] \qquad \underline{\text{for}}$	
	longitudinal stiffeners	
	$p_{zy} = \frac{t_a}{b} \left[2c_x \sigma_{xl} + \sigma_y \left(\frac{\pi a}{nb}\right)^2 \left(1 + \frac{A_y}{at_a}\right) + \tau_1 \sqrt{2} \right]$	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	for transverse stiffeners	
	$\underline{t_a}$: Net thickness (<i>mm</i>) of	
	attached plating	
	c_x, c_y : Factor taking into account	
	the stresses vertical to the stiffener's axis	
	and distributed variable along the stiffener's length taken as equal to:	
	$\text{sufferences in the standard of the stand$	
	$\frac{0.5}{1 e^{\psi}} = \frac{1}{1 e^{\psi}} + \frac{1}{1 e^{$	
	$1-\psi$ $1-\psi < 0$	
	$\underline{A_x}, \underline{A_y}$: Net sectional area (mm^2) of	
	the longitudinal or transverse stiffener	
	respectively without attached plating	
	$\sigma_{xl} = \sigma_x \left(1 + \frac{A_x}{bt_a} \right)$	
	$\tau_1 = \left[\tau - t\sqrt{\sigma_F E\left(\frac{m_1}{a^2} + \frac{m_2}{b^2}\right)}\right] \ge 0$	
	$\underline{m_1}$ and $\underline{m_2}$: Coefficient given by the following	
	formulae:	
	• For longitudinal stiffeners:	
	$\frac{m_1 = 1.47, \ m_2 = 0.49 \ \text{for} \ \frac{a}{b} \ge 2.0}{m_1 = 1.96, \ m_2 = 0.37 \ \text{for} \ \frac{a}{b} < 2.0}$	
	$m_1 = 1.96, \ m_2 = 0.37 \ \text{for} \ \frac{a}{b} < 2.0$	
	For transverse stiffeners:	
	$\underline{m_1 = 0.37, \ m_2 = \frac{1.96}{n^2} \ \text{for } \frac{a}{nb} \ge 0.5}$	
	$m_1 = 0.49, \ m_2 = \frac{1.47}{n^2} \ \text{for } \frac{a}{nb} < 0.5$	
	$w = w_0 + w_1$	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	w_0 : Assumed imperfection (<i>mm</i>) taken as	
	equal to:	
	$w_0 = \min\left(\frac{a}{250}, \frac{b}{250}, 10\right)$ for longitudinal	
	stiffeners	
	$\frac{\text{sufficiency}}{(a - nb - 10)} \text{for two series}$	
	$w_0 = \min\left(\frac{a}{250}, \frac{nb}{250}, 10\right)$ for transverse	
	stiffeners	
	For stiffeners sniped at both ends w_0 is not to be	
	taken as less than the distance from the mid- point of attached plating to the neutral axis of	
	the stiffener calculated with the effective	
	width of its attached plating.	
	w_1 : Deformation of stiffener (<i>mm</i>) at the mid-point of	
	stiffener span due to lateral load p . In the case of	
	uniformly distributed loads, the following values	
	for w_1 may be used:	
	$w_1 = \frac{Pba^4}{204 + 107 RL}$ for longitudinal stiffeners	
	$384 \cdot 10^{7} EI_{\chi}$	
	$w_1 = \frac{5Pa(nb)^4}{204 + 407 RV}$ for transverse stiffeners	
	$w_1 = \frac{5Pa(nb)^2}{384 \cdot 10^7 E I_y c_s^2} \text{for transverse stiffeners}$	
	c_f : Elastic support (N/mm^2) provided by the	
	stiffener taken as equal to:	
	For longitudinal stiffeners:	
	$c = F = \pi^2 (1 + c)$	
	$\frac{c_f - r_{Kix}}{a^2} \frac{(1 + c_{px})}{a^2}$	
	$\frac{c_f = F_{Kix} \frac{\pi^2}{a^2} (1 + c_{px})}{c_{px}}$	
	$c_{px} = \frac{1}{1 + \frac{0.91\left(\frac{12 \cdot 10^4 I_x}{t^3 b} - 1\right)}{1 + \frac{1}{t^3 b}}}$	
	$1 + \frac{(t^3b)^2}{c}$	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

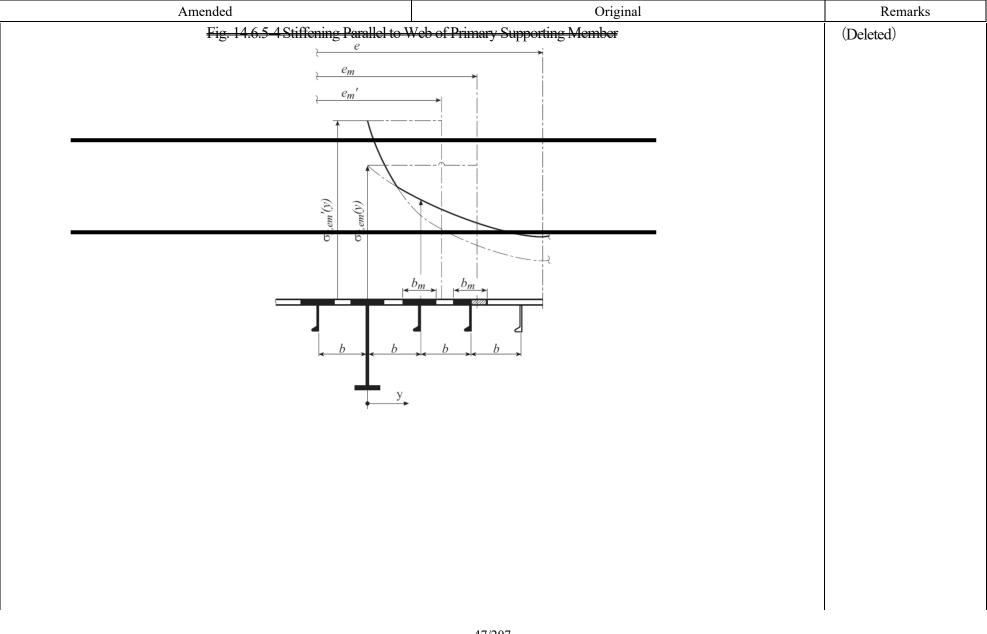
Amended	Original	Remarks
	$\underline{c_{xa}}$: Coefficient taken as equal to:	
	$\frac{c_{xa} = \left(\frac{a}{2b} + \frac{2b}{a}\right)^2 for a \ge 2b}{c_{xa} = \left[1 + \left(\frac{a}{2b}\right)^2\right] for a < 2b^2}$	
	• For transverse stiffeners:	
	• For transverse stiffeners: $\frac{c_f = c_S F_{Kiy} \frac{\pi^2}{(n \cdot b)^2} (1 + c_{py})}{1}$	
	$c_{ny} = \frac{1}{1}$	
	$c_{py} = \frac{1}{1 + \frac{0.91\left(\frac{12 \cdot 10^4 I_y}{t^3 b} - 1\right)}{c_{ya}}}$	
	c_{ya} : Coefficient taken as equal to:	
	$(nh 2a)^2$	
	$\frac{c_{ya} = \left(\frac{nb}{2a} + \frac{2a}{nb}\right) for nb \ge 2a}{2}$	
	$\frac{c_{ya}}{c_{ya}} = \left(\frac{nb}{2a} + \frac{2a}{nb}\right)^2 for nb \ge 2a$ $\frac{c_{ya}}{c_{ya}} = \left[1 + \left(\frac{nb}{2a}\right)^2\right]^2 for nb < 2a$	
	ii) For stiffeners not subject to lateral loads, the	
	bending moment σb is to be calculated at the mid-	
	<u>point of the stiffener.</u> iii) When lateral loads are acting, stress calculations	
	are to be carried out for both fibres of the	
	stiffener's cross sectional area (if necessary for the	
	biaxial stress field at the plating side).	
	(e) For torsional buckling, longitudinal and transverse	
	stiffeners are to comply with the following i) and ii):	
	 <u>i)</u> Longitudinal stiffeners are to comply with the following criteria: 	
1	41/207	
	71/20/	

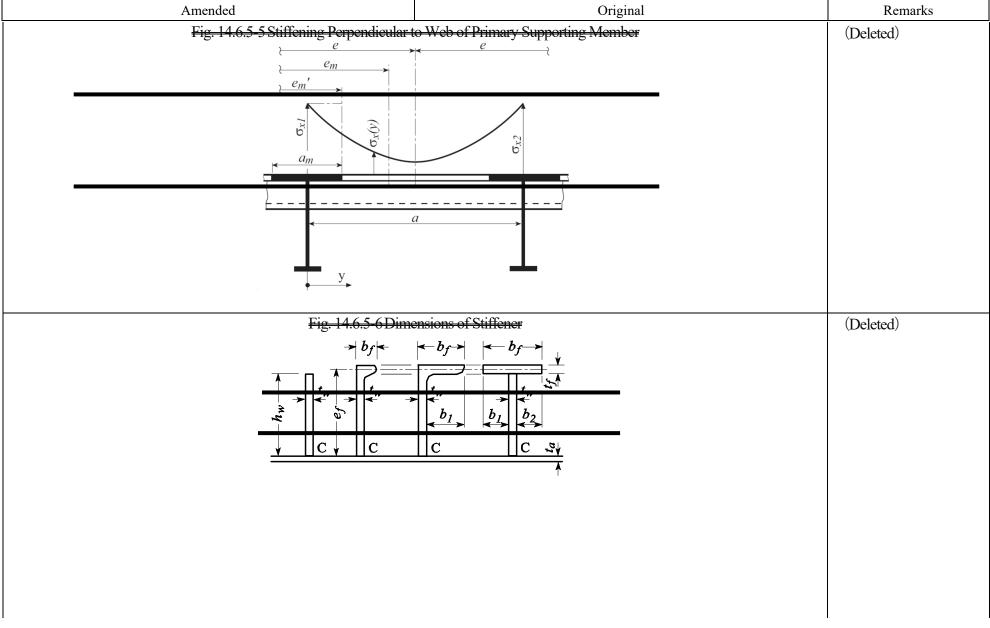
Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	$\frac{\sigma_x}{\kappa_T \sigma_F} C_{sf} \le 1.0$	
	κ_T : Coefficient taken as equal to:	
	$\frac{\kappa_T = 1.0 \text{for } \lambda_T \le 0.2}{1}$	
	$\kappa_T = \frac{1}{1}$ for $\lambda_T > 0.2$	
	$\frac{\kappa_T = 1.0 \text{for } \lambda_T \le 0.2}{\kappa_T = \frac{1}{\phi + \sqrt{\phi^2 - {\lambda_T}^2}}} \text{for } \lambda_T > 0.2$	
	$\phi = 0.5(1 + 0.21(\lambda_T - 0.2) + {\lambda_T}^2)$	
	λ_T : Reference degree of slenderness taken as	
	equal to:	
	$\lambda_{T} = \frac{\sigma_{F}}{\sigma_{F}}$	
	$\lambda_T = \sqrt{\frac{\sigma_F}{\sigma_{KiT}}}$ $\sigma_{KiT} = \frac{E}{I_P} \left(\frac{\pi^2 I_\omega 10^2}{a^2} \varepsilon + 0.385 I_T\right) (N/mm^2)$	
	$= \frac{E\left(\pi^2 I_{\omega} 10^2 + 0.205 I\right)}{E\left(M/m^2\right)}$	
	$\frac{\partial_{KiT} = \overline{I_P} \left(\frac{a^2}{a^2} \varepsilon + 0.385I_T \right) (N/MM^2)}{2}$	
	I_p : Net polar moment of inertia of the stiffener (cm^4)	
	defined in Table 14.6.5-6, and related to point C	
	as shown in Fig. 14.6.5-6	
	I_T : Net St. Venant's moment of inertia of the stiffener (cm^4) defined in Table 14.6.5-6	
	I_{ω} : Net sectorial moment of inertia of the stiffener	
	(cm^6) defined in Table 14.6.5-6 related to point C	
	as shown in Fig. 14.6.5-6	
	ε : Degree of fixation taken as equal to:	
	a^4	
	$\varepsilon = 1 + 10^{-3} \sqrt{\frac{a^4}{\frac{3}{4}\pi^4 I_w \left(\frac{b}{t^3} + \frac{4h_w}{3t_w^3}\right)}}$	
	$\sqrt{\frac{4^{4^{-1}}}{(t^{3}+3t_{w}^{3})}}$	
	A_w : Net web area (mm ²) equal to:	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

	Amended	Original	Remarks
		$\begin{array}{l} \underline{A_w = h_w t_w} \\ \underline{A_f : \text{Net flange area } (mm^2) \text{ equal to:}} \\ \underline{A_f = b_f t_f} \\ \underline{e_f = b_r t_f} \\ \underline{e_f = h_w + \frac{t_f}{2} \ (mm)} \\ \hline \underline{h_w, t_w, b_f, t_f : \text{Dimensions of stiffener } (mm) \text{ as specified in Fig. 14.6.5-6} \\ \hline \text{ii) For transverse secondary stiffeners loaded by compressive stress which are not supported by longitudinal stiffeners, sufficient torsional buckling strength is to be performed analogously in accordance with i) above.} \end{array}$	
	Fig. 14.6.5-3 General A Single field	Arrangement of Panels Partial field	(Deleted)
-	a_m		
	Longitudinal : stiffener Transverse : stiffener	in the direction of the length a in the direction of the breath b	


Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)


	Amended	•	•		Original	Remarks
		Tak	ole 14.6.5-3 (Correction Factor F ₁		(Deleted)
	Boundary condition	<u>F</u>	idge stiffener			
	Stiffeners sniped at both ends	1.00				
	Guidance value ⁽⁴⁾ where both-		lat bars			
	ends are effectively connected	1.10 B	Bulb sections			
	to adjacent structures-		angles and T sections			
			J type sections⁽³⁾ and g	jirders of high rigidity		
	(1) Exact values may	-be determined by	-direct calculations			
	(2) An average value	$- of F_{\pm}$ is to be use	ed for plate panels havir	ng different edge stiffeners		
	(3) A higher value m	1ay be taken if it is	verified by a buckling	strength check of the partial plate		
	field using non-lin	tear FEA and deer	ned appropriate by the §	Society. However, such values are		
	not to be greater th	han 2.0				
		Table	14.6.5-4 Coeff	icient e ₁ ,e ₂ ,e ₃ and B		(Deleted)
	Ī	Exponents e _{1,} e ₂ ,		Plate panel		()
		and B	5	1 1		
	Γ		8	$\frac{1+\kappa_x^4}{\kappa_x}$		
	-		€ _₹	$\frac{1+\kappa_y^4}{2}$		
	-		 ६	$\frac{1+\kappa_{x}\kappa_{y}\kappa_{z}^{2}}{2}$		
	-		B			
		For σ_x and σ_y		$\left(\frac{\kappa_{\pm}\kappa_{\pm}}{\kappa_{\pm}}\right)^{\frac{5}{2}}$		
	((compressive stres)]	
			B			
	4	For σ_x or σ_y n	regative	ŧ		
	· · · · · · · · · · · · · · · · · · ·	(tension stress)				
ļ						I

	Amended			(Original	0	Remarks
Ŧ	Table 14.6.5-5 Buckling and Reduction Factors for Plane Elementary Plate Panels						(Deleted)
Load case	Edge stress - Ratio ψ	$\frac{Aspect m tio}{\alpha = \frac{4}{B}}$	Buckling f	actor K	Reduction factor - 16		
4	1≥ψ≥0		<u>₭ - ^{8.}</u> ₩+		$ \frac{\kappa_{\#} = 1 \text{for } \lambda \leq \lambda_{\#}}{\kappa_{\#} = c \left(\frac{4}{2} - \frac{0.22}{2}\right) \text{for } \lambda > \lambda_{\#}} $		
$ \begin{array}{c} \sigma_x & \sigma_x \\ \hline t & \hline \\ \psi \cdot \sigma_x \\ \hline \\ \phi \cdot \sigma_x \end{array} $	$0 > \psi > -1$	<u>α ≥ 1</u>	<u>K - 7.63</u>	$-\psi(6.26-10\psi)$	$\frac{c}{c} = (1.25 - 0.12\psi) \le 1.25$		
	<u>₩≤</u> 1		K — 5.97	' 5(1 ψ)²	$\lambda_e = \frac{1}{2} \left(\frac{1}{\sqrt{1 + \frac{1}{1 + \frac{1}{\sqrt{1 + \frac{1}{1 + \frac{1}{\sqrt{1 + \frac{1}{\sqrt{1 + \frac{1}{\sqrt{1 + \frac{1}{\sqrt{1 + \frac{1}{\sqrt{1 + \frac{1}{\sqrt{1 + \frac{1}{1 + \frac{1}{\sqrt{1 + \frac{1}{\sqrt{1 + \frac{1}}}}}}} } } } } } } } } } } } } } } } $		
$\sigma_y $ $\psi \cdot \sigma_y $	$\frac{1 \ge \psi \ge 0}{2}$	<u>α≥1</u>	$\frac{K}{K} = F_{\pm} \left(\frac{1}{2} \right)$	$\left(\frac{1+\frac{1}{2}}{\alpha^2}\right)^2 \frac{2.1}{(\psi+1.1)}$	$\kappa_{y} = c \left(\frac{1}{\lambda} - \frac{R + F^{2}(H - R)}{\lambda^{2}}\right)$ $c = (1.25 - 0.12\psi) \le 1.25$ $D = \lambda \left(1 - \frac{\lambda}{2}\right) = 0.12\psi + \lambda$		
$\sigma_{y} \qquad \qquad$		<u>1≤α≤15</u>	$\frac{K - F_{\pm} \left[\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$ \frac{\left(1+\frac{1}{\alpha^{2}}\right)^{2} \frac{2.1(1+\psi)}{1.1}}{\frac{\psi}{\alpha^{2}}(13.9-10\psi)} $	$\frac{R = \lambda \left(1 - \frac{1}{e}\right) \text{for } \lambda < \lambda_{e}}{R = 0.22 \text{for } \lambda \ge \lambda_{e}}$ $\frac{\lambda_{e}}{2} = \frac{\epsilon}{2} \left(1 + \sqrt{1 - \frac{0.88}{e}}\right)$		
	$0 > \psi > -1$	α > 1.5	$\frac{W}{W} = F_{\pm} \left[\left(\frac{W}{W} \right) - \frac{W}{W^{2}} \left(\frac{5.6}{W} \right) \right]$	$\frac{\left(1+\frac{1}{\alpha^{2}}\right)^{2}\frac{2.1(1+\psi)}{1.1}}{\frac{1.1}{37+1.87\alpha^{2}}}$	$\frac{F}{F} = \left(\frac{1}{1 - \frac{0.91}{0.91} - 1}\right)c_{\pm} \ge 0$ $\frac{\lambda_{p}^{2}}{\lambda_{p}^{2}} = \lambda^{2} - 0.5 \text{ for } 1 \le \lambda_{p}^{2} \le 3$ $c_{\pm} = \left(1 - \frac{F_{\pm}}{\alpha}\right) \ge 0$ $H = \lambda_{-} - \frac{2\lambda}{\alpha} > R$		
	<u>ψ≤−1</u>	$\frac{1 \le \alpha \le \frac{3(1-\psi)}{4}}{4}$	<u>K - 5.97</u>	$5F_{\pm}\left(\frac{1-\psi}{\varkappa}\right)^{2}$	$\frac{H = \lambda - \frac{1}{c(T + \sqrt{T^2 - 4})}}{\frac{T = \lambda + \frac{14}{15\lambda} + \frac{1}{2}}}$		

Amen				Original	C	Remarks
	$\frac{\alpha}{\alpha} > \frac{3(1-\psi)}{4}$	$\frac{K - F_1}{+0.5375}$	$\frac{3.9675\left(\frac{1-\psi}{\varphi}\right)^2}{\left(\frac{1-\psi}{\varphi}\right)^4+1.87}$			
$\begin{array}{c} 3 \\ \sigma_x & \sigma_x \\ \hline \\ \psi \cdot \sigma_x \\ \hline \\ \psi \cdot \sigma_x \\ \hline \\ \phi \cdot \phi \\ \hline \\ \phi \hline \hline \hline \hline$		$\frac{K}{K} = 4\left(0\right)$	$\frac{425 + \frac{1}{\alpha^2}}{3\psi + 1}$ $\frac{425 + \frac{1}{\alpha^2}}{(1 + \psi)}$ $\frac{425 + \frac{1}{\alpha^2}}{(1 - 3.42\psi)}$	$ \frac{\kappa_{\pi} - 1}{\kappa_{\pi} - 1} \text{for } \lambda \leq 0.7 $ $ \frac{4}{\kappa_{\pi} - 1} \text{for } \lambda > 0.7 $		
$ \begin{array}{c} 4 \\ \psi \cdot \sigma_{x} & \psi \cdot \sigma_{x} \\ \hline $	$\psi \ge -1$ $\alpha > 0$	K - (0.4	25 + <mark>∉</mark>≊) 2 +	**		
=	$\frac{\alpha \ge 1}{0 < \alpha < 1}$	$\frac{K = K_{\#}}{K_{\#} - (5.)}$ $\frac{K_{\#} - (4.)}{K_{\#} - (4.)}$	$\frac{\overline{3}}{34 + \frac{4}{\alpha^2}}$ $+ \frac{5 \cdot 34}{\alpha^2}$	$ \frac{\kappa_{\pm} = 1 \text{ for } \lambda \leq 0.84}{\kappa_{\pm} = \frac{0.84}{\lambda} \text{ for } \lambda > 0.84} $		
Boundary condition		e edge free e edge simple sup	oort			

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \hline \begin{tabular}{ c c c c c c c } \hline \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Amende	d		Original		Remarks
$\frac{1}{2 + 164} = \frac{1}{2 + 164$		Table 14.6.5-(- Moments of Inertia		_	(Deleted)
$\frac{1}{2 - 404} = \frac{1}{2 - 40}$	Section	I	$\frac{1}{1+1}$	I		
to be performed in compliance with Annex 14.6 "Buckling Strength UR \$213.6 Assessment of Ship Structural Elements" for the conditions uR \$213.6 specified in 14.6.5.6. For symbols not defined in 14.6.5.6, refer to Annex 14.6. 2 Slenderness requirements are as follows: Image: Construction of the second and the second the second the second and the second and the second	Flat bar	$\frac{h_{\rm W}^2 t_{\rm W}}{2 - 10^4}$		$\frac{h_{\#}^{2}t_{\#}^{2}}{36-10^{6}}$		
to be performed in compliance with Annex 14.6 "Buckling Strength UR \$213.6 Assessment of Ship Structural Elements" for the conditions uR \$213.6 specified in 14.6.5.6. For symbols not defined in 14.6.5.6, refer to Annex 14.6. 2 Slenderness requirements are as follows: Image: Construction of the second and the second the second the second and the second and the second	Bulb, angle or T sections	$\frac{\left(\frac{A_{w}h_{w}^{2}}{2}+A_{f}e_{f}^{2}\right)10^{-4}}{2}$	$\frac{\frac{h_{w}t_{w}^{2}}{2-10^{4}}\left(1-0.63\frac{t_{w}}{h_{w}}\right)}{\frac{b_{F}t_{F}^{2}}{2-10^{4}}\left(1-0.63\frac{t_{F}}{b_{F}}\right)}$	For bulb and angle sections: $\frac{A_{f}e_{f}^{2}b_{f}^{2}}{12\cdot10^{6}} \left(\frac{A_{f}+2\cdot6A_{w}}{A_{f}+A_{w}}\right)$ For T sections $\frac{b_{f}^{2}}{12\cdot10^{6}}$		
to be performed in compliance with Annex 14.6 "Buckling Strength UR \$213.6 Assessment of Ship Structural Elements" for the conditions uR \$213.6 specified in 14.6.5.6. For symbols not defined in 14.6.5.6, refer to Annex 14.6. 2 Slenderness requirements are as follows: Image: Construction of the second and the second the second the second and the second and the second	1 Buckling assessments for hate	ch cover structural members :	are (Newly added)			(Newly added)
 specified in 14.6.5.6. For symbols not defined in 14.6.5.6, refer to <u>Annex 14.6.</u> 2 Slenderness requirements are as follows: (1) The slenderness requirements are to be in accordance with <u>An2, Annex 14.6.</u> (2) Slenderness requirements need not be applied to the lower boundary of double skin hatch covers unless the cargo hold is designed for carriage of ballast or liquid cargo. (3) The breadth of the primary supporting member flange is to be not less than 40% of their depth for laterally unsupported spans greater than 3.0 m. However, tripping brackets attached to the flange may be considered as a lateral support for primary supporting members. 	-		•			•
 <u>Annex 14.6.</u> <u>2</u> Slenderness requirements are as follows: (1) The slenderness requirements are to be in accordance with <u>An2, Annex 14.6.</u> (2) Slenderness requirements need not be applied to the lower boundary of double skin hatch covers unless the cargo hold is designed for carriage of ballast or liquid cargo. (3) The breadth of the primary supporting member flange is to be not less than 40% of their depth for laterally unsupported spans greater than 3.0 m. However, tripping brackets attached to the flange may be considered as a lateral support for primary supporting members. 						
 2 Slenderness requirements are as follows: (1) The slenderness requirements are to be in accordance with <u>An2, Annex 14.6.</u> (2) Slenderness requirements need not be applied to the lower boundary of double skin hatch covers unless the cargo hold is designed for carriage of ballast or liquid cargo. (3) The breadth of the primary supporting member flange is to be not less than 40% of their depth for laterally unsupported spans greater than 3.0 <i>m</i>. However, tripping brackets attached to the flange may be considered as a lateral support for primary supporting members. 	specified in 14.6.5.6. For symbols n	ot defined in 14.6.5.6, refer	to			
 (1) The slenderness requirements are to be in accordance with <u>An2, Annex 14.6.</u> (2) Slenderness requirements need not be applied to the lower boundary of double skin hatch covers unless the cargo hold is designed for carriage of ballast or liquid cargo. (3) The breadth of the primary supporting member flange is to be not less than 40% of their depth for laterally unsupported spans greater than 3.0 <i>m</i>. However, tripping brackets attached to the flange may be considered as a lateral support for primary supporting members. 	<u>Annex 14.6.</u>					
 <u>An2, Annex 14.6.</u> (2) Slenderness requirements need not be applied to the lower boundary of double skin hatch covers unless the cargo hold is designed for carriage of ballast or liquid cargo. (3) The breadth of the primary supporting member flange is to be not less than 40% of their depth for laterally unsupported spans greater than 3.0 m. However, tripping brackets attached to the flange may be considered as a lateral support for primary supporting members. 	2 Slenderness requirements are	as follows:				
 (2) Slenderness requirements need not be applied to the lower boundary of double skin hatch covers unless the cargo hold is designed for carriage of ballast or liquid cargo. (3) The breadth of the primary supporting member flange is to be not less than 40% of their depth for laterally unsupported spans greater than 3.0 m. However, tripping brackets attached to the flange may be considered as a lateral support for primary supporting members. 	(1) The slenderness requiremen	ts are to be in accordance w	<u>rith</u>			
boundary of double skin hatch covers unless the cargo hold is designed for carriage of ballast or liquid cargo. (3) The breadth of the primary supporting member flange is to be not less than 40% of their depth for laterally unsupported spans greater than 3.0 m. However, tripping brackets attached to the flange may be considered as a lateral support for primary supporting members.	<u>An2, Annex 14.6.</u>					
 is designed for carriage of ballast or liquid cargo. (3) The breadth of the primary supporting member flange is to be not less than 40% of their depth for laterally unsupported spans greater than 3.0 m. However, tripping brackets attached to the flange may be considered as a lateral support for primary supporting members. 	(2) Slenderness requirements ne	eed not be applied to the lov	ver			
(3) The breadth of the primary supporting member flange is to be not less than 40% of their depth for laterally unsupported spans greater than 3.0 m. However, tripping brackets attached to the flange may be considered as a lateral support for primary supporting members.	boundary of double skin hat	ch covers unless the cargo he	<u>old</u>			
be not less than 40% of their depth for laterally unsupported spans greater than 3.0 m. However, tripping brackets attached to the flange may be considered as a lateral support for primary supporting members.						
spans greater than 3.0 <i>m</i> . However, tripping brackets attached to the flange may be considered as a lateral support for primary supporting members.	· · ·	•••••				
attached to the flange may be considered as a lateral support for primary supporting members.						
for primary supporting members.						
	U U		ort			
3 Buckling assessments are to be performed for the following						
	3 Buckling assessments are to	be performed for the following	ing			

Amended	Original	Remarks
structural elements of hatch cover structures subjected to compressive		
stresses, shear stresses and lateral pressures:		
· Stiffened and unstiffened panels, including curved		
panels and panels stiffened with U-type stiffeners.		
Web panels of primary supporting members in way of		
openings.		
Procedures and detailed requirements for buckling assessment are		
given in An4, Annex 14.6, including idealisation of irregular plate		
panels, definitions of reference stresses and buckling criteria.		
4 Panel types and assessment methods are to be accordance		
with the following requirements:		
(1) Plate panels of hatch cover structures are to be modelled as		
stiffened panels (SP) or unstiffened panels (UP) as defined		
in An 4.2, Annex 14.6. In addition, Method A (-A) and		
Method B (-B) as defined in An1.3, Annex 14.6 are to be		
used in accordance with Table 14.6.5-2, Fig. 14.6.5-3 and		
Fig. 14.6.5-4, while the procedures for openings are to be		
used for buckling assessments of web panels with openings.		
(2) Hatch covers fitted with U-type stiffeners are also to be in		
accordance with the additional buckling assessment		
requirements specific for panels with U-type stiffeners in		
An5.2.5, Annex 14.6.		
5 Buckling assessments of hatch covers are based on lateral		
pressure as defined in 4.10.2.1 and 4.10.2.2, and stresses obtained from EE analyzes (See 146.5.5)		
from FE analyses (See 14.6.5.5).		
<u>6</u> The safety factor for hatch cover structural members is to be taken as $S=1.0$ for the plating and stiffener buckling capacity formulae		
defined in An5.2.2 and An5.2.3, Annex 14.6, respectively.		
7 The buckling strength of structural members is to be in		
accordance with the following formula:		
accordance with the following formula.		

Amended-Original Requirements Compariso	n Table (Hatch Covers, Hatch (Coamings and Closing Arrangements)

Amended	•		Original	Remarks
$\eta_{act} \leq \eta_{all}$				
Where:				
η_{act} : Buckling utilisation factor	r based on applied stress	<u>, as</u>		
defined in An1.3.2.2 an	d An4, Annex 14.6,	and		
calculated per An5, Anne				
η_{act} : Allowable buckling uti	lisation factor, as giver	in		
<u>Table 14.6.5-3</u>				

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	•	Original	Remarks
<u>Table 14.6.5</u>	2 Structural Mem	bers and Assessment Methods	(Newly added)
Structural elements	Assessment method ⁽¹⁾⁽²⁾	Normal panel definition	UR S21 3.6.3.2 Tab.5
Hatch cover top/bottom plating structures, see F	ïg. 14.6.5-3		
Hatch cover top/bottom plating	<u>SP-A</u>	Length: between transverse girders Width: between longitudinal girders	
Irregularly stiffened panels	<u>UP-B</u>	Plate between local stiffeners/PSM	
Hatch cover web panels of primary supporting	members, see Fig. 14.6.5-	4	
Web of transverse/longitudinal girder (single skin type)	<u>UP-B</u>	Plate between local stiffeners/face plate/PSM	
Web of transverse/longitudinal girder (double skin type)	<u>SP-B⁽³⁾</u>	Length: between PSM Width: full web depth	
Web panel with opening	Procedure for opening	Plate between local stiffeners/face plate/PSM	
Irregularly stiffened panels	<u>UP-B</u>	Plate between local stiffeners/face plate/PSM	
Note 1: SP and UP stand for stiffened and un Note 2: A and B stand for Method A and Method A Note 3: In case that the buckling carlings/br used. Note A	ethod B respectively.	y. nged in the web of transverse/longitudinal girder, UP-B method may be	

Amended	Original	Remarks
Fig. 14.6.5-3 Hatch Cover To	Dp/Bottom Plating Structures	(Newly added) UR S21 3.6.3.2 Tab.6

	Amended	Original	Remarks
		of Primary Supporting Members	(Newly added) UR S21 3.6.3.2 Tab.7
Structural component	Table 14.6.5-3 Allowable Subject to	Buckling Utilisation Factors n _{all} , Allowable buckling utilisation factor	(Newly added) UR S21 3.6.3.2 Tab.6
Plates and stiffeners	External pressure, as defined in 4.10.2.1	0.80	
Web of PSM	Other loads, as defined in 4.10.2.2 to 4.10.2.5	0.90 for static+dynamic load case 0.72 for static load case	

Amended	Original	Remarks
(Deleted)		(Deleted)
	14.6.5.7 Finite Element Method	
	Where scantlings of structural members of steel hatch covers	
	are determined based upon finite element method, the following	
	requirements are to be applied. Those not specified in 14.6.5.7 are	
	to comply with the requirements in Chapter 8.	
	(1) Loads	
	The design wave loads imposed on steel hatch covers are to	
	be P_V specified in 4.10.	
	(2) Modelling of structures	
	(a) The structural model is to be able to reproduce the	
	behaviour of the structure with the highest possible	
	fidelity. Stiffeners and primary supporting members	
	subject to pressure loads are to be included in the	
	modelling. However, buckling stiffeners may be	
	disregarded for stress calculation.	
	(b) Net scantlings which do not include corrosion	
	additions are to be used for modelling.	
	(c) In no case is element width to be larger than stiffener	
	spacing. The ratio of element length to width is not to	
	exceed 4. The element height of the webs of primary	
	supporting members is not to exceed one-third of the	
	web height.	
	(d) The structural model is to be supported by pads. If the	
	arrangement of pads differs from the arrangement of	
	stiffeners, the edge elements of steel hatch covers are	
	also to be modelled.	
	(3) Permissible value	
	When the loads specified in (1) act on the structural model	
	specified in (2), the net scantlings are to be determined so	

Amended	Original	Remarks
	that the stress and deflection generated in each structural member satisfy the allowable values specified in 14.6.5.1.(4)Miscellaneous(a)The thickness of the top plating of steel hatch covers is to comply with the requirements in 14.6.5.2.(b)The scantlings of the secondary stiffeners of steel hatch covers are to comply with the requirements in 14.6.5.3.(c)The buckling strength for the structural members forming steel hatch covers is to comply with the requirements in 14.6.5.6.	
(Deleted)	14.6.6 Additional Requirements for Steel Hatch Covers Carrying Cargoes 1 Where concentrated loads, e.g. container loads, are acting on steel hatch covers, finite element method is to be required in accordance with the requirements in (1) to (3) below. Those not specified in 14.6.6.1 are to comply with the requirements in Chapter 8. (1) Loads (a) The loads acting on steel hatch covers are to be according to 4.10 based on the type of load and loading condition. Except as deemed necessary by the Society, no loads are to be assumed to act jointly. (b) No dynamic loads due to ship motion are to be assumed as the wheel loads from wheeled vehicles only used for loading/unloading while in port. (2) Modelling of Structures	(Deleted)

Amended	Original	Remarks
	(a) The structural model is to be able to reproduce the	
	behavior of the structure with the highest possible	
	fidelity. Stiffeners and primary supporting members	
	subject to pressure loads are to be included in the	
	modelling. However, buckling stiffeners may be	
	disregarded for stress calculation.	
	(b) Net scantlings which do not include corrosion	
	additions are to be used for modelling.	
	(c) In no case is element width to be larger than stiffener	
	spacing. The ratio of element length to width is not to	
	exceed 4. The element height of the webs of primary	
	supporting members is not to exceed one-third of the	
	web height.	
	(d) The structural model is to be supported by pads. If the	
	arrangement of pads differs from the arrangement of	
	stiffeners, the edge elements of steel hatch covers are	
	$\frac{\text{also to be modelled.}}{1}$	
	(3) Permissible values	
	When the loads specified in (1) act on the structural model	
	specified in (2), the net scantlings are to be determined so	
	that the stress and deflection generated in each structural	
	 <u>member satisfy the allowable values specified in 14.6.5.1.</u> The details for steel hatch covers carrying cargoes are to 	
	comply with the following (1) to (4):	
	(1) To prevent damage to hatch covers and the ship structure,	
	the location of stoppers is to be compatible with the relative	
	movements between hatch covers and the ship structure.	
	(2) Hatchway covers and supporting structures are to be	
	adequately stiffened to accommodate the load from hatch	
	covers.	
	57/207	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	 (3) At the cross-joints of multi-panel covers, vertical guides (male/female) are to be fitted to prevent excessive relative vertical deflections between loaded/unloaded panels. (4) The construction and scantlings of hatchways on exposed parts or on the lower deck are to comply with the following requirements in addition to those of 14.6. (a) The loading arrangement is to be clearly shown in drawings submitted for approval. In the case of freight containers, the type and location are to be additionally described. (b) Girders or stiffeners are to be provided for reinforcement beneath the corner fittings of freight 	
	<u>containers.</u> (c) The top plates of hatch covers, upon which wheeled vehicles are loaded, may be determined by finite	
	<u>element method or in accordance with 10.1, Part 2-6.</u> <u>3</u> The scantlings of sub structures subject to concentrated loads acting on steel hatch covers are to be determined taking into consideration the design cargo loads and permissible stresses	
	<u>specified in this section.</u> <u>4</u> The scantlings of top plates and stiffeners of steel hatch covers subject to wheel loads are determined by direct calculation or any other method which deemed appropriate by the Society.	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
14.6.7 Portable Beams, Hatchway Covers, Steel Pontoon Covers and Steel Weathertight Covers	14.6.7 Portable Beams, Hatchway Covers, Steel Pontoon Covers and Steel Weathertight Covers	
14.6.7.1 Portable beams	14.6.7.1 Portable beams	
(Omitted)	(Omitted)	
8 Scantling of hatch beam with variable cross-sections is to be	(Newly added)	(Newly added)
not less than that obtained from the following formulae.		
The net section modulus (cm^3) of hatch beams at the mid-point		
$\underline{Z_{net}} = \underline{Z_{net}}_{cs}$		
$\underline{Z_{net}} = k_1 \underline{Z_{net_{cs}}}$		
<u>The net moment of inertia (cm^4) of hatch beams at the mid-point</u>		
$I_{net} = I_{net_{cs}}$		
$I_{net} = k_2 I_{net_{cs}}$		
$Z_{net_{cs}}$: Net section modulus (cm ³) complying with		
requirement 14.6.5.4-1		
$I_{net_{cs}}$: Net moment of inertia (cm^4) complying with		
requirement 14.6.5.4-1		
S: Spacing (m) of portable beams		
ℓ : Unsupported span (m) of portable beams		
<u>b</u> : Width (m) of steel hatch covers		
$\underline{k_1}$ and $\underline{k_2}$: Coefficients obtained from the formulae		
given in Table 14.6.5-4		

Amended	Original	Remarks
	Coefficient k_1 and k_2 $\frac{k_1 \text{ is not to be taken as less than 1.0}}{\alpha = \frac{\ell_1}{\ell}, \ \beta = \frac{I_1}{I_0}, \ \gamma = \frac{Z_1}{Z_0}}$	Remarks (Newly added)

Amended	Original	Remarks
+ $\overline{100}$ (mm) \underline{s} : Stiffener spacing (mm) $P_{\underline{A}}$: As specified in 4.10.2.2-1 $\underline{\sigma_{Y}}$: Minimum yield stress (N/mm ²) of the material (2) For Type 2 ships $t_{coam,net} = 0.016s \sqrt{\frac{P_{coam}}{0.95\sigma_{Y}}}$ (mm), <u>but not to be less than 9.5 (mm)</u> $\underline{P_{coam}}$: As specified in 4.10.2.2-2 <u>s and σ_{Y}: As specified in (1) above</u>	14.6.9 Hatch Coaming Strength Criteria 14.6.9.2 Scantlings of hatch coamings 1 The local net plate thickness of the hatch coaming plating $t_{coam,net}$ is not to be less than that obtained from following formula: $t_{coam,net}$ = $14.2S \sqrt{\frac{P_H}{\sigma_{a,coam}}}$ (mm), but not to be less than 6 + $\frac{L_{C300}}{100}$ (mm) $\frac{S}{100}$ (mm) $\frac{S}{100}$: Stiffener spacing (m) $P_{\underline{H}}$: As specified in 4.10.2.2 $\frac{\sigma_{a,coam}}{\sigma_{E}} = 0.95\sigma_{E}$ σ_{E} : Minimum upper yield stress (N/mm ²) or proof stress (N/mm ²) of the material	UR S21 5.1
2 <u>For Type 1 ships</u> , where the hatch coaming stiffener is snipped at both ends, the gross thickness $t_{coam,gross}$ (<i>mm</i>) of the coaming plate at the sniped stiffener end is not to be less than that obtained from the following formula:	2 Where the hatch coaming secondary stiffener is snipped at both ends, the gross thickness $t_{coam,gross}$ (<i>mm</i>) of the coaming plate at the sniped stiffener end is not to be less than that obtained from the following formula:	UR S21 5.1

Amended-Original Requirements Con	nparison Table (Hatch Cove	rs, Hatch Coamings a	and Closing Arrangements)

Amended	Original	Remarks
$\frac{t_{coam,gross} = 19.6 \sqrt{\frac{P_A s(\ell - 0.0005s)}{1000\sigma_Y}} (mm)}{\theta_{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$	$t_{coam,gross} = 19.6 \sqrt{\frac{P_H S(\ell - 0.5S)}{\sigma_F}} (mm)$	
$\ell : \text{ stiffener span}(m) \text{ to be taken as the spacing of coaming} \\ \text{stays} \\ \underline{s}, P_{\underline{A}} \text{ and } \underline{\sigma_Y} : \text{ As specified in -1 above} $	 <i>ℓ</i> : secondary stiffener span (<i>m</i>) to be taken as the spacing of coaming stays <u>S</u>, P_H and <u>σ_F</u> : As specified in -1 above 	
3 The net section modulus Z_{net} (cm ³) and net shear area A_{net} (cm ²) of hatch coaming stiffeners are not to be less than that obtained from the following formula. (1) For Type 1 ships $Z_{net} = \frac{P_A s l^2}{f_{bc} \sigma_Y}$ (cm ³) $A_{net} = \frac{P_A s \ell}{\sigma_Y} 10^{-2}$ (cm ²) \underline{s}, ℓ, P_A and $\underline{\sigma_Y}$: As specified in -2 above f_{bc} : Coefficient according to the type of end connection of stiffeners given by the following formula: $f_{bc} = 12$ with both ends constant = 8 for the end spans of stiffeners sniped at the coaming <u>corners</u> For sniped stiffeners of coaming at hatch corners shear area <u>obtained from the above formula has to be increased by 35%</u> . (2) For Type 2 ships $Z_{net} = 1.21 \frac{P_{coam} s l^2}{f_{bc} c_p \sigma_Y}$ (cm ³) $\overline{f_{bc}}$: Coefficient according to the type of end connection of stiffeners given by the following formula: $f_{bc} = 16$ with both ends constant	3 The net section modulus Z_{net} (cm ³) and net shear area A_{net} (cm ²) of hatch coaming <u>secondary</u> stiffeners are not to be less than that obtained from the following formula. For snipped stiffeners at coaming corners, section modulus and shear area at the fixed support are to be increased by 35%. $\frac{Z_{net} = \frac{83 S \ell^2 P_H}{\sigma_F}}{\frac{A_{net}}{\sigma_F}} = \frac{10 S \ell P_H}{\sigma_F}}{\frac{S}{\sigma_F}}$	UR S21 5.2

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
$\frac{= 12 \text{ for the end spans of stiffeners sniped at the coaming}}{comers}$ $\frac{c_p}{c_p} = \text{Ratio of the plastic section modulus to the elastic}}{\text{section modulus of the stiffeners with an attached plate}}{\text{breadth (mm) equal to } 40t_{coam,net}, \text{ where } t_{coam,net}}$ $\frac{is \text{ the plate net thickness}}{= 1.16 \text{ in the absence of more precise evaluation}}{s, \ell, and \sigma_Y} : \text{As specified in -2 above}}$		
(Omitted) 5 The net scantlings of hatch coaming stays are to be in accordance with following (1) to (3) <u>and coaming stays are to be</u> <u>designed for the loads transmitted through them and permissible</u> <u>stresses according to 14.6.5.1.</u> (1) For hatch coaming stays considered to be simple beams (<i>See</i> Examples 1 and 2 of Fig. 14.6.9-1), the net section modulus Z_{net} (cm^3) of such stays at their deck connections and the net scantling $t_{w,net}$ (mm) of their webs are not to be less than that obtained from following formulae: $Z_{net} = \frac{H_c^2 s_c P}{1.9\sigma_Y}$ (cm^3) $\overline{t_{w,net}} = \frac{2H_c s_c P}{\sigma_Y h}$ (mm) H_c : Hatch coaming stay height (m) h : Hatch coaming stay depth ($m\underline{m}$) $\underline{s_c}$: Hatch coaming stay spacing ($m\underline{m}$) $\overline{\sigma_Y}$: As specified in -1 above	(Omitted) 5 The net scantlings of hatch coaming stays are to be in accordance with following (1) to (3): (1) For hatch coaming stays considered to be simple beams (<i>See</i> Examples 1 and 2 of Fig. 14.6.9-1), the net section modulus Z_{net} (cm^3) of such stays at their deck connections and the net scantling $t_{w,net}$ (mm) of their webs are not to be less than that obtained from following formulae: $ \frac{Z_{net}}{Q_F} = \frac{526H_C{}^2SP_H}{\sigma_F h} $ $ \frac{I_{w,net}}{I_C} = \frac{2H_CSP_H}{\sigma_F h} $ $ \frac{I_C}{I_C} : \text{Hatch coaming stay height } (m) $ $ h : \text{Hatch coaming stay depth } (m) $ $ \frac{S}{I_C} : \text{Hatch coaming stay spacing } (m) $ $ \frac{\sigma_F}{I_C} and P_H : \text{As specified in -1 above} $	UR S21 5.3.1

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended		Original	Remarks
$\frac{P : \text{Pressure } (kN/m^2) \text{ on coaming taken as } P_A \text{ de}}{4.10.2.2-1 \text{ for Type 1 ships and as } P_{Coam}}$ $\frac{\text{in 4.10.2.2-2 for Type 2 ships.}}{10.2}$	lefined		
(2) For coaming stays other than those in (<u>1</u>) above Example 3 of Fig.14.6.9-1), stresses are generally determined through finite element method, a calculated stresses are to satisfy the permissible stresses of 14.6.5.1.	y to be (2) For ad the Exa criteria dete	coaming stays other than those in (a) above (<i>See</i> ample 3 of Fig.14.6.9-1), stresses are generally to be ermined through <u>grillage model analysis or</u> finite element hod, and the calculated stresses are to satisfy the	
(3) For calculating the net section modulus of coamin the area of their face plates is to be taken into accou when it is welded with full penetration welds to the plating and an adequate underdeck structure is for support the stresses transmitted by them.	g stays,perrnt only(3)e deckthetted towheplat	missible stress criteria of 14.6.5.1 . calculating the net section modulus of coaming stays, area of their face plates is to be taken into account only en it is welded with full penetration welds to the deck ing and an adequate underdeck structure is fitted to port the stresses transmitted by them.	
	Examples of c oaming	<u>sStays</u>	
Example1	Example2	Example3	

Amended-Original Requirements Comparison Table (H	Hatch Covers, Hatch Coamings and Closing Arrangements)
---	--

Amended	Original	Remarks
 14.6.9.3 Structure of the Hatch Coaming 1 Coamings are to be additionally supported by efficient brackets or stays provided from the horizontal stiffeners specified in 14.6.9.3 to the deck at intervals of approximately 3 <i>m</i>. 2 Coaming plates are to extend to the lower edge of the deck beams or hatch side girders are to be fitted that extend to the lower edge of the deck beams (<i>See</i> Fig. 14.6.9-2). Extended coaming plates and hatch side girders are to be flanged or fitted with face bars or half-round bars, except where specially approved by the Society. 3 The structure and scantlings of small hatch coamings may be given special consideration in regards to the requirements in 14.6.9.1 to 14.6.9.2 and -1 to -3 above. 4 Hatch coamings and hatch coaming stays are to comply with the following detail requirements: (Omitted.) 	 14.6.9.3 Structure of the Hatch Combing 1 The coamings for hatchways in Position I or coamings of 760 mm or more in height for hatchways in Position II are to be stiffened in a suitable position below the upper edge by a horizontal stiffener; the breadth of the horizontal stiffener is not to be less than 180 mm. 2 Coamings are to be additionally supported by efficient brackets or stays provided from the horizontal stiffeners specified in 14.6.9.3 to the deck at intervals of approximately 3 m. 3 Coaming plates are to extend to the lower edge of the deck beams or hatch side girders are to be fitted that extend to the lower edge of the deck beams (<i>See</i> Fig. 14.6.9-2). Extended coaming plates and hatch side girders are to be flanged or fitted with face bars or halfround bars, except where specially approved by the Society. 4 The structure and scantlings of small hatch coamings may be given special consideration in regards to the requirements in 14.6.9.1 to 14.6.9.2 and -1 to -3 above. 5 Hatch coamings and hatch coaming stays are to comply with the following detail requirements: (Omitted.) 	
14.6.10 Closing Arrangements	14.6.10 Closing Arrangements	UR S21 6.1.1
 14.6.10.1 Securing devices (Omitted) 2 The means for securing and maintaining weathertightness by using gaskets and securing devices are to comply with the following (1) to (6). The means for securing and maintaining weathertightness 	 14.6.10.1 Securing devices (Omitted) 2 The means for securing and maintaining weathertightness by using gaskets and securing devices are to comply with the following (1) to (6). The means for securing and maintaining weathertightness 	

	Amended	×	Original	Remarks
of wea	thertight covers are to be to the satisfaction of the Society.	of weathertight	t covers are to be to the satisfaction of the Society.	
Arrang	ements are to ensure that weathertightness can be maintained	Arrangements	are to ensure that weathertightness can be maintained	
in any s	sea condition.	in any sea cond		
(1)	The weight of covers and any cargo stowed thereon are to	(1) The v	weight of covers and any cargo stowed thereon are to	
	be transmitted to the ship structure.	be tra	ansmitted to the ship structure through steel to steel	
		conta		
(2)	Gaskets and compression flat bars or angles which are		ets and compression flat bars or angles which are	
	arranged between covers and the ship structure and cross-	-	ged between covers and the ship structure and cross-	
	joint elements are to be in compliance with the following (a)	•	elements are to be in compliance with the following (a)	
	to $(\underline{\mathbf{d}})$:	to (<u>c</u>):		
	(a) Compression bars or angles are to be well rounded		Compression bars or angles are to be well rounded	
	where in contact with the gaskets and are to be made of		where in contact with the gaskets and are to be made of	
	corrosion-resistant materials.	-	corrosion-resistant materials.	
	(b) The gaskets are to be of relatively soft elastic materials.	. ,	The gaskets are to be of relatively soft elastic materials.	
	The material is to be of a quality suitable for all		The material is to be of a quality suitable for all	
	environmental conditions likely to be experienced by		environmental conditions likely to be experienced by	
	the ship, and is to be compatible with the cargoes carried.		the ship, and is to be compatible with the cargoes carried.	
	(c) A continuous gasket is to be effectively secured to the	(c) A	A continuous gasket is to be effectively secured to the	
	cover. The material and form of gasket selected are to	C	cover. The material and form of gasket selected are to	
	be considered in conjunction with the type of cover, the	ł	be considered in conjunction with the type of cover, the	
	securing arrangement and the expected relative		securing arrangement and the expected relative	
	movement between the cover and ship structure.	r	movement between the cover and ship structure.	
	(d) The specification or grade of the packing material is to	(Ne	ewly added)	(Newly added)
	be indicated on the drawings.			

Amended	Original	Remarks
 (3) Securing devices attached to hatchway coamings, decks or covers are to be in compliance with the following (a) to (f): (a) Arrangement and spacing of securing devices are to be determined with due attention to the effectiveness for weathertightness, depending upon the type and the size of hatch cover as well as to the stiffness of the cover edges between the securing devices. (b) The mament of inartia (and) of the adapted provides attended to be the stiffness of the cover of the securing devices. 	 (3) Securing devices attached to hatchway coamings, decks or covers are to be in compliance with the following (a) to (e): (a) Arrangement and spacing of securing devices are to be determined with due attention to the effectiveness for weathertightness, depending upon the type and the size of hatch cover as well as to the stiffness of the cover edges between the securing devices. 	UR S21 6.1.4 (Newly added)
 (b) The moment of inertia (cm⁴) of the edge elements of hatch covers is not to be less than that obtained from the following formula: I = 6pa⁴ (cm⁴) a : Spacing (m) between securing devices, not to be taken less than 2 m p : Packing line pressure (N/mm), minimum 5 N/mm 	(Newly added)	(INEWIY added)
(c) The gross sectional area (cm^2) of each securing device is not to be less than that obtained from the following formula. However, rods or bolts are to have a net diameter not less than 19 <i>mm</i> for hatchways exceeding $5 m^2$ in area. $A = 0.28 \underline{a} p / f (cm^2)$	 (b) The gross sectional area (cm²) of each securing device is not to be less than that obtained from the following formula. However, rods or bolts are to have a net diameter not less than 19 mm for hatchways exceeding 5 m² in area. A = 0.28 ap/f (cm²) a : Half the distance (m) between two adjacent securing devices, measured along the hatch cover periphery (See Fig. 14.6.5-2) p : Packing line pressure (N/mm), if less than 5 N/mm, then 5 N/mm 	
f: As obtained from the following formula: $f = (\underline{\sigma_Y}/235)^e$	f: As obtained from the following formula: $f = (\sigma_F/235)^e$	
$\frac{\sigma_Y}{\sigma_Y}$: Minimum yield stress (<i>N/mm²</i>) of the steel used for fabrication, but not to be taken greater than 70% of the ultimate tensile	$ \underline{\sigma_F}: Minimum \underline{upper} \text{ yield stress } (N/mm^2) \text{ of} $ the steel used for fabrication, but not to be	

Amended	Original	Remarks
strength e : A coefficient determined according to the value of σ _Y , as follows 1.0 for σ _Y ≤ 235 N/mm² 0.75 for σ _Y > 235 N/mm² a and p : As specified in (b) above (d) Individual securing devices on each cover are to have approximately the same stiffness characteristics. (e) Where rod cleats are fitted, resilient washers or cushions are to be incorporated. (f) Where hydraulic cleating is adopted, a positive means is to be provided to ensure that it remains mechanically locked in the closed position in the event of failure of the hydraulic system. (4) A drainage arrangement equivalent to the standards specified in the following is to be provided. (a) Drainage is to be arranged inside the line of gaskets by means of a gutter bar or vertical extension of the hatch side and end coaming. If an application is made by the owner of a container carrier and the Society deems it to be appropriate, special consideration will be given to this requirement. (b) Drain openings are to be arranged at the ends of drain channels and are to be provided with effective means such as non-return valves or the equivalent for preventing the ingress of water from outside. It is unacceptable to connect fire hoses to the drain openings for this purpose.	 taken greater than 70% of the ultimate tensile strength e : A coefficient determined according to the value of <u>a_F</u>, as follows 1.0 for <u>a_F</u> ≤ 235 N/mm² 0.75 for <u>a_F</u> > 235 N/mm² (c) Individual securing devices on each cover are to have approximately the same stiffness characteristics. (d) Where rod cleats are fitted, resilient washers or cushions are to be incorporated. (e) Where hydraulic cleating is adopted, a positive means is to be provided to ensure that it remains mechanically locked in the closed position in the event of failure of the hydraulic system. (4) A drainage arrangement equivalent to the standards specified in the following is to be provided. (a) Drainage is to be arranged inside the line of gaskets by means of a gutter bar or vertical extension of the hatch side and end coaming. If an application is made by the owner of a container carrier and the Society deems it to be appropriate, special consideration will be given to this requirement. (b) Drain openings are to be arranged at the ends of drain channels and are to be provided with effective means such as non-return valves or the equivalent for preventing the ingress of water from outside. 	(4)(a),(b),(d): UR S21 5.4.5 (4)(c): Rec.No14 3.2.2

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

	Table (Hateh Covers, Hateh Coallings and Closing Al	
Amended	Original	Remarks
 (c) Cross-joints of multi-panel covers are to be arranged with a drainage channel for water from space above the gasket and a drainage channel below the gasket. (d) If a continuous outer steel contact between cover and ship structure is arranged, drainage from the space between the steel contact and the gasket is also to be provided for (e) Drain openings in hatch coamings are to be arranged with sufficient distance to areas of stress concentration (e.g. hatch corners, transitions to crane posts). 	 (c) Cross-joints of multi-panel covers are to be arranged with a drainage channel for water from space above the gasket and a drainage channel below the gasket. (d) If a continuous outer steel contact between cover and ship structure is arranged, drainage from the space between the steel contact and the gasket is also to be provided for (Newly added) 	(Newly added)
(Omitted)	(Omitted)	
(6) Securing devices of special design in which significant bending or shear stresses occur may be designed as anti-lifting devices according to 14.6.10.2 below. <u>The packing line pressure q is to be specified, and as load, q multiplied by the spacing between securing devices a (m) is to be applied.</u>	 (6) Securing devices of special design in which significant bending or shear stresses occur may be designed as anti- lifting devices according to 14.6.10.2 below. 	UR S21 6.1.4
14.6.10.2 Loading Cargo on Hatch Cover 1 The securing devices of hatch covers, on which cargo is to be lashed, are to be designed for a lifting force resulting from the loads. Unsymmetrical loading, which may occur in practice, is to be considered. Under such loading, the equivalent stress σ_E (<i>N/mm</i> ²) in securing devices is not to be greater than that obtained from the following formula. $\sigma_E = \frac{150}{k_l}$ k_l : As obtained from the following formula:	14.6.10.2 Loading Cargo on Hatch Cover 1 The securing devices of hatch covers, on which cargo is to be lashed, are to be designed for a lifting force resulting from the loads. Unsymmetrical loading, which may occur in practice, is to be considered. Under such loading, the equivalent stress σ_E (<i>N/mm</i> ²) in securing devices is not to be greater than that obtained from the following formula. (See Fig. 14.6.10-1). $\sigma_E = \frac{150}{k_l}$ k_l : As obtained from the following formula:	UR S21 6.1.5

Amended	Original	Remarks
$k_l = \left(\frac{235}{\underline{\sigma_Y}}\right)^e$	$k_l = \left(\frac{235}{\underline{\sigma_F}}\right)^e$	
σ_Y : Minimum yield stress (<i>N/mm²</i>) of the material	σ_F : Minimum upper yield stress (<i>N/mm²</i>) or proof	
\overline{e} : As given below:	stress (N/mm^2) of the material	
0.75 for $\sigma_Y > 235$	e: As given below:	
1.00 for $\overline{\sigma_Y} \le 235$	0.75 for $\sigma_F > 235$	
—	1.00 for $\underline{\sigma_F} \le 235$	
<u>Fig.14.6.10-1 Lifting</u>	Forces at a Hatch Cover	(Deleted)
		UR S21 6.1.5
		01(021 0.1.5
$ A_Z B_Z \downarrow \uparrow A_Z B_Z \downarrow \uparrow A_Z $	$B_{Z} \downarrow \uparrow A_{Z} B_{Z} \downarrow \uparrow A_{Z} B_{Z} \downarrow$	
$\begin{bmatrix} A_Z & B_Z \end{bmatrix} \begin{bmatrix} A_Z & B_Z \end{bmatrix} \begin{bmatrix} A_Z & B_Z \end{bmatrix}$	$B_Z \checkmark A_Z B_Z \checkmark A_Z B_Z \checkmark$	
	Ť	
Lifting Force		
		UR S21 6.2.1
14.6.11 Hatch Cover Supports, Stoppers and Supporting Structures	14.6.11 Hatch Cover Supports, Stoppers and Supporting Structures	
14.6.11.1	14.6.11.1	
$\underline{1}$ Hatch cover supports, stoppers and supporting structures	<u>1</u> Hatch cover supports, stoppers and supporting structures	
subject to the requirements of 14.6 are to comply with the following	subject to the requirements of 14.6 are to comply with the following	
(1) <u>and (2</u>):	$(1) \underline{\text{to}} (\underline{3}):$	
(1) Stress in the stoppers is to comply with the criteria specified	(1) For the design of the securing devices for the prevention of	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
<u>in 14.6.5.1-1.</u>	shifting, the horizontal mass forces F obtained from the following formula are to be considered. Acceleration in the longitudinal direction, a_X , and in the transverse direction, a_Y , does not need to be considered as acting simultaneously. $F = ma$ m : Sum of mass of cargo lashed on the hatch cover and mass of hatch cover a : Acceleration obtained from the following formula: $a_X = 0.2g$ for longitudinal direction $a_Y = 0.5g$ for transverse direction	
(Deleted)	(2) The design load for determining the scantlings of stoppers is not to be less than that obtained from 4.10.2.2 and (1), whichever is greater.	(Deleted) UR S21 6.2.3
 (2) The details of hatch cover supporting structures are to be in accordance with the following (a) to (d): (Deleted) 	 (3) The details of hatch cover supporting structures are to be in accordance with the following (a) to (g): (a) The nominal surface pressure (N/mm²) of a hatch cover supports is not to be greater than that obtained from the following formula: p_{n max} = dp_n : in general p_{n max} = 3p_n : for metallic supporting surface not subjected to relative displacements d : As given by the following formula. Where d exceeds 3, d is to be taken as 3. Depending on the loading conditions, the value is to be not less than the following 	UR S21 6.2.2 (Deleted)

Amended	Original	Remarks
 (a) Where large relative displacements of the supporting surfaces are to be expected, the use of material having low wear and frictional properties is recommended. (b) Drawings of the supports are to be submitted. In these drawings, the permitted maximum pressure given by the material manufacturer is to be specified. (Deleted) 	values. $d = 3.75 - 0.015L_{c}$ $d_{min} = 1.0 : in general$ $d_{min} = 2.0 : for partial loading conditions$ $p_{n} : As obtained from Table 14.6.11-1$ (b) Where large relative displacements of the supporting surfaces are to be expected, the use of material having low wear and frictional properties is recommended. (c) Drawings of the supports are to be submitted. In these drawings, the permitted maximum pressure given by the material manufacturer is to be specified. (d) When the manufacturer of the vertical hatch cover support material can provide proof that the material is sufficient for the increased surface pressure, not only statically but under dynamic conditions, the permissible nominal surface pressure $p_{n,max}$ as specified in (a) above, may be relaxed at the discretion of the Society. However, realistic long term distributions of spectra for vertical loads and relative horizontal motion between hatch covers and hatch cover support are to be as deemed appropriate by the Society. (e) Irrespective of the arrangement of stoppers, the supports are to be able to transmit the following force p_h in the longitudinal and transverse direction. $p_h = \mu \frac{p_v}{\sqrt{d}}$ p_v : Vertical supporting force μ : Friction coefficient generally to be taken as 0.5. For non-metallic or low-friction materials, the friction	(Deleted)

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended		Original	Remarks
 (c) Stresses in supporting structures are to comply with criteria specified in 14.6.5.1-1. (d) For substructures and adjacent constructions supports subjected to horizontal forces P_h, spectructures is to be given to fatigue strength. 	of ecial	 <u>coefficient may be reduced as appropriate by the Society. However, in no case µ is to be less than 0.35.</u> (f) Stresses in supporting structures are to comply with the criteria specified in 14.6.5.1-1. (g) For substructures and adjacent constructions of supports subjected to horizontal forces p_h, special consideration is to be given to fatigue strength. 	
Table 14.6.11-1 Permise Material Hull structure steel 22 Hardened steel 32 Lower friction materials 50	? <u>'ertical force</u> 5 5	urface Pressure p_{π} p_{π} Horizontal force 40 50 -	(Deleted) UR S21 6.2.2 Tab.7
2 For steel weathertight hatch covers of Type 2 ships, effect means for stoppers complying with the requirements in Ta 14.6.11-2 against the horizontal green sea forces acting on them to be provided.	able	wly added)	(Newly added) UR S21 6.2.3
Table 14.6.11-2 Street Design pressure As specified in 4.10.6. Allowable In stoppers, their supporting structures a equivalent stress is not to exceed the allowable value of	and the stopper welds	(calculated at the throat of welds), the equivalent stress	(Newly added) UR S21 6.2.3

Amended	Original	Remarks
14.6.12 Steel Hatchway Covers for Container Carriers	14.6.12 Steel Hatchway Covers for Container Carriers	-1.: UR S21 4.2.2/UI LL64 3
 14.6.12.1 Application 1 In the application of the requirements of 14.6 of the Rules, the height of coamings above the upper surface of the deck where the hatchway covers are fitted is to be at least 600 <i>mm</i>. 2 For container carriers with unusually large freeboards, upon requests by the applicant for classification, gaskets and securing devices for steel hatchway covers may be suitably dispensed in accordance with the requirements in (1) to (4): (Omitted) 3 Treatment of towage and segregation of containers containing dangerous goods may be in accordance with the relevant requirements specified in MSC/Circ.1087. (Omitted) 	 14.6.12.1 Application 1 In the application of the requirements of 14.6 of the Rules, the height of coamings above the upper surface of the deck where the hatchway covers are fitted is to be at least 600 mm in Position II. 2 For container carriers with unusually large freeboards, upon requests by the applicant for classification, gaskets and securing devices for steel hatchway covers may be suitably dispensed in accordance with the requirements in (1) to (4): (Omitted) 3 Treatment of towage and segregation of containers containing dangerous goods may be in accordance with the relevant requirements specified in MSC/Circ.1087. (Omitted) 	-2: UR S21 4.2.2 -3.: UR S21 4.2.2
14.6.13 Steel Hatchway of Ballast Holds	14.6.13 Steel Hatchway of Ballast Holds	
14.6.13.1 General 1 Gross scantlings of steel hatchway covers and similar covers as well as betch coordings provided on exposed upper dealer in way	 14.6.13.1 General Gross scantlings of steel hatchway covers and similar covers as well as batch coordings provided on support decks in way 	
as well as hatch coamings provided on exposed upper decks in way of cargo holds used as deep water ballast tanks for ships are to comply	as well as hatch coamings provided on exposed upper decks in way of cargo holds used as deep water ballast tanks for ships are to comply	
with the following requirements. Special consideration is to be given to steel hatchway covers and similar covers as well as hatch coamings	with the following requirements. Special consideration is to be given to steel hatchway covers and similar covers as well as hatch coamings	
specified in 14.6.13.1 in order to ensure they are of sufficient strength to resist loads due to water ballast.	specified in 14.6.13.1 in order to ensure they are of sufficient strength to resist loads due to water ballast.	
(1) The thickness of top plating is not to be less than that	(1) The thickness of top plating is not to be less than that	
obtained from the following formula. However, in the case of double plating type hatch covers, only the plates that actually bear the load need comply.	obtained from the following formula. However, in the case of double plating type hatch covers, only the plates that actually bear the load need comply.	

Amended	Original	Remarks
$1.15s\sqrt{h} \times 10^{-3} + 3.0$ (mm)	$1.15S\sqrt{h} + 3.0$ (mm)	
<u>s</u> : Spacing (\underline{mm}) of stiffeners	\underline{S} : Spacing (m) of stiffeners	
h : As obtained from 4.10.3.1-1(1) (kN/m^2)	<i>h</i> : As obtained from 4.10.3.1-1 (1) (kN/m^2)	
(2) The scantlings of stiffeners are to comply with the following	(2) The scantlings of stiffeners are to comply with the following	
formulae.	formulae.	
Section modulus at mid-span : $C_1 K k_1 \underline{s} h \ell^2 \times 10^{-3}$ (cm ³)	Section modulus at mid-span : $C_1 K k_1 \underline{S} h \ell^2$ (cm ³)	
Moment of inertia at mid-span : $C_2 k_2 \underline{s} h \ell^3 \times 10^{-3}$ (cm ⁴)	Moment of inertia at mid-span : $C_2 k_2 \underline{S} h \ell^3$ (cm ⁴)	
Cross sectional area of web plates at the ends of stiffeners:	Cross sectional area of web plates at the ends of stiffeners:	
$C_3K\underline{s}h\ell \times 10^{-3}(cm^2)$	$C_3KSh\ell(cm^2)$	
\underline{s} : As specified in (1)	\underline{S} : As specified in (1)	
ℓ : Span of stiffener (m)	ℓ : Span of stiffener (m)	
C_1 , C_2 and C_3 : Coefficients given by Table 14.6.13-1	C_1 , C_2 and C_3 : Coefficients given by Table 14.6.13-1	
K: Coefficient corresponding to the kind of steel as	K: Coefficient corresponding to the kind of steel as	
specified in 3.2	specified in 3.2	
k_1 and k_2 : Coefficient given by Table 14.6.13-1	k_1 and k_2 : Coefficient given by Table 14.6.13-1	
h: As obtained from 4.10.3.1-1(2) according to the arranged	h: As obtained from 4.10.3.1-1(2) according to the arranged	
direction of stiffeners (kN/m^2)	direction of stiffeners (kN/m^2)	
(Omitted)	(Omitted)	
2 Where scantlings of structural members of steel hatch covers	2 Where scantlings of structural members of steel hatch covers	
are determined based upon finite element method, the scantlings are	are determined based upon finite element method, the scantlings are	
determined in accordance with 14.6.5 using the load specified in	determined in accordance with 14.6.5.6 using the load specified in	
4.10.3.1-2.	4.10.3.1-2.	
(Omitted)	(Omitted)	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended			ζ	Original	inings und crossing i in	Remarks
Part 2-2	BOX-SHAPED BULK CA	RRIERS	Part 2-2	BOX-SHAPED	BULK CARRIERS	
Chapter 3	STRUCTURAL DESIGN PRI	NCIPLES C	Chapter 3	STRUCTURAL D	ESIGN PRINCIPLES	
<u>3.1 (Delete</u>	ed)		3.1 Net Sc	antling Approach		Left as "3.1 (Deleted)"
			<u>3.1.1 Co</u>	rrosion Addition		
				tch Cover and Hatch Co rrosion addition on both si	aming des of the hatch cover and	
			hatch coaming of the box-shaped bulk carriers which is subject to			
				e in accordance with Tab d in 3.3.4, Part 1.	le 3.1.1-1 instead of Table	
		<u>.</u>	<u>10.1-2 speeme</u>	<u>a moort, 1 art 1.</u>		
	Table 3.1.1-1 Corrosion Add	ition on Both Side	es of the Hatch	Cover and Hatch Coamin	B	(Deleted)
	Type of structural member		t_e (mn	4)		
	Single plating type hatch cover	1	2.0			
	Double plating type hatch cover	Top and bottom platin	ng 2.0			
		Internal structures	1.5			
Hatch coarnings, hatch coarning stays 1.5						

		Amended	Original	Remarks
		Chapter 4	LOADS	
4.1 G	eneral			
4.1.1	Overview			
	ch section of t	etermine the structural dimensions specified in each	hown in Table 4.1.1-1 as the loads used for each fo ch Chapter of Part 2-2 and Part 1 . ew of Chapter 4	rmula and each
	Section	Title	Overview	
	4.1	General	Requirements for the general principles of Chapter 4	
	4.2	Loads to be Considered in Longitudinal Strength	Additional requirements for hull girder loads to be considered in the torsional strength requirements specified in Chapter 5 and Chapter 5, Part 1.	
	4.3	Loads to be Considered in Local Strength	Additional requirements for loads to be considered in the local strength requirements specified in Chapter 6 and Chapter 6, Part 1.	
	4.4	Loads to be Considered in Strength of Primary Supporting Structures	Additional requirements for loads to be considered in the requirements of strength of primary supporting structures specified in Chapter 7 and Chapter 7, Part 1.	
	4.5	Loads to be Considered in Strength Assessment by Cargo Hold Analysis	Additional requirements for loading condition, etc. to be considered in the requirements for strength assessment by cargo hold analysis specified in Chapter 8 and Chapter 8, Part 1.	
	4.6	Loads to be Considered in Fatigue	Additional requirements for loads to be considered in the fatigue strength assessment requirements specified in Chapter 9 and Chapter 9, Part 1.	
	4.7	Loads to be Considered in Additional Structural Requirements	Additional requirements for loads to be considered in the additional structural requirements specified in Chapter 10 and Chapter 10,	

		Amended	Original	Remarks
			Part 1.	
	4.8	Loads to be Considered in Equipment	Additional requirements for loads to be considered in strength requirements for hatch covers, among other equipment requirements specified in Chapter 14 and Chapter 14, Part 1.	
	Annex 4.5	Operational Loading Conditions and Analytical Loading Conditions	Guidelines on the relationship between the loading condition to be considered in the strength assessment by cargo hold analysis and the loading condition described in the loading manual	
(Deleted)			 <u>4.8 Loads to be Considered in Equipment</u> <u>4.8.1 General</u> <u>4.8.1.1 General</u> <u>1 Loads to be considered in hatch covers and other equipm</u> <u>as specified in 14.1 are to be in accordance with the requirements</u> <u>4.8.2, instead of 4.10.2, Part 1. However, the relevant requirement</u> <u>in Part CSR-B&T may be applied where deemed appropriate by Society.</u> <u>2 In applying the requirements of 4.8, the position of exposedecks (Position I, Position II, etc.) is to be in accordance with requirements specified in 1.4.3.2, Part 1.</u> 	<u>s of</u> ents the sed
(Deleted)			4.8.2Loads to be Considered in Hatch Covers, etc.4.8.2.1General1Loads to be considered in strength assessment of steel hacovers, steel pontoon covers and steel weathertight hatch covers	
			 <u>to be in accordance with 4.8.2.2 and 4.8.2.3.</u> <u>2</u> Loads to be considered in strength assessment of ha beams are to be in accordance with 4.8.2.4. <u>3</u> Loads to be considered in strength assessment of the ha 	<u>tch</u>

	Amended		Original	Remarks
			 <u>coaming are to be in accordance with 4.8.2.5.</u> <u>4</u> Loads to be considered in strength assessment of closing arrangements are to be in accordance with 4.8.2.6. <u>5</u> Loads to be considered in strength assessment of stoppers are to be in accordance with 4.8.2.7. <u>6</u> Loads to be considered in strength assessment of the hatchway to ballast holds are to be in accordance with 4.8.2.8. 	2
(Deleted)			4.8.2.2 Wave Loads to be Considered in Strength <u>Assessments of Hatch Covers</u> The vertical wave load acting on the hatch cover $P_{\rm L}$ (kN/m^2) is to be in accordance with Table 4.8.2-1. In addition, where two or more hatch covers are joined at the hinges, the loads are to be considered for each panel. However, the loads may not be considered at the same time as cargo loads specified in 4.8.2.3.	2 2 2
			Wave Load P_{μ} (kN/m ²)	(Deleted)
Position I Position II Notes:	($L_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_{f_$		

Amended	Original	Remarks
(1) Use the other load for first positive deels	ion for hatchways positioned at a height equal to, or above, the standard superstructure height from the freeboard	
$\frac{(2) - 9.81 \times 2.1 - (kN/m^2)}{(2) - 9.81 \times 2.1 - (kN/m^2)}$ may be u		
superstructure height from the d	eck at second position. The Society are to be applied as loads for hatchways in exposed parts other than first position and second position.	
(5) Boueb decrifed appropriate by a	to bookey are to be appred to totale for natering of in exposed plate outer data mist position and become position	
(Deleted)		(Deleted)
()	4.8.2.3 Cargo Loads to be Considered in Strength	()
	Assessments of Hatch Covers	
	1 For uniformly distributed loads, the designed cargo load	
	$\underline{P_{dk}}$ (kN/m^2) is to be given by the following formula. However, it is	
	not to be less than 0.	
	$\underline{P_{dk}} = \underline{P_{dks}} + \underline{P_{dkd}}$	
	<u>P_{dks}: Static pressure (kN/m²), as specified in the</u>	
	<u>following (1).</u>	
	<u>P_{dkd}: Dynamic pressure (kN/m²), as specified in the</u>	
	$\frac{\text{following (2).}}{The set in the set of the set $	
	(1) The static pressure P_{dks} (kN/m^2) is to be in accordance	
	with the following (a) to (c). (a) As given by the following formula. However, if the	
	<u>(a)</u> As given by the following formula. However, if the maximum designed cargo load weight per unit area on	
	the deck (kN/m^2) is determined using a different	
	formula with the following, use that value instead.	
	When determining this, give due consideration to the	
	height of the cargo load.	
	$\frac{P_{dks} = 0.71gh_{ac}}{P_{dks} = 0.71gh_{ac}}$	
	h_{ac} : The height of the cargo load according to the	
	construction and arrangement directly above the	
	location being considered. This is either the height	

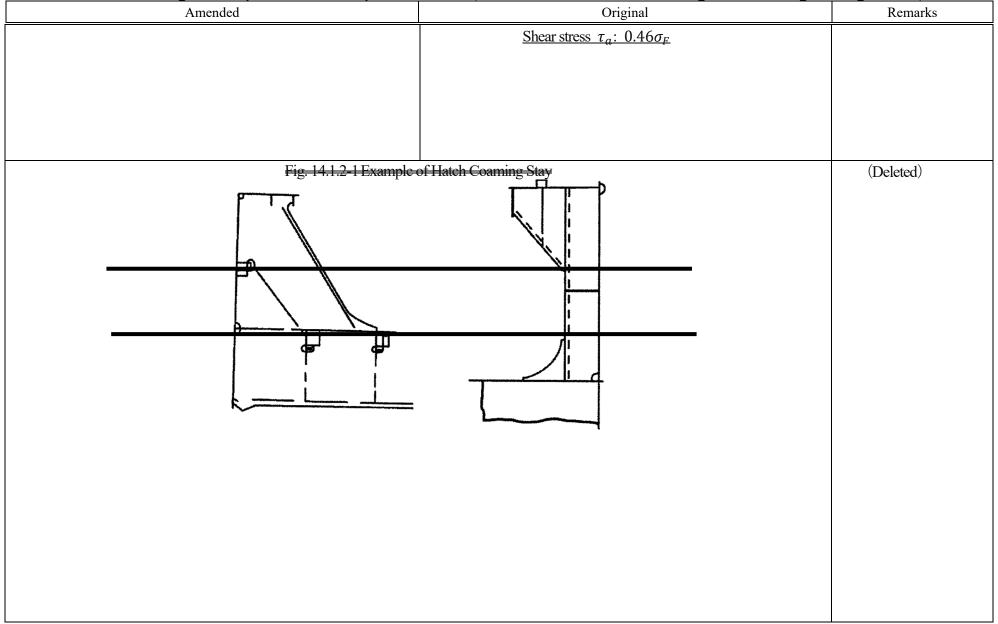
Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	between decks at the ship's sides from the deck to	
	the deck directly above it (m), or the height to the	
	top of the hatch coaming of the deck directly	
	<u>above (m).</u>	
	(b) When loading timber and other cargo onto an exposed	
	deck, this is the maximum designed cargo load weight	
	per unit area on the deck (kN/m^2) .	
	(c) When suspending cargo on a deck beam, or when	
	auxiliary deck equipment is present, the weight is to	
	take these into consideration.	
	(2) P_{dkd} : Dynamic pressure (kN/m^2), according to the	
	<u>following (a) to (c).</u>	
	(a) As given the following formula. However, if the	
	maximum designed cargo load weight per unit area on	
	the deck (kN/m^2) accounting for the envelope	
	acceleration specified in 4.2.4, Part 1 is determined	
	using a different formula with the following, use that	
	value instead. When determining this, give due	
	consideration to the height of the cargo load.	
	$\underline{P_{dkd}} = 0.71 a_{ze} h_{gc}$	
	a_{ze} : Vertical envelope acceleration specified in 4.2.4,	
	Part 1	
	<u>h_{gc}: The height of the cargo load according to the</u>	
	construction and arrangement directly above the	
	location being considered. This is either the height	
	between decks at the ship's sides from the deck to the deck directly above it (<i>m</i>), or the height to the	
	top of the hatch coaming of the deck directly above	
	(m).	
	(b) When loading timber and other cargo onto an exposed	

Amended-Original Requirements (Comparison Table	Hatch Covers, Hatch (Coamings and Closin	g Arrangements)
			0	

Amended	Original	Remarks		
	deck, this is the maximum designed cargo load w	veight		
	per unit area on the deck (kN/m^2) taking into ac	<u>ecount</u>		
	the vertical envelope acceleration specified in 4.2.4,			
	<u>Part 1.</u>			
	(c) When suspending cargo on a deck beam, or			
	auxiliary deck equipment is present, the weigh			
	take these into consideration while taking the v			
	envelope acceleration specified in 4.2.4, Part	<u>1 into</u>		
	<u>account.</u>			
	2 For concentrated loads, the maximum designed carge	<u>o load</u>		
	applied to each load point is to be considered.			
		(D-1-4-1)		
4.8.2.4 Vertical Wave Loads to be Considered in 4	Strength Assessments of Hatch Beams	(Deleted)		
	red in strength assessments of hatch beams is to be in accordance with Table	4.8.2		
<u>-</u>				
	$\frac{Vertical wave load P_{\mu}^{(+)}(kN/m^2)}{(kN/m^2)}$			
$\frac{l_{f} \leq}{9.81}$				
$\frac{Pesition I}{76}$	$\frac{9.81 \times 3.5}{2}$			
$\frac{Position II}{76} \qquad \frac{9.81}{76}$	$\frac{1}{F} + 87.6}{9.81 \times 2.6^{\ominus}}$			
Notes:				
(1) Loads deemed appropriate by the Society are to be a $(2) - 9.81 \times 2.1$ (kh/km^2) may be used for batchways in	plied as loads for each hatchway in exposed parts other than Position I and Position II. exposed parts of the superstructure deck positioned at a height equal to, or above, the standard			
superstructure height from the deck at Position II.				

Amended	Original	Remarks
(Deleted)	4.8.2.5 Wave Loads to be Considered in Strength Assessments of the Hatch Coaming The wave load P _{coam} to be considered in strength assessments of the hatch coaming is to be in accordance with the following (1) or (2). (1) Front-end hatch coaming of the foremost cargo hold: 290 (kN/m²) However, where a forecastle is installed in accordance with the requirements of 11.1, Part 2-3, this value may be 220 kN/m². (2) Hatch coaming other than (1) above: 220 (kN/m²)	(Deleted)
(Deleted)	4.8.2.6 Loads to be Considered in Strength Assessments of Closing Arrangements	(Deleted)
(Deleted)	4.8.2.7 Wave Load to be Considered in Strength Assessments of Stoppers The designed wave load Pstopper to be considered in strength assessments of stoppers is to be considered in strength assessments of stoppers is to be in accordance with the following (1) or (2). (1) Stoppers for the hatch cover to the foremost cargo hold (a) Pressure acting in the direction of the stern on the front- end of the hatch cover: 230 (kN/m²) However, where a forecastle is installed in accordance	(Deleted)


Amended	Original	Remarks
	with the requirements of 11.1, Part 2-3, this value may be 175 kN/m². (b) Pressure in the transverse direction of the ship: 175 kN/m² (2) Stoppers for hatch covers other than that specified in (1) above Pressure acting in the direction of the stern on the front-end of the hatch cover and pressure in the transverse direction the ship: 175 kN/m²	
(Deleted)	Ite snip: 175 kiv/m 4.8.2.8 Loads to be Considered in Strength Assessments of the Hatchway to Ballast Holds Loads to be considered when conducting strength assessment of the hatchway to ballast holds are to be in accordance with 4.10.3, Part 1.	(Deleted)
(Deleted)	Chapter 14EQUIPMENT14.1Hatch Covers14.1.1Application14.1.1General1The requirements of 14.1 are to be applied instead of the requirements prescribed in 14.6, Part 1.2The construction and the means for closing of cargo and other hatchways in ships which complies with Part 2-2 are to be those that are not less effective than those specified in 14.1. However, the relevant requirements in Part CSR-B&T may be applied instead of the requirements of 14.1.	(Deleted)

Amended	Original	Remarks
	3 Where hatch covers serve as helicopter decks, it is to comply	
	with the requirements in 10.4.6, Part 1.	
(Deleted)	14.1.1.2 Net Scantling Approach 1 Unless otherwise specified, the structural scantlings specified in 14.1 are to be net scantlings which do not include any corrosion additions. 2 Required gross scantlings are not to be less than the scantlings obtained from adding the corrosion addition t_c specified in 3.3 to the net scantlings obtained from the requirements in 3.1. 3 According to the requirements of 14.1.1.1-2, where applying the relevant requirements of Part CSR-B&T, the corrosion addition of the stiffener attached to the hatch coamings, hatch coaming stays and stays is to be read as 1.5 mm in the requirements of Part CSR-B&T.	(Deleted)
(Deleted)	14.1.2Hatch Coaming Strength Criteria14.1.2.1Height of Hatch CoamingsHeight of hatch coamings is to comply with 14.6.9.1, Part 1.	(Deleted)
(Deleted)	14.1.2.2 Scantlings of Hatch Coamings Scantlings of hatch coamings are not to be less than that obtained from the following formula: However, For aft end hatch coamings, only the requirements in (2)(b) need be applied. (1) The local net plate thickness of the hatch coaming plating tcoam,net is not to be less than that obtained from following formula: (a) For forward and side hatch coamings	(Deleted)

Amended	Original	Remarks
	$t_{coam,net} = 14.9S \sqrt{\frac{1.15P_{coam}}{\sigma_{a,coam}}} \ (mm),$	
	however, not to be less than 9.5 mm.	
	<u>S: Secondary stiffener spacing (m)</u> <u>P_{coam}: Wave load (kN/m²), as specified in</u> <u>4.8.2.5.</u>	
	$\sigma_{a,coam} = 0.95\sigma_{F}$	
	σ_F : Minimum upper yield stress or proof stress (N/mm^2) of the material	
	(b) For aft hatch coamings	
	<u>Where L_c is 100 m and under: $t_{coam,net} = 4.5 + 0.05L_c$ (mm)</u>	
	<u>Where L_c is greater than 100 m</u> :	
	$t_{coam,net} = 9.5 \ (mm)$	
(Deleted)	(2) The net section modulus of secondary stiffeners of the hatch	(Deleted)
	<u>coaming</u> , based on net member thickness, is not to be less than that obtained from following formula:	
	$Z_{net} = \frac{1150\ell^2 SP_{coam}}{mc_p \sigma_{a,coam}} \ (cm^3)$	
	<u>m: 16 in general</u>	
	12 for the end spans of stiffeners sniped at the	
	$\frac{\text{coaming corners}}{\ell: \text{Span of secondary stiffeners } (m)}$	
	S, P_{coam} and $\sigma_{a,coam}$: As specified in (1) above.	
	c_p : Ratio of the plastic section modulus to the elastic	
	section modulus of the secondary stiffeners with an	
	attached plate breadth equal to $40t_{coam,net}$ (<i>mm</i>). The value may be 1.16 in the absence of more precise	
	evaluation.	

Amended	Original	Remarks
Amended (Deleted)	Original (3) The net scantlings of hatch coaming stays are to be in accordance with following (a), (b) and (c): (a) The net section modulus and web thickness of coaming stays designed as beams with flanges connected to the deck or sniped and fitted with a bracket (See Fig.14.1.2-1) at their connections with the deck, based on member net thickness, are not to be less than that obtained from following formulae: $Z_{net} = \frac{1000 H_c^2 S P_{coam}}{2\sigma_{a,coam}} (cm^3)$ $t_{w,net} = \frac{1000 H_c S P_{coam}}{n \tau_{a,coam}} (mm)$ H_c : Stay height (m) S: Stay spacing (m) h: Stay depth (mm) $\tau_{a,coam} = 0.5\sigma_F$ σ_F . P_{coam} and $\sigma_{a,coam}$: As specified in (1) above. (b) For calculating the net section modulus of coaming stays, the area of their face plates is to be taken into account only when it is welded with full penetration welds to the deck plating and an adequate underdeck structure is fitted to support the stresses transmitted by them. (c) For designs of coaming stays other than those specified in (a) above (See Fig. 14.1.2-2), the stress levels given	(Deleted)
	by following formulae apply and are to be checked at the highest stressed locations.	
	<u>Normal Stresses</u> $\sigma_a: 0.8\sigma_F$	

Amended-Original Requirements Com	parison Table (Hatch Covers	s, Hatch Coamings and Closin	g Arrangements)

Amended	Original	Remarks
Fig. 14.1.2-2 Example of		(Deleted)
(Deleted)	 <u>14.1.2.3 Hatch Coaming Structure</u> <u>1</u> Coamings for hatchways in Position I or coamings of 760 <i>mm</i> or more in height for hatchways in Position II are to be stiffened in a suitable position below the upper edge by a horizontal stiffener; the breadth of the horizontal stiffener is not to be less than 180 <i>mm</i>. <u>2</u> Coamings are to be additionally supported by efficient brackets or stays provided from the horizontal stiffeners specified in - <u>1</u> above to the deck at intervals of approximately 3 <i>m</i>. <u>3</u> Coamings for all exposed hatchways are to be stiffened on their upper edges by half-round bars or similar section bars and their lower parts are to be constructed efficiently by flanging or other <u>suitable means</u>. <u>4</u> For the construction and scantlings of coamings of small hatchways, the requirements in 14.1.2.2-1 and -1 to -3 above may be 	(Deleted)

Amended	Original	Remarks
	Original itably modified. 5 The construction and scantlings of coamings over 900 mm in ight, coamings of hatchways to deep tanks, and coamings of tchways closed by special types of closing appliances to which the quirements in 14.1.2.2 are not applicable are to be to the satisfaction the Society. 6 The design of local details is to comply with the following quirements. (1) The secondary stiffeners of the hatch coamings are to be continuous over the breadth and length of the hatch coamings. (2) The local details of the structures are to be designed so as to transfer the pressures on the hatch covers to the hatch coamings and, through them, to the deck structures below. Hatch coamings and supporting structures are to be adequately stiffened to accommodate the loading from hatch covers, in longitudinal, transverse and vertical directions. (3) Underdeck structures are to be checked against the load transmitted by the stays, adopting the same allowable stresses specified in the preceding -1(4) above. (4) Double continuous welding is to be adopted for the connections of stay webs with deck plating and the weld throat is to be not less than 0.44 <i>twaross</i> , where <i>twaross</i> is the gross thickness of the stay web. (5) Toes of stay webs are to be connected to the deck plating over a	Remarks

Amended-Original Requirements Com	parison Table (Hatch Cover	s, Hatch Coamings and	d Closing Arrangements)

Amended	Original	Remarks
(Deleted)	14.1.3 Hatch Beams, Hatch Plates, Steel Pontoon Covers and Steel Weathertight Covers	(Deleted)
	14.1.3.1General1The scantlings of structural members of steel hatchwaycovers, steel pontoon covers and steel weathertight covers	
	(hereinafter referred to as "steel hatch covers"), and of portable beams are to comply with the requirements in 14.1.3. When the loading condition or the type of construction differs from that specified in this	
	 paragraph, the calculation method is to be as deemed appropriate by the Society. 2 The allowable normal and shear stresses in the steel hatch 	
	covers are as specified in Table 14.1.3-1.3For grillage or similar constructions, the stresses in steelhatch cover primary supporting members are to be determined bygrillage or a finite element method. For modelling the structural	
	<u>members, the net scantlings are to be used.</u> <u>4</u> The scantlings of steel hatch covers intended to carry cargoes on them in exposed positions are to be of the values obtained from	
	the requirements for steel hatch covers in exposed positions specified in 14.1.3 or the values obtained from the requirements for steel hatch covers intended to carry cargoes specified in 14.1.4, whichever is	
	greater. <u>5</u> The secondary stiffeners and primary supporting members of the steel hatch covers are to be continuous over the breadth and	
	length of the steel hatch covers, as far as practical. When this is impractical, sniped end connections are not to be used and appropriate arrangements are to be adopted to ensure sufficient load carrying	
	capacity.	

Amended-Original Requirements Comparison Table	(Hatch Covers, Hatch Coamings and Closing Arrangements)
	(

14.1.3.2 Local net plate thickness of hatch coversThe local net thickness t_{net} of steel hatch cover top platingis not to be less than that obtained from the following formula, and it	U	Amended	Remarks	Original
$\frac{\frac{\text{Kind of load}}{\text{Target member}} + \frac{\text{Normal streams } \sigma_{\pi}}{\text{Design wave load}} + \frac{\frac{\text{Steel hatchway evens } and \text{ steel}}{\text{Verticely evens } - \text{and } \text{ steel}} + \frac{0.8\sigma_{\pi}}{0.8\sigma_{\pi}} + \frac{0.46\sigma_{\pi}}{0.20\sigma_{\pi}}}{0.20\sigma_{\pi}} + \frac{0.20\sigma_{\pi}}{0.20\sigma_{\pi}}}$ Notes: $\sigma_{\mu}: - \text{Minimum upper yield stress or proof stress of the material (N/mm2)}$ Deleted) Deleted) $\frac{14.1.3.2 \text{ Local net plate thickness of hatch covers}}{\text{The local net thickness of hatch covers top plating is not to be less than that obtained from the following formula, and it} $			•	are to be fitted with the purpose of restricting the relative
$\frac{14.1.3.2 \text{ Local net plate thickness of hatch covers}}{0.68 \sigma_{E}} \qquad (Deleted)$ $(Deleted)$ $(Deleted)$ $(Deleted)$		Table 14.1.3-1 A	(Deleted)	tble Stresses
$\frac{1}{\frac{1}{2} \cos q_{\text{p}} \text{ wave load}} \frac{ }{ }{ } \cos q_{\text{p}} \cos q_{$	Kind	d of load Target member		Normal stresses : $\sigma_{\overline{q}}$ Shear stress: $\tau_{\overline{q}}$
Notes: σ_{μ} : - Minimum upper yield stress or proof stress of the material (Mmm ²) (Deleted) Deleted) 14.1.3.2 Local net plate thickness of hatch covers (Deleted) Image: The local net thickness t_{net} of steel hatch cover top plating is not to be less than that obtained from the following formula, and it (Deleted)	Decig	ign wave load weathertight covers		
$\sigma_{\mu}: - \text{Minimum upper yield stress or proof stress of the material (N/mm2)}$ Deleted) $\frac{14.1.3.2 \text{ Local net plate thickness of hatch covers}}{\text{The local net thickness t_{net}} \text{ of steel hatch cover top plating}} $ (Deleted)		Portable beams and steel pontoon		0.68 ₉₄ 0.39 ₉₄
is not to be less than that obtained from the following formula, and it	(Deleted)			
is not to be less than 1% of the spacing of the stiffeners or 6 mm,				not to be less than 1% of the spacing of the stiffeners or 6 mm,
whichever is greater:				
$t_{net} = 15.8F_p S \sqrt{\frac{P_V}{0.95\sigma_F}} \ (mm)$				$t_{net} = 15.8F_p S \sqrt{\frac{P_V}{0.95\sigma_F}} \ (mm)$
<u>F_p: Coefficient given by the following formula:</u>			1.1.	r
$\frac{1.9\sigma/\sigma_a (\text{for } \sigma/\sigma_a \ge 0.8, \text{ for the attached plate}}{\text{flange of primary supporting members})}$			ed plate	
1.5 (for $\sigma/\sigma_a < 0.8$, for the attached plate flange of			lange of	1.5 (for $\sigma/\sigma_a < 0.8$, for the attached plate flange of
$\frac{\text{primary supporting members})}{\sigma}$ $\sigma: \text{ Normal stress } (N/mm^2) \text{ of the attached plate flange of }$			lange of	
<u><i>b</i></u> . Normal stress (<i>tvmm</i>) of the attached plate hange of primary supporting members				

Amended	Original	Remarks
	$ \begin{array}{c} \sigma_a: \mbox{ Allowable normal stresses specified in Table 14.1.3-1.} \\ (\underline{N/mm^2)} \\ \underline{S}: \mbox{ Stiffener spacing } (\underline{m}) \\ \underline{P_V}: \mbox{ Design wave load } (\underline{kN/m^2}) \mbox{ specified in 4.8.2.2} \\ \underline{\sigma_F}: \mbox{ Minimum upper yield stress or proof stress } (\underline{N/mm^2}) \mbox{ of the material} \\ \end{array} $	
(Deleted)	14.1.3.3 Secondary Stiffeners of Steel Hatch Covers1The net section modulus Z_{net} of the secondary stiffeners ofhatch cover top plates, based on stiffener net member thickness, is notto be less than that obtained from the following formula. The netsection modulus of the secondary stiffeners is to be determined basedon an attached plate width that is assumed to be equal to the stiffenerspacing. $Z_{net} = \frac{1000SP_V \ell^2}{12\sigma_a} (cm^3)$ ℓ : Secondary stiffener span (m) is to be taken as thespacing of primary supporting members or the distancebetween a primary supporting members or the distancebetween a primary supporting members and the edgesupport, as applicable. When brackets are fitted at bothends of all secondary stiffener spans, the secondarystiffener span may be reduced by an amount equal to2/3 of the minimum brackets arm length, but notgreater than 10% of the gross span, for each bracket.S:Stiffener spacing (m) P_V : Design wave load (kN/m^2) specified in 4.8.2.2 σ_a : Allowable normal stress specified in Table 14.1.3-1.2The net shear sectional area A_{net} of the secondary stiffener	(Deleted)

Amended-Original Requirements Comparison Tab	e (Hatch Covers, Hatch Coamin	ngs and Closing Arrangements)

Amended	Original	Remarks
(Deleted)	the following formula: $ \frac{A_{net} = \frac{5SP_V \ell}{\tau_a} (cm^2)}{\ell \text{ and } P_V: \text{ As specified in -1 above.}}_{\underline{\tau}_a: \text{ As specified in Table 14.1.3-1.}}_{\underline{\tau}_a: \underline{\tau}_a: \underline{\tau}_$	(Deleted)

Amended-Original Re	quirements Compariso	on Table (Hatch Covers	. Hatch Coamings and	Closing Arrangements)
0				

		n Table (Hatch Covers, Hatch Coamings and Closing Arra	
Ame	ended	Original	Remarks
		Net cross-sectional area of web plates at the ends of hatch beams	
		or primary supporting members:	
		$A_{net} = \frac{5SP_V \ell}{\tau_a} (cm^2)$	
		$A_{net} = \frac{\tau_a}{\tau_a} (cm)$	
		S: Spacing (m) of the hatch beam or primary supporting	
		members considered	
		ℓ : Length (m) of the hatch beam or primary supporting	
		members considered	
		\underline{B} : Width (m) of steel hatch covers	
		P_V : Design wave load (kN/m^2) specified in 4.8.2.4 or	
		4.8.2.2	
		k_1 and k_2 : Coefficien specified in Table 14.6.5-1,	
		<u>Chapter 14, Part 1.</u>	
		σ_a and τ_a : As specified in Table 14.1.3-1.	
		μ : Coefficient specified in Table 14.1.3-2.	
	Table 14	<u>1.3-2-</u> <i>µ</i>	(Deleted)
		t t	()
	Steel hateh covers and steel weather	tight covers 0.0056	
	Hatch beams and steel pontoon hatch	h cover 0.0044	
(Deleted)		2 When calculating the normal and shear stresses in the hatch	(Deleted)
		cover structural members by means of finite element method, these	
		values are not to exceed the allowable stresses specified in Table	
		14.1.3-1. For modelling structural members, net scantlings are to be	
		used. When calculated by means of a beam or grillage model, the	
		effective flange area $A_{F,net}$ (cm ²) of the attached plating to be	

Amended	Original	Remarks
	this case, the secondary stiffeners are not to be included in the attached	
	flange area of the primary members.	
	$\underline{A_{F,net}} = \sum_{nf} (10b_{ef}t_{net}) (cm^2)$	
	nf: 2 if attached plate flange extends on both	
	sides of girder web	
	<u>1</u> if attached plate flange extends on one side of	
	girder web only	
	<u>t_{net}: Net thickness (<i>mm</i>) of considered attached plate</u>	
	$\underline{b_{ef}}$: Half the distance (m) between the considered primary	
	supporting member and the adjacent one, but not to be taken greater than 0.165ℓ	
	ℓ : Span (m) of primary supporting members	
	3 The spacing of primary supporting members parallel to the	
	direction of secondary stiffeners is not to exceed 1/3 of the span of	
	primary supporting members.	
	4 The breadth of the flange of primary supporting members is	
	to be not less than 40% of their depth for laterally unsupported spans	
	greater than 3.0 m. Tripping brackets attached to the flange may be	
	considered as a lateral support for primary supporting members. The	
	flange outstand is not to exceed 15 times the gross flange thickness.	
(Deleted)		(Deleted)
	14.1.3.5 Critical buckling stress check	
	<u>The buckling strength for primary supporting members</u> forming the steel hatch cover is to be in accordance with the	
	requirements of the following (1) to (3).	
	(1) The buckling strength for hatch cover top plating is to be in	
	accordance with the requirements of the following (a) to (c).	
	(a) The compressive stress in the hatch cover plate panels	
	induced by the bending of primary supporting	
	members parallel to the direction of secondary	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	stiffeners is not to exceed 0.8 times the critical buckling	
	<u>stress</u> σ_{C1} , to be evaluated as defined below:	
	$\sigma_{C1} = \sigma_{E1} \qquad (For \ \sigma_{E1} \le \frac{\sigma_F}{2})$	
	$\sigma_{C1} = \sigma_{E1} \qquad (\text{For } \sigma_{E1} \le \frac{\sigma_F}{2})$ $\sigma_{C1} = \sigma_F \left(1 - \frac{\sigma_F}{4\sigma_{E1}}\right) \qquad (\text{For } \sigma_{E1} > \frac{\sigma_F}{2})$	
	$\frac{\sigma_F: \text{ Minimum upper yield stress or proof stress of the}}{\text{material } (N/mm^2)}$	
	$\sigma_{E1} = 3.6E \left(\frac{t_{net}}{1000S}\right)^2$	
	<u>t_{net}: Net thickness (mm) of the panel</u> S: Spacing (m) of secondary stiffeners	
	(b) The mean compressive stress in each of the hatch cover	
	plate panels induced by the bending of primary	
	supporting members perpendicular to the direction of	
	secondary stiffeners is not to exceed 0.8 times the	
	critical buckling stress σ_{c_2} , to be evaluated as defined below:	
	$\sigma_{C2} = \sigma_{E2} \qquad (For \ \sigma_{E2} \le \frac{\sigma_F}{2})$	
	$\sigma_{C2} = \sigma_{E2} \qquad (\text{For } \sigma_{E2} \le \frac{\sigma_F}{2})$ $\sigma_{C2} = \sigma_F \left(1 - \frac{\sigma_F}{4\sigma_{E2}}\right) \qquad (\text{For } \sigma_{E2} > \frac{\sigma_F}{2})$	
	$\sigma_{E2} = 0.9 m E \left(\frac{t_{net}}{1000 S_s}\right)^2$	
	σ_F , E and t_{net} : As specified in (a) above.	
	$m = c \left\{ 1 + \left(\frac{S_s}{\ell_s}\right)^2 \right\}^2 \frac{2.1}{\psi + 1.1}$	
	S_s : Length (m) of the shorter side of the plate panel	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	ℓ_s : Length (m) of the longer side of the plate	
	panel	
	ψ : Ratio between smallest and largest	
	<u>compressive stress</u>	
	c: Coefficients obtained according to the kind	
	of stiffeners at compressive side, which are	
	given by the following:	
	<u>1.30:</u> when plating is stiffened by primary	
	supporting members	
	<u>1.21: when plating is stiffened by</u> secondary stiffeners of angle or T type	
	1.10: when plating is stiffened by	
	secondary stiffeners of bulb type	
	1.05: when plating is stiffened by flat bar	
	(c) The biaxial compressive stress in the hatch cover	
	panels, when calculated by means of a FEM shell	
	element model, is to be in accordance with Annex 8.6,	
	Chapter 8, Part 1.	
	(2) The compressive stress in the top flange of secondary	
	stiffeners, induced by the bending of primary supporting	
	members parallel to the direction of secondary stiffeners, is	
	not to exceed 0.8 <i>times</i> the critical buckling stress σ_{cs} , to	
	be evaluated as defined below:	
	$o_{CS} = o_{ES}$ (For $o_{ES} \le \frac{1}{2}$)	
	$\overline{\sigma} = \sigma \left(1 - \frac{\sigma_F}{\sigma_F} \right) (\text{For } \sigma > \frac{\sigma_F}{\sigma_F})$	
	$\sigma_{CS} = \sigma_{ES} \qquad (For \ \sigma_{ES} \le \frac{\sigma_F}{2})$ $\sigma_{CS} = \sigma_F \left(1 - \frac{\sigma_F}{4\sigma_{ES}}\right) \qquad (For \ \sigma_{ES} > \frac{\sigma_F}{2})$	
	σ_F : Minimum upper yield stress or proof stress (<i>N/mm²</i>) of	
	the material	
	σ_{ES} : σ_{E3} or σ_{E4} obtained from following formulae,	
	whichever is smaller	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	$\sigma_{E3} = \frac{0.001 E I_{a,net}}{A_{net} \ell^2}$	
	$\sigma_{E3} = \frac{1}{A_{net}\ell^2}$	
	<u>$I_{a,net}$:</u> Moment of inertia (cm ⁴) of the	
	secondary stiffener, including a top flange that has	
	a width equal to the spacing of secondary	
	stiffeners	
	<u>A_{net}: Cross-sectional area (cm^2) of the</u>	
	secondary stiffener including a top flange that has	
	a width equal to the spacing of secondary stiffeners	
	ℓ : Span of the secondary stiffener (m)	
	$\sigma_{E4} = \frac{\pi^2 E I_{w,net}}{10^4 I_{p,net} \ell^2} \left(m^2 + \frac{K}{m^2} \right) + 0.385 E \frac{I_{t,net}}{I_{p,net}}$	
	$K = \frac{C\ell^4}{\pi^4 E I_{w,net}} \times 10^6$	
	m: As specified in Table 14.1.3-3.	
	$I_{w,net}$: Sectorial moment of inertia	
	(cm^6) of the secondary stiffener about its	
	connection with the plating:	
	$I_{w,net} = \frac{h_w^{3} t_{w,net}^{3}}{36} \times 10^{-6} \ (cm^{6}) \qquad \text{for} \text{flat}$	
	bar secondary stiffeners	
	$I_{w,net} = \frac{t_{f,net} b_f^{3} h_w^{2}}{12} \times 10^{-6} \ (cm^{6}) \ for \ T$	
	secondary stiffeners	
	$\frac{I_{w,net}}{I_{w,net}} = \frac{b_f^{3}h_w^{2}}{12(b_f + h_w)^{2}} \left[t_{f,net} \left(b_f^{2} + 2b_f h_w + 1 \right) \right]$	
	$(4h_w^2) + 3t_{w,net}b_f h_w] \times 10^{-6} (cm^6)$ for angles	
	and bulb secondary stiffeners	
	<u>$I_{p,net}$:</u> Polar moment of inertia (cm^4) of the	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	secondary stiffener about its connection with the	
	plating:	
	$I_{p,net} = \frac{{h_w}^3 t_{w,net}}{3} \times 10^{-4} \ (cm^4)$	
	for flat bar secondary stiffeners	
	$I_{p,net} = \left(\frac{{h_w}^3 t_{w,net}}{3} + {h_w}^2 b_f t_{f,net}\right) \times 10^{-4} \ (cm^4)$	
	for flanged secondary stiffeners	
	$I_{t,net}$: St Venant's moment of inertia (cm^4) of	
	the secondary stiffener without top flange:	
	$I_{t,net} = \frac{h_w t_{w,net}{}^3}{3} \times 10^{-4} \ (cm^4)$	
	for flat bar secondary stiffeners	
	<u>I_{t,net}</u>	
	$=\frac{1}{3}\left[h_{w}t_{w,net}^{3}+b_{f}t_{f,net}^{3}\left(1-0.63\frac{t_{f,net}}{b_{f}}\right)\right]$	
	$\times 10^{-4}$ (cm ⁴) for flanged secondary stiffeners	
	<u>h_w: Height (<i>mm</i>) of the secondary stiffener</u>	
	web	
	$t_{w,net}$: Net thickness (mm) of the secondary	
	stiffener web	
	$\underline{b_f}$: Width (<i>mm</i>) of the secondary stiffener	
	$\frac{\text{bottom flange}}{t_{f.net}: \text{ Net thickness } (mm) \text{ of the secondary}}$	
	$t_{f,net}$: Net thickness (<i>mm</i>) of the secondary stiffener bottom flange	
	C: As given by the following:	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	$C = \frac{k_p E t_{p,net}{}^3}{3s \left(1 + \frac{1.33 k_p h_w t_{p,net}{}^3}{s t_w net{}^3}\right)}$	
	$\mathcal{L} = \frac{1.33k_n h_w t_{n,net}^3}{1.33k_n h_w t_{n,net}^3}$	
	$3s\left(1+\frac{p}{st_{wnet}^3}\right)$	
	s: Spacing (mm) of secondary stiffener	
	k_n : As given by the following, but not less than	
	zero	
	For longitudinals with flanges, the value is	
	not to be taken as less than 0.1.	
	$\frac{k_p = 1 - \eta_p}{\sigma}$	
	$\frac{k_p = 1 - \eta_p}{\eta_p = \frac{\sigma}{\sigma_{E1}}}$	
	$\frac{\sigma_{E1}}{\sigma_{E1}}$ As specified in (1) above.	
	t_{nnet} : Net thickness (<i>mm</i>) of the hatch cover	
	plate panel	
	(3) The shear stress in the hatch cover primary supporting	
	members web panels is not to exceed 0.8 times the critical	
	buckling stress τ_c , to be evaluated as defined below. For	
	primary supporting members perpendicular to the direction	
	of secondary stiffeners or for hatch covers built without	
	secondary stiffeners, the average shear stress between the	
	values calculated at the ends of this panel is to be considered: τ_{r}	
	$\tau_C = \tau_E$ (For $\tau_E \le \frac{\tau_F}{2}$)	
	$(\tau_F) \tau_F $	
	$\frac{\tau_{C} = \tau_{E}}{\tau_{C} = \tau_{F} \left(1 - \frac{\tau_{F}}{4\tau_{E}}\right) (\text{For } \tau_{E} > \frac{\tau_{F}}{2})}{\sigma_{E}}$	
	$\iota_F = \frac{1}{\sqrt{3}}$	
	σ_F : As specified in (1) above.	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

	Amended	Original	Remarks
		$\tau_{E} = 0.9k_{t}E\left(\frac{t_{pr,net}}{1000d}\right)^{2}$ $t_{pr,net}: \text{ Net thickness } (mm) \text{ of primary supporting member}$ $k_{t} = 5.35 + \frac{4.0}{(a/d)^{2}}$ $a: \text{ The greater dimension } (m) \text{ of the web panel of primary supporting member. For primary supporting members perpendicular to the direction of secondary stiffeners or for hatch covers built without secondary stiffeners, the smaller dimension d is to be considered d: \text{ Smaller dimension } (m) of web panel of primary supporting member$	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{3 \text{Value of } m}{< 144} \qquad \frac{(m-1)^2 m^2 \leq K < m^2 (m+1)^2}{m}$	(Deleted)
(Deleted)		<u>14.1.3.6 Deflection limit</u> <u>The vertical deflection of primary supporting members and</u> <u>portable beams are to be not more than μl, where <i>l</i> is the greatest <u>span of primary supporting members or portable beams, and μ is as</u> <u>specified in Table 14.1.3-2.</u></u>	(Deleted)

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
(Deleted)	14.1.4 Requirements for Hatch Covers Carrying Cargoes	(Deleted)
	<u>14.1.4.1 General</u>	
	<u>1</u> The scantlings of steel hatch covers carrying cargoes in exposed positions are to comply with the requirements in 14.1.4 in	
	addition to the requirements in 14.1.3. When the loading condition or	
	the type of construction differs from the requirements of 14.1.4, the	
	calculation method is to be as deemed appropriate by the Society.	
	2 The values obtained from the requirements of 14.1.4 include	
	corrosion addition.	
	<u>3</u> Where cargo loads and wave loads act jointly due to the	
	height of the loaded cargo or its shape, special considerations are to be given for calculating the superposition of the wave load and cargo	
	load.	
(Deleted)	<u>1044.</u>	(Deleted)
	14.1.4.2 Thickness of the Steel Hatch Cover Top Plate	
	For hatch covers carrying cargoes, the thickness of the top	
	plating t is not to be less than that obtained from following formula.	
	$\underline{t = 1.25S\sqrt{KP_{dk}} + 2.5 \ (mm)}$	
	<u>S:</u> Spacing (m) of stiffeners P_{dk} : Design cargo load (kN/m^2) specified in 4.8.2.3. (kN/m^2)	
	K: Material factor of the steel material used, as specified	
	<u>in 3.2, Part 1.</u>	
(Deleted)	141.42 Second and Statement of State High all Comments	(Deleted)
	<u>14.1.4.3 Secondary Stiffeners of Steel Hatch Covers</u> The section modulus of stiffeners supported by girders and	
	subjected to uniformly distributed loads may be obtained from finite	
	element method, or obtained from the following formulae.	
	$\frac{0.71CKSP_{dk}\ell^2 (cm^3)}{2}$	
	<u><i>C</i></u> : Coefficient given below according to the type of end	

Amended	Original	Remarks
	connections of stiffeners;	
	For lug at both ends: 1.0	
	For snip at both ends or snip on one end and a lug on	
	the other: 1.5	
	K: Coefficient corresponding to the kind of steel as	
	specified in 3.2, Part 1.	
	<u>S: Spacing (m) of stiffeners</u>	
	<u>P_{dk}: Design cargo load (kN/m^2) as specified in 4.8.2.3.</u>	
	$\frac{(kN/m^2)}{m^2}$	
	ℓ : Unsupported span of stiffeners (m)	
(Deleted)	14.1.4.4 Steel Hatch Cover Girders and Hatch Beams	(Deleted)
	The net scantlings of portable beams and primary supporting	
	members of steel hatch covers, which are simply supported between	
	hatch coamings with uniformly distributed loads imposed thereupon	
	are to comply with the following formulae. For steel hatchway	
	covers, S and ℓ are to read as b and S, respectively.	
	Net section modulus at mid-span of portable beams or primary supporting members:	
	$\frac{C_1 K k_1 S P_{dk} \ell^2}{(cm^3)}$	
	Net moment of inertia at mid-span of portable beams or	
	primary supporting members:	
	$C_2 k_2 SP_{dk} \ell^3 (cm^4)$	
	Net cross-sectional area of web plates at the ends of portable	
	beams or primary supporting members:	
	$\underline{C_3KSP_{dk}\ell} (cm^2)$	
	S, b, ℓ , k_1 and k_2 : As specified in 14.1.3.4.	
	$\underline{C_1}, \underline{C_2}$ and $\underline{C_3}$: Coefficients given in Table	
	14.1.4-1.	
	P_{dk} : The designed cargo load, in accordance with	
	4.8.2.3. (kN/m ²)	

Amended		Original	Remarks
		<u><i>K</i></u> : Material factor corresponding to the kind of steel as specified in 3.2, Part 1.	
	G ₂ G ₂ 1.07 1.81	$\begin{array}{c} \hline \\ \hline $	(Deleted)
	Notes: *: Not applicable to steel hatch	plates.	
(Deleted)		14.1.4.5 Compressive Buckling Strength of Steel Hatch CoversSteel hatch covers are to satisfy the following formula.However, for double plated steel hatch covers, the plate that actually bears the compressive stress need only comply. $\sigma_{cr}/\sigma \ge 1.2$ σ_{cr} : Critical compressive buckling stress given by the following formulae.For $\sigma'_{cr} \le \frac{\sigma_F}{2} : \sigma'_{cr}$ For $\sigma'_{cr} > \frac{\sigma_F}{2} : \sigma_F \left(1 - \frac{\sigma_F}{4\sigma'_{cr}}\right)$ $\sigma'_{cr} = 0.74(t/S)^2(N/mm^2)$ $t:$ Thickness of steel plate considered (mm)S: Spacing (m) of stiffeners for the steel plate considered	(Deleted)

Amended	Original	Remarks
	$ \frac{\sigma_F: \text{ Minimum upper yield stress or proof stress}}{(N/mm^2) \text{ of the material}} $ $ \frac{\sigma: \text{ Compressive stress acting on the steel plate}}{\text{ considered } (N/mm^2)} $	
(Deleted)	<u>14.1.4.6 Deflection limit</u> <u>The vertical deflection of primary supporting members and</u> <u>portable beams are to be not more than 0.0035/, where <i>l</i> is the greatest <u>span of primary supporting members or portable beams.</u></u>	(Deleted)
(Deleted)	14.1.4.7 Considering Container Loads and Other Concentrated Loads Where concentrated loads are imposed such as in the carriage of container cargoes, the requirements in (1) to (4) are to be taken into consideration. However, other than those specified in 14.1.4.7 are to be in accordance with Chapter 8, Part 1. (1) Loads The loads acting on steel hatch covers are to be according to the following (a) or (b) according to the type of load. Except for -4, no loads are to be assumed to act jointly. (a) Where the load is uniformly distributed, P_{dk} specified in 4.8.2.3 is used, and where the load is concentrated, the maximum design cargo load at each loading point is to be used. (b) The load due to liquid cargoes or water ballast are to be	(Deleted)

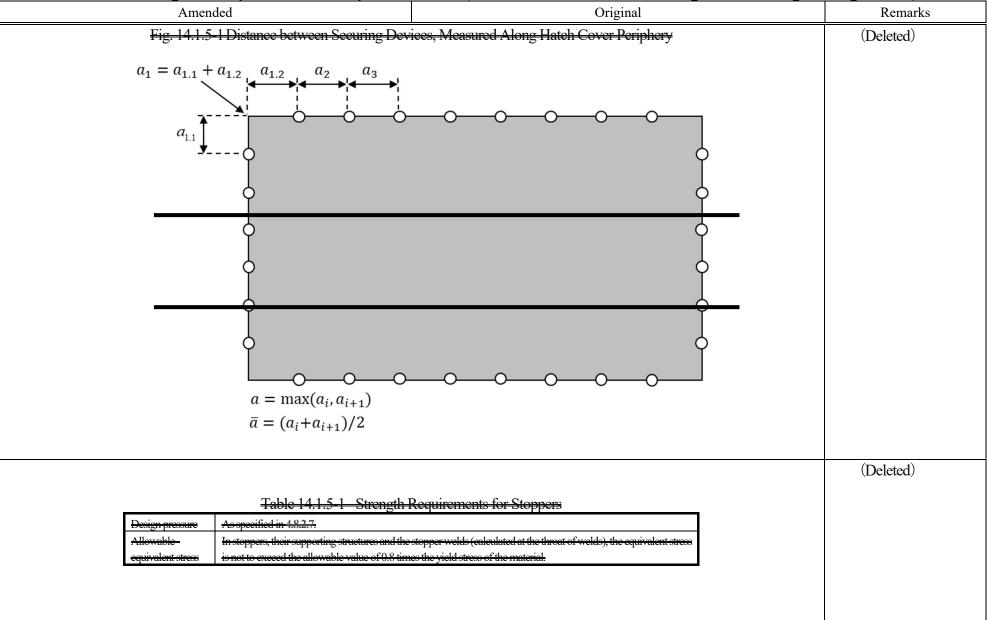
Amended	Original	Remarks
	in accordance with 4.8.2.8-2.	
	(2) Modelling of Structure	
	(a) The structural model is to be able to reproduce the	
	behaviour of the structure with the highest possible	
	fidelity.	
	(b) The scantlings including corrosion additions which are	
	shown on the plans may be used for the model.	
	(c) When modelling using beam elements, each beam	
	element may generally include the plates up to a width	
	$\underline{of 0.1}l$ on either side of the beam, where l is the span of	
	the members. The plates are to be effectively	
	reinforced by other members or are to be deemed by	
	the Society to have sufficient thickness. However, the	
	width of the plate is not to exceed half the distance to	
	the neighbouring member.	
	(d) The structural model is to be supported by pads (cleats	
	in the case of loads due to liquid cargoes or water	
	ballast). If the arrangement of pads (or cleats) differs	
	from the arrangement of stiffeners, the edge elements	
	of hatch covers are also to be modelled.	
	(3) Allowable Values	
	When the loads specified in (1) act on the structural model	
	specified in (2), the scantlings are to be determined so that	
	the stress and deflection generated in each structural	
	member satisfy the allowable values specified in Table	
	$\frac{14.1.4-2.}{M_{1222}}$	
	(4) Miscellaneous	
	(a) The thickness of the top plating of steel hatch covers is	
	to comply with the requirements in 14.1.4.2 and	
	<u>14.6.13.1-1 (1), Part 1.</u>	

Amended-Original Requirements Compa	parison Table (Hatch Covers	. Hatch Coamings and C!	losing Arrangements)
σ \sim \sim			

Amended		Original				Remarks	
			and su obtain	ubjected to un	iformly distrib element metho	upported by girders outed loads may be od, or obtained from	
	Table 14.1.4-2 A	llował	le Values				(Deleted)
	Kind of loads		Bending stress	Shear Stress	Deflection/]	
	Loads due to solid and liquid eargoes or water ballast		0.5ησ_#	0.33ησ_∓	0.0035		
	Wheeled whieles used for loading/unloading only durin Notes: $\sigma_{\rm F}$: Minimum upper yield stress or proof stress (N/mm²) of t η : Coefficient according to grades of material as follows: $K.4, KB, KD$, and KE 1.00 $K.432, KD32, KE32$ and $KF32$ 0.94 $K.436, KD36, KE36$ and $KF36$ 0.92 $K.440, KD40, KE40$ and $KF40$ 0.88	he materia 6 2	<u>0.625ησ_F</u>	0.415ησ_#	0.0035	_]	
(Deleted)		<u>14</u>	Plates, Covers 1.5.1 Hatch Hatch bean ion to 14.6.7, C The diame is to be sma in the sect lightening	Steel Pontoor Beams as are to comp Chapter 14, Pa ter of lightenin aller than one t ion. Where the holes are record	the covers and s by with the folurt 1. gholes provided hird of the dept ne loading of mmended not t	th Beams, Hatch Steel Weathertight lowing (1) to (4) in ed in portable beams h of portable beams lumber is planned, o be provided.	(Deleted)

Amended	Original	Remarks
	obtained from the following formula. 10h + 4 (mm) h: Depth (m) of the hatch beam at the mid-point (3) In applying 14.1.3 and 14.1.4, the distance between the inner sides of hatchway coamings may be used as the span (l) of the portable beams.	
(Deleted)	14.1.5.2 Hatch Plates Hatch plates are to be in accordance with 14.6.7.2, Part 1.	(Deleted)
(Deleted)	<u>14.1.5.3 Pontoon Hatch Plates</u> Steel pontoon hatch covers are to comply with 14.6.7.3, Part <u>1.</u>	(Deleted)
(Deleted)	14.1.5.4 Weathertight Hatch Covers Steel weathertight hatch covers are to comply with the following (1) to (5): (1) The depth of steel weathertight covers at the supports is not to be less than one-third the depth at the mid-point or 150 mm, whichever is greater.	(Deleted)
(Deleted)	 (2) The scantlings and construction of small or special types of steel weathertight covers to which the requirements in 14.1.3, 14.1.4 and (1) are not applicable and covers for hatchways that need no coaming under the requirements of 14.1.2.1 will be specially considered by the Society. 	(Deleted)

Amended	Original	Remarks
(Deleted)	(3) The means for securing and maintaining weathertightness are to comply with the following (a) to (g): However, Special consideration is to be given to the gasket and securing arrangements in ships with large relative movements between the cover and ship structure or between cover elements. Arrangements are to ensure that weathertightness can be maintained in any sea condition.	(Deleted)
(Deleted)	(a) The weight of covers and any cargo stowed thereon are to be transmitted to the ship structure through steel to steel contact.	(Deleted)
(Deleted)	 (b) Gaskets and compression flat bars or angles which are arranged between covers and the ship structure and cross-joint elements are to be in compliance with the following i) to iii): i) Compression bars or angles are to be well rounded where in contact with the gaskets and are to be made of corrosion-resistant materials. ii) The gaskets are to be of relatively soft elastic materials. The material is to be of a quality suitable for all environmental conditions likely to be experienced by the ship, and is to be compatible with the cargoes carried. iii) A continuous gasket is to be effectively secured to the cover. The material and form of gasket selected are to be considered in conjunction with the type of cover, the securing arrangement and the expected relative movement between the cover and ship structure. 	(Deleted)


Amended	Original	Remarks
(Deleted)	(c) Securing devices attached to hatchway coamings,	(Deleted)
	decks or covers are to be in compliance with the	
	following (i) to (vi):	
	i) Arrangement and spacing of securing devices are	
	to be determined with due attention to the	
	effectiveness for weathertightness, depending	
	upon the type and the size of hatch cover as well	
	as to the stiffness of the cover edges between the	
	securing devices.	
	ii) The gross sectional area of each securing device is	
	not to be less than that obtained from the	
	following formula. However, rods or bolts are to	
	have a net diameter not less than 19 mm for	
	hatchways exceeding 5 m^2 in area.	
	$\underline{A = 1.4\bar{a}/f}_{a} (cm^{2})$	
	\overline{a} : Half the distance (m) between two adjacent	
	securing devices, measured along the hatch cover periphery (See Fig. 14.1.5-1).	
	f: As obtained from the following formula	
	$f = (\sigma_V/235)^e$	
	σ_{v} : Minimum upper yield stress (N/mm ²) of	
	the steel used for fabrication, but not to be taken	
	greater than 70% of the ultimate tensile strength	
	e: Coefficient determining according to	
	the value of σ_Y , as follows.	
	For $\sigma_{\rm Y} \leq 235$ N/mm ² : 1.0	
	<u>For $\sigma_{\rm Y} > 235 \ N/mm^2: \ 0.75}$</u>	
	iii) If the packing line pressure exceeds 5 N/mm, the	
	sectional area of bolts and rods used in the	
	securing arrangement is to be equal to, or greater	

Amended	Original	Remarks
	than, the value obtained by multiplying the	
	formula in ii) by the ratio of the line pressure	
	acting on the value obtained and 5 N/mm.	
	iv) Individual securing devices on each cover are to	
	have approximately the same stiffness	
	characteristics.	
	v) Where rod cleats are fitted, resilient washers or	
	cushions are to be incorporated.	
	vi) Where hydraulic cleating is adopted, a positive	
	means is to be provided to ensure that it remains	
	mechanically locked in the closed position in the	
	event of failure of the hydraulic system.	
(Deleted)	(d) The moment of inertia of the edge elements of hatch	(Deleted)
	covers is not to be less than that obtained from the	
	following formula:	
	$\underline{I} = 6pa^4 (cm^4)$	
	<u>a: Maximum of the distance (m), between two</u>	
	consecutive securing devices, measured along the hatch cover periphery, not to be taken as less than	
	$\frac{1}{2.5a_c}$.	
	$\underline{a_{c}: max(a_{1,1}, a_{1,2})}$ (m) (See Fig. 14.1.5-1)	
	p: As specified in 4.8.2.6.	
	When calculating the actual gross moment of inertia of	
	edge elements, the effective breadth of the attached	
	plating of hatch covers is to be taken as equal to the	
	lesser of the following values:	
	<u>i) 0.165<i>a</i></u>	
	ii) Half the distance between the edge element and	
	the adjacent primary member	

Amended	Original	Remarks
(Deleted)	(e) The cross-section of the shaped steel or rubber seal supporting member is to be of sufficient size, and is to	(Deleted)
	connect to both ends of the hatch cover so as to ensure	
	linear contact while maintaining a uniform pressure	
	across the entire circumference of the hatch cover.	
(Deleted)	(f) A drainage arrangement equivalent to the standards	(Deleted)
	specified in the following i) to iv) are to be provided.	
	i) Drainage is to be arranged inside the line of	
	gaskets by means of a gutter bar or vertical	
	extension of the hatch side and end coaming. If an	
	application is made by the owner of a container	
	carrier and the Society deems it to be appropriate,	
	special consideration will be given to this	
	requirement.	
	ii) Drain openings are to be arranged at the ends of	
	drain channels and are to be provided with effective means such as non-return valves or the	
	equivalent for preventing the ingress of water	
	from outside.	
	iii) Cross-joints of multi-panel covers are to be	
	arranged with a drainage channel for water from	
	space above the gasket and a drainage channel	
	below the gasket.	
	iv) If a continuous outer steel contact between cover	
	and ship structure is arranged, drainage from the	
	space between the steel contact and the gasket is	
	also to be provided for.	

Amended	Original	Remarks
(Deleted)	(g) It is recommended that ships with steel weathertight	(Deleted)
	covers are supplied with an operation and maintenance	
	manual which includes the following i) to v):	
	i) Opening and closing instructions	
	ii) Maintenance requirements for packing, securing	
	devices and operating items	
	iii) Cleaning instructions for drainage systems	
	iv) Corrosion prevention instructions	
	v) List of spare parts	
(Deleted)	(4) In addition to the (3) above, hatch covers carrying deck	(Deleted)
	cargoes are to be in compliance with the following (a) to (e).	
	(a) Hatch covers carrying deck cargoes are to be	
	effectively secured against the horizontal and vertical	
	forces arising from ship motion.	
	(b) To prevent damage to hatch covers and the ship	
	structure, the location of stoppers is to be compatible	
	with the relative movements between hatch covers and	
	the ship structure.	
	(c) Hatch covers and supporting structures are to be	
	adequately stiffened to accommodate the load from	
	hatch covers.	
	(d) At the cross-joints of multi-panel covers, vertical	
	guides (male/female) are to be fitted to prevent	
	excessive relative vertical deflections between	
	loaded/unloaded panels.	
	(e) The construction and scantlings of hatchways on	
	exposed parts are to comply with the following	
	requirements in addition to those of 14.1.3 and 14.1.4.	
	i) The loading arrangement is to be clearly shown in	
	drawings submitted for approval. In the case of	

freight containers, the type and location are to be additionally described. ii) Girders or stiffeners are to be provided for reinforcement beneath the corner fittings of freight containers iii) The top plates of hatch covers, upon which wheeled vehicles are loaked, are to comply with 10.1, Part 2-6. (Deleted) (5) For steel weathertight hatch covers, effective means for stoppers complying with the requirements in Table 14.1.5. I against the horizontal green sea forces acting on them are to be provided.	Amended	Original	Remarks
(Deleted) (5) For steel weathertight hatch covers, effective means for stoppers complying with the requirements in Table 14.1.5- 1 against the horizontal green sea forces acting on them are (Deleted)		additionally described. ii) Girders or stiffeners are to be provided for reinforcement beneath the corner fittings of freight containers iii) The top plates of hatch covers, upon which wheeled vehicles are loaded, are to comply with	
	(Deleted)	(5) For steel weathertight hatch covers, effective means for stoppers complying with the requirements in Table 14.1.5- 1 against the horizontal green sea forces acting on them are	(Deleted)

Amended-Original R	equirements Com	parison Table (Hatch Covers. Hatch	Coamings and Closin	g Arrangements)
0				0	

Amended	Original	Remarks
(Deleted)	14.1.6 Tarpaulins and Securing Arrangements for Hatchways Closed by Portable Covers 14.1.6.1	(Deleted)
(Deleted)	14.1.7 Steel Hatchway Covers of Ballast Holds 14.1.7.1	(Deleted)
Part 2-3 ORE CARRIERS Chapter 3 STRUCTURAL DESIGN PRINCIPLES <u>3.1 (Deleted)</u>	Part 2-3 ORE CARRIERS Chapter 3 STRUCTURAL DESIGN PRINCIPLES <u>3.1 Net Scantling Approach</u>	Left as "3.1 (Deleted)"
	3.1.1 Corrosion Addition 3.1.1 Hatch Cover and Hatch Coaming The corrosion addition on both sides of the hatch cover and hatch coaming of the ore carriers which is subject to Part 2-3, is to be in accordance with Table 3.1.1-1 specified in 3.1.1, Part 2-2 instead of Table 3.3.4-2 specified in 3.3.4, Part 1.	

Amended	Original	Remarks
Chapter 4 LOADS	Chapter 4 LOADS	
(Deleted)	<u>4.5 Loads to be Considered in Equipment</u> <u>4.5.1 General</u> <u>4.5.1.1 General</u>	(Deleted)
	Loads to be considered in hatch covers and other equipment as specified in 14.1 are to be in accordance with the requirements of 4.8, Part 2-2, instead of 4.10, Part 1. However, the relevant requirements in Part CSR-B&T may be applied where deemed appropriate by the Society.	
Chapter 11 STRUCTURES OUTSIDE THE CARGO REGION	Chapter 11 STRUCTURES OUTSIDE THE CARGO REGION	
11.1 Superstructures	11.1 Superstructures	
11.1.1 Forecastles	11.1.1 Forecastles	
11.1.1.1 1 Bulk Carriers defined in 1.3.1 (13), Part B, are to be provided with forecastles in accordance with the following (1) to (5). However, the forecastle deck arrangements of ships for which the application of this requirement is, for some reason, difficult are to be at the direction of the Society. ((1) to (3) are omitted)	11.1.1.1 1 Bulk Carriers defined in 1.3.1 (13), Part B, are to be provided with forecastles in accordance with the following (1) to (5). However, the forecastle deck arrangements of ships for which the application of this requirement is, for some reason, difficult are to be at the direction of the Society. ((1) to (3) are omitted)	
((1) to (3) are omitted.)(4) To reduce the load on the hatch coaming of the foremost	((1) to (3) are omitted.)(4) To reduce the load on the hatch coaming of the foremost	
(4) To reduce the load on the nach coarning of the lorentost cargo hold specified in <u>4.10.2.2-2</u> , Part <u>1</u> and/or the pressure applying abaft on the forward transverse hatch cover	(4) To reduce the load on the nater coarning of the foremost cargo hold specified in <u>4.8.2.5</u> , Part <u>2-2</u> and/or the pressure applying abaft on the forward transverse hatch cover	

	Original	
Amended specified in 4.10.6, Part 1, the horizontal distance ℓ _F (m) from the hatch coaming to all points of the aft edge of the forecastle deck is to satisfy the following formula. ℓ _F ≤ 5√H _F - H _C H _F and H _C : As specified in (3) above. (5) A breakwater is not to be fitted on the forecastle deck with the purpose of protecting the hatch coaming or hatch covers. If fitted for other purposes, it is to be located such that its aft edge at the centre line is forward of the aft edge of the forecastle deck a horizontal distance ℓ _w (m) satisfying the following formula: ℓ _w ≥ H _B /tan20° H _B : Height of the breakwater above the forecastle (m) (Deleted) (Deleted)	 (<i>m</i>) from the hatch coaming to all points of the aft edge of the forecastle deck is to satisfy the following formula. ℓ_F ≤ 5√H_F - H_C H_F and H_C: As specified in (3) above. (5) A breakwater is not to be fitted on the forecastle deck with the purpose of protecting the hatch coaming or hatch covers. If fitted for other purposes, it is to be located such that its aft edge at the centre line is forward of the aft edge of the 	(Deleted)

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
		Remarks
Part 2-5 GENERAL CARGO SHIPS AND	Part 2-5 GENERAL CARGO SHIPS AND	
REFRIGERATED CARGO SHIPS	REFRIGERATED CARGO SHIPS	
Chapter 3 STRUCTURAL DESIGN PRINCIPLES	Chapter 3 STRUCTURAL DESIGN PRINCIPLES	
3.1 (Deleted)	3.1 Net Scantling Approach	Left as "3.1 (Deleted)"
	3.1.1 Corrosion Additions	
	3.1.1.1 Hatch Cover and Hatch Coaming Corrosion additions for both sides of the hatch covers and the hatch coamings of the self-unloading ships defined in 1.3.1 (19), Part B that are subject to this part are to be in accordance with Table 3.1.1- 1 in 3.1.1, Part 2-2 instead of Table 3.3.4-2 in 3.3.4, Part 1.	
Chapter 10 ADDITIONAL STRUCTURAL REQUIREMENTS	Chapter 10 ADDITIONAL STRUCTURAL REQUIREMENTS	
10.5 Additional Requirements for Self-Unloading Ships	10.5 Additional Requirements for Self-Unloading Ships	
10.5.1 General	10.5.1 General	
10.5.1.1 Application	10.5.1.1 Application	
Self-unloading ships specified in 1.3.1(19), Part B are to be	Self-unloading ships specified in 1.3.1(19), Part B are to be	
in accordance with the following (1) to (3).	in accordance with the following (1) to (3).	
(1) 14. <u>6</u> , Part <u>1</u> , 3.2 and 11.1, Part 2-3, are to be applied.	(1) 14. <u>1</u> , Part <u>2-2</u> , 3.2 and 11.1, Part 2-3, are to be applied.	
(2) The side frames of self-unloading ships with single-side	(2) The side frames of self-unloading ships with single-side	
structures in cargo hold areas are to comply with IACS	structures in cargo hold areas are to comply with IACS	
Unified Requirement S12, as may be amended.	Unified Requirement S12, as may be amended.	

 (3) For self-unloading ships to which Annex 1.1 "Additional Requirements for Bulk Carriers in Chapter XII of the SOLAS Convention", Chapter 1, Part 2-2 applies according to 1.1.1.2, regardless of Annexes A3 and A5 when applying said Annex 1.1, in cases where self- unloading ships with unloading systems that do not maintain watertightness, the combination loads acting on the bulkheads in the flooded conditions are to be considered using the extent to which the flooding may occur. (3) For self-unloading ships to which Annex 1.1 "Additional Requirements for Bulk Carriers in Chapter XII of the SOLAS Convention", Chapter 1, Part 2-2 applies according to 1.1.1.2, regardless of Annexes A3 and A5 when applying said Annex 1.1, in cases where self- unloading ships with unloading systems that do not maintain watertightness, the combination loads acting on the bulkheads in the flooded conditions are to be considered using the extent to which the flooding may occur. EFFECTIVE DATE AND APPLICATION 	Amended	Original	Remarks
 The effective date of the amendments is 1 July 2024. Notwithstanding the amendments to the Rules, the current requirements apply to ships for which the date of contract for construction* is before the effective date. For ships subject to Part C of the Rules for the Survey and Construction of Steel Ships and the Guidance for the Survey and Construction of Steel Ships prior to its comprehensive revision by Rule No.62 on 1 July 2022 and Notice No.47 on 1 July 2022 (herein after referred to as "old Part C of the Rules" and "old Part C of the Guidance"), and which the date of contract for construction* is on and after the effective date, this amendment also applies to following requirements. Chapter 20, old Part C of the Rules C20, old Part C of the Guidance * "contract for construction" is defined in the latest version of IACS Procedural Requirement (PR) No.29. 	 (3) For self-unloading ships to which Annex 1.1 "Additional Requirements for Bulk Carriers in Chapter XII of the SOLAS Convention", Chapter 1, Part 2-2 applies according to 1.1.1.2, regardless of Annexes A3 and A5 when applying said Annex 1.1, in cases where self-unloading ships with unloading systems that do not maintain watertightness, the combination loads acting on the bulkheads in the flooded conditions are to be considered using the extent to which the flooding may occur. EFFECTIVE DATE AND APPLICATION 1. The effective date of the amendments is 1 July 2024. 2. Notwithstanding the amendments to the Rules, the current requirements apply to ships for which the date of contract for construction* is before the effective date. 3. For ships subject to Part C of the Rules for the Survey and Construction of Steel Ships prior to its comprehensive revision by Rule No.62 on 1 July 2022 and Notice No.47 on 1 July 2022 (herein after referred to as "old Part C of the Rules" and "old Part C of the Guidance"), and which the date of contract for construction* is on and after the effective date, this amendment also applies to following requirements. Chapter 20, old Part C of the Rules C20, old Part C of the Guidance 	(3) For self-unloading ships to which Annex 1.1 "Additional Requirements for Bulk Carriers in Chapter XII of the SOLAS Convention", Chapter 1, Part 2-2 applies according to 1.1.1.2, regardless of Annexes A3 and A5 when applying said Annex 1.1, in cases where self- unloading ships with unloading systems that do not maintain watertightness, the combination loads acting on the bulkheads in the flooded conditions are to be considered	Remarks

Amended	Original	Remarks
IACS PR No.29 (Rev.0, July 2009)		
 IACS PR No.29 (Rev.0, July 2009) The date of "contract for construction" of a vessel is the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. This date and the construction numbers (i.e. hull numbers) of all the vessels included in the contract are to be declared to the classification society by the party applying for the assignment of class to a newbuilding. The date of "contract for construction" of a series of vessels, including specified optional vessels for which the option is ultimately exercised, is the date on which the contract to build the series is signed between the prospective owner and the shipbuilder. For the purpose of this Procedural Requirement, vessels built under a single contract for construction are considered a "series of vessels," if they are built to the same approved plans for classification purposes. However, vessels within a series may have design alterations from the original design provided: such alterations are subject to classification requirements, these alterations are to comply with the classification requirements in effect on the date on which the alterations are contracted between the prospective owner and the shipbuilder or, in the absence of the alterations are subject to the same series of vessels for the shipbuilder or, in the absence of the alteration are solicated part of the same series of vessels if the option is exercised not later than 1 year after the contract to build the series was signed. If a contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction is later amended to include additional vessels or		
 the contract, is signed between the prospective owner and the shipbuilder. The amendment to the contract is to be considered as a "new contract" to which 1. and 2. above apply. 4. If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessel, or vessels, is the date on which revised contract or new contract is signed between the Owner, or Owners, and the shipbuilder. 		
Note: This Procedural Requirement applies from 1 July 2009.		

Amended-Original Requirements Comparison	Table (Hatch Covers, Hatch Coamings and Closing Ar	rangements)
Amended	Original	Remarks
	ONSTRUCTION OF STEEL SHIPS AND EQUIPMENT OF SMALL SHIPS ACE OPENINGS AND OTHER DECK OPENINGS	
19.1 General	19.1 General	UR S21 1.1
19.1.3 DefinitionsThe terms used in 19.2 are defined as follows.(1) "Type 1 ship" means any ship other than "Type 2 ship".(2) "Type 2 ship" means ore carriers and combination carriers designed to carry either oil or solid cargoes in bulk(e.g. ore/oil carriers) defined in 1.3.1(13), Part B (excluding those affixed with the notation "CSR"), and self-unloading ships defined in 1.3.1(19), Part B.	(Newly added)	(Newly added)
19.2 Hatchways	19.2 Hatchways	UR S21 1.1
 19.2.1 Application* 1 The construction and the means for closing of cargo and other hatchways <u>on exposed decks</u> are to comply with the requirements in 19.2. 	 19.2.1 Application* 1 The construction and the means for closing of cargo and other hatchways are to comply with the requirements in 19.2. 2 Notwithstanding the provisions in this paragraph, the construction and means for closing of cargo and other hatchways of bulk carriers defined in 1.3.1(13) of Part B, self-unloading ships defined in 1.3.1(19) of Part B and ships intended to be registered as "bulk carriers" are to be at the discretion of the Society. 	
2 When the loading condition or the type of construction differs	<u>3</u> When the loading condition or the type of construction	

Amended	Original	Remarks
from that specified in this section, the calculation method used is to be as deemed appropriate by the Society. <u>3</u> Hatch covers and hatch coamings on non-exposed decks of ships and those of fishing vessels are to be as deemed appropriate by the Society.	differs from that specified in this section, the calculation method used is to be as deemed appropriate by the Society. (Newly added)	(Newly added)
 19.2.2 General Requirement 1 Primary supporting members and stiffeners of hatch covers are to be continuous over the breadth and length of hatch covers. When this is impractical, appropriate arrangements are to be adopted to ensure sufficient load carrying capacity and sniped end connections are not to be allowed. 2 The spacing of primary supporting members parallel to the direction of stiffeners is not to exceed 1/3 of the span of the primary supporting members. 3 Stiffeners of hatch coamings are to be continuous as far as practical over the breadth and length of said hatch coamings. 	 19.2.2 General Requirement 1 Primary supporting members and secondary stiffeners of hatch covers are to be continuous over the breadth and length of hatch covers. When this is impractical, appropriate arrangements are to be adopted to ensure sufficient load carrying capacity and sniped end connections are not to be allowed. 2 The spacing of primary supporting members parallel to the direction of secondary stiffeners is not to exceed 1/3 of the span of the primary supporting members. 3 Secondary stiffeners of hatch coamings are to be continuous over the breadth and length of said hatch coamings. 	UR S21 1.4
 19.2.3 Net Scantling Approach (Omitted.) 5 Strength calculations using FEM are to be performed with net scantlings. 	 19.2.3 Net Scantling Approach (Omitted.) 5 Strength calculations using <u>grillage analysis or</u> FEM are to be performed with net scantlings. 	UR S21 1.5

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

	Amende				Original		Re	emark
Table CS19.1 Corrosion Additions						UR S2	1 7.1	
	Type of ship	Type of structural mem	ber		Corrosion addition te (mm)			
	Container earriers and	Steel hateh covers			1.0			
	ear earriers	Hatchway coamings			1.5			
	Ships other than those	Single plating type hatel	1 cover		2.0			
	specified above and		1	Top, side and bottom plating	15			
	subject to the application of thi s	Double plating type hate	sh cover	Internal structures	1.0			
	section	Hatchway coamings, ha	teh coarning stay	s and stiffeners	1.5			
	1	Table	e CS19.1 (Corrosion Additions tc				
Type	<u>Ship t</u>	ype		Framing system		<u>t_c (mm)</u>		
			Single skin hatch covers			<u>2.0</u>		
	G1' 4 4 4 1 1	4 4 4 1 1		Top, side and bottom plating		<u>1.5</u>		
Type 1	Ships other than the below		Double skin Iop, side and bottom plating hatch covers Internal structural members	<u>1.0</u>				
<u>ship</u>			Hatch coaming	s, hatch coaming stays and stiffeners	2	<u>1.5</u>		
	Container carrier		<u>Hatch covers (in</u>	n general)		<u>1.0</u>		
	Car carrier		Hatch coaming	3		<u>1.5</u>		
	Ore carrier		Single skin hate	h covers		<u>2.0</u>		
Type 2	Combination carriers which either oil or solid cargoes in		Double skin	Top, side and bottom plating		<u>2.0</u>		
ship	Self-unloading ships		hatch covers Internal structural members			<u>1.5</u>		
	(Ships specified in 1.3.1(13) affixed with the notation "C		Hatch coaming	Hatch coamings, hatch coaming stays and stiffeners		<u>1.5</u>		
	rosion additions for both sides definitions of Type 1 ship and			-exposed decks are to be as deemed	appropriate by the Society.			

Amended	Original	Remarks
19.2.4 Design Load for Steel Hatch Covers, Portable Beams and Hatchway Coamings	19.2.4 Design Load for Steel Hatch Covers, Portable Beams and Hatchway Coamings	UR S21 2.1
The design loads for steel hatchway covers, steel pontoon covers, steel weathertight covers, portable beams and hatchway	The design loads for steel hatchway covers, steel pontoon covers, steel weathertight covers, portable beams and hatchway	
coamings applying the requirements in 19.2 are specified in following (1) to (5): coamings applying the requirements in 19.2 are specified in following (1) to (5):		
(1) Design vertical wave load $P_{\underline{HC}}$ (kN/m^2) is not to be less than that obtained from Table CS19.2 . Design vertical wave loads need not to be combined with cargo loads according to (3) and (4) simultaneously.	(1) Design vertical wave load P_V (kN/m^2) is not to be less than that obtained from Table CS19.2 . Design vertical wave loads need not to be combined with cargo loads according to (3) and (4) simultaneously.	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

A	mended	A	,	,	Original	Remarks
	Table	CS19.2 Design Ve	ertical Wave Load $P_{\Psi HC} (kN/m^2)$	$P_{\underline{\#}\underline{HC}} = (*1)(*2) (kN/n)$	<i>m</i> ²)	UR S21 2.1
	Position I	1	$\frac{.81}{76} \left\{ \left(4.28L_f + 28 \right) \right\}$	$\Big)\frac{x}{L_f} - 1.71L_f + 95$	}(*3)	
	Docition II	Elsewhere		$1.5L_f + 116$) $1.1L_f + 87.6$)		
x : distance of the mid le (*2) For exposed hatchways	ength of the hatch in positions othe	n 2.1.3, Part A of the Rules (a cover under examination fro r than Position I or II, the valu t least one superstructure star	(<i>m</i>) from the aft end of L_f (<i>m</i>) ue of each design wave h	oad will be specially consi	idered. y be taken as $rac{9.81}{76} \left(1.5 L_f + 116 ight)$ (kN/m²).	
(2) Design horizontal way that obtained from the not to be taken less tha CS19.3 . $P_{\underline{A}}$ need no calculation of the ha supporting stoppers ar $P_{\underline{A}} = \frac{f_n f_c}{f_b} [f_b C_1 - y]$ f_n : As given by the f	e following t in the minim t be include atch cover, e assessed.	formulae. However, um values given in T ed in the direct stre	$P_{\underline{A}}$ is Table ength etures $P_{\underline{A}}$	than that obtained $P_{\underline{H}}$ is not to be take Table CS19.3 . $P_{\underline{H}}$)	
$20 + \frac{L'}{12} \qquad \text{fo}$ $10 + \frac{L'}{12} \qquad \text{fo}$	r unprotect utch cover sk r unprotect	ed front coamings tirt plates ed front coamings skirt plates, where	and	$20 + \frac{L'}{12}$ $10 + \frac{L'}{12}$	for unprotected front coamings and hatch cover skirt plates for unprotected front coamings and hatch cover skirt plates, where the distance from the actual freeboard deck	

Amended	Original	Remarks
		Remarks
distance from the actual freeboard deck	to the summer load line exceeds the	
to the summer load line exceeds the	minimum non-corrected tabular	
minimum non-corrected tabular	freeboard according to the ILCC by at	
freeboard according to the ILCC by at	least one superstructure standard height	
least one superstructure standard height	$5 + \frac{L'}{15}$ for side and protected front coamings	
$5 + \frac{L'}{15}$ for side and protected front coamings	and hatch cover skirt plates	
and hatch cover skirt plates	$7 + \frac{L'}{100} - 8\frac{x}{L_1}$ for aft ends of coamings and aft hatch	
$7 + \frac{L'}{100} - 8\frac{x}{L_1}$ for aft ends of coamings and aft hatch	L_1 cover skirt plates abaft amidships	
cover skirt plates abaft amidships	$5 + \frac{L'}{100} - 4\frac{x}{L_1}$ for aft ends of coamings and aft hatch	
$5 + \frac{L'}{100} - 4\frac{x}{L_1}$ for aft ends of coamings and aft hatch	cover skirt plates forward of amidships	
cover skirt plates forward of amidships	L': Length of ship $L_1(m)$	
L': Length of ship $L_1(m)$	L_1 : Distance (m) measured on the waterline at the	
L_1 : Distance (m) measured on the waterline at the	scantling draught d_S from the forward side of the stem	
scantling draught d_S from the forward side of the stem	to the centre of the rudder stock. L_1 is to be not less than	
to the centre of the rudder stock. L_1 is to be not less than	96% and need not exceed 97% of the extreme length	
96% and need not exceed 97% of the extreme length on	on the waterline at the scantling draught ds . In ships	
the waterline at the scantling draught d_s . In ships	without rudder stocks (e.g. ships fitted with azimuth	
without rudder stocks (e.g. ships fitted with azimuth	thrusters), the Rule length L_1 is to be taken equal to	
thrusters), the Rule length L_1 is to be taken equal to	97% of the extreme length on the waterline at the	
97% of the extreme length on the waterline at the	scantling draught ds .	
scantling draught ds .	ds: Scantling draught (m) at which the strength	
ds: Scantling draught (m) at which the strength	requirements for the scantlings of the ship are met and	
requirements for the scantlings of the ship are met and	represents the full load condition; it is to be not less than that corresponding to the assigned freehoard	
represents the full load condition; it is to be not less than	that corresponding to the assigned freeboard.	
that corresponding to the assigned freeboard.	C_1 : As given by the following formula:	
C1: As given by the following formula: $(300 - I)^{1.5}$	$C_1 = 10.75 - \left(\frac{300 - L_1}{100}\right)^{1.5}$	
$C_1 = 10.75 - \left(\frac{300 - L_1}{100}\right)^{1.5}$	c_L : Coefficient to be taken as 1.0	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
<i>cL</i> : Coefficient to be taken as 1.0 <u><i>f</i></u> <u><i>b</i></u> : As given by the following formulae: 1.0 + $\left(\frac{0.45 - \frac{x}{L_1}}{C_{b_1} + 0.2}\right)^2$ for $\frac{x}{L_1} < 0.45$ 1.0 + 1.5 $\left(\frac{\frac{x}{L_1} - 0.45}{C_{b_1} + 0.2}\right)^2$ for $\frac{x}{L_1} \ge 0.45$ <i>x</i> : Distance (<i>m</i>) from the hatchway coamings or hatch cover skirt plates to after perpendicular, or distance from mid-point of the side hatchway coaming or hatch cover skirt plates to after perpendicular. However, where the length of the side hatchway coaming or hatch cover skirt plates exceeds 0.15 L_1 , the side hatchway coaming or hatch cover skirt plates exceeds 0.15 L_1 , the side hatchway coaming or hatch cover skirt plates are to be equally subdivided into spans not exceeding 0.15 L_1 and the distance from the mid-point of the subdivisions to the after perpendicular is to be taken. <i>C</i> _{b1} is to be taken as 0.6 and where C_b is 0.8 and over, C_{b1} is to be taken as 0.8. When determining scantlings of the aft ends of coamings and aft hatch cover skirt plates forward of amidships, C_{b1} does not need to be taken as less than 0.8.	$\underline{b}: \text{ As given by the following formulae:} \\ 1.0 + \left(\frac{0.45 - \frac{x}{L_1}}{C_{b1} + 0.2}\right)^2 \text{ for } \frac{x}{L_1} < 0.45 \\ 1.0 + 1.5 \left(\frac{\frac{x}{L_1} - 0.45}{C_{b1} + 0.2}\right)^2 \text{ for } \frac{x}{L_1} \ge 0.45 \\ x: \text{ Distance } (m) \text{ from the hatchway coamings or hatch cover skirt plates to after perpendicular, or distance from mid-point of the side hatchway coaming or hatch cover skirt plates to after perpendicular. However, where the length of the side hatchway coaming or hatch cover skirt plates exceeds 0.15 L_1, the side hatchway coaming or hatch cover skirt plates exceeds 0.15 L_1, the side hatchway coaming or hatch cover skirt plates are to be equally subdivided into spans not exceeding 0.15 L_1 and the distance from the mid-point of the subdivisions to the after perpendicular is to be taken. C_{b1}: \text{ Block coefficient. However, where } C_b \text{ is 0.6 or under, } C_{b1} \text{ is to be taken as 0.8. When determining scantlings of the aft ends of coamings and aft hatch cover skirt plates forward of amidships, C_{b1} does not need to be taken as less than 0.8.\underline{c}: \text{ As given by the following formula. However, where } \frac{b'}{B'} \text{ is less than 0.25, } \frac{b'}{B'} \text{ is to be taken as 0.25.}$	
<u>f_c</u> : As given by the following formula. However, where $\frac{b'}{B'}$ is less than 0.25, $\frac{b'}{B'}$ is to be taken as 0.25.	where $\frac{b'}{B'}$ is less than 0.25, $\frac{b'}{B'}$ is to be taken as 0.25. $0.3 + 0.7 \frac{b'}{B'}$	
$0.3 + 0.7 \frac{b'}{B'}$ b': Breadth (m) of hatchway coamings at the position under consideration	 b': Breadth (m) of hatchway coamings at the position under consideration B': Breadth (m) of ship on the exposed weather deck at the position under consideration 	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
 B': Breadth (m) of ship on the exposed weather deck at the position under consideration y: Vertical distance (m) from the designed maximum load line to the mid-point of the span of stiffeners when determining the scantlings of stiffeners and to the mid-point of the plating when determining the thickness of plating 	<i>y</i> : Vertical distance (<i>m</i>) from the designed maximum load line to the mid-point of the span of stiffeners when determining the scantlings of stiffeners and to the mid-point of the plating when determining the thickness of plating	
Table CS19.3 Minimu Unprotected front coarnings at hatch cover skirt plates $25 + \frac{L_1}{10}$		
 (3) The load on hatch covers due to cargo loaded on said covers is to be obtained from the following (a) and (b). Load cases with partial loading are also to be considered. (a) Distributed load due to cargo load P_L (kN/m²) resulting from heave and pitch (i.e., ship in upright condition) is to be determined according to the following formula: 	 (3) The load on hatch covers due to cargo loaded on said covers is to be obtained from the following (a) and (b). Load cases with partial loading are also to be considered. (a) Distributed load due to cargo load P_{cargo} (kN/m²) resulting from heave and pitch (i.e., ship in upright condition) is to be determined according to the following formula: 	UR S21 2.3
$P_{\underline{L}} = P_{\underline{Cargo}}(1 + a_V)$ $P_{\underline{Cargo}}: \text{Static uniform cargo load } (kN/m^2)$ $a_V: \text{ Vertical acceleration addition given by the following formula:}$ $a_V = \frac{0.11mV'}{\sqrt{L_1}}$ $m: \text{ As given by the following formulae:}$	$P_{cargo} = P_{\underline{C}}(1 + a_V)$ $P_{\underline{C}}: \text{ Static uniform cargo load } (kN/m^2)$ $av: \text{ Vertical acceleration addition given by the following formula:}$ $a_V = \frac{0.11mV'}{\sqrt{L_1}}$ $m: \text{ As given by the following formulae:}$	

Amended	Original	Remarks
$m_0 - 5(m_0 - 1)\frac{x}{L_1} \text{for } 0 \le \frac{x}{L_1} \le 0.2$	$m_0 - 5(m_0 - 1)\frac{x}{L_1}$ for $0 \le \frac{x}{L_1} \le 0.2$	
1.0 for $0.2 < \frac{x}{L_1} \le 0.7$	1.0 for $0.2 < \frac{x}{L_1} \le 0.7$	
$1 + \frac{m_0 + 1}{0.3} \left(\frac{x}{L_1} - 0.7 \right) \text{for } 0.7 < \frac{x}{L_1} \le 1.0$	$1 + \frac{m_0 + 1}{0.3} \left(\frac{x}{L_1} - 0.7 \right)$ for $0.7 < \frac{x}{L_1} \le 1.0$	
m_0 : As given by the following formula:	m_0 : As given by the following formula:	
$m_0 = 1.5 + \frac{0.11V'}{\sqrt{L_1}}$	$m_0 = 1.5 + \frac{0.11V'}{\sqrt{L_1}}$	
V': Speed of ship (<i>knots</i>) specified in 2.1.8, Part A. However, where V' is less than $\sqrt{L_1}$, V' is to	<i>V'</i> : Speed of ship (<i>knots</i>) specified in 2.1.8 , Part A . However, where <i>V'</i> is less than $\sqrt{L_1}$, <i>V'</i> is to	
be taken as $\sqrt{L_1}$. x and L_1 : As specified in (2) above	be taken as $\sqrt{L_1}$. x and L_1 : As specified in (2) above	
 (b) Point load <u>P</u> (kN) due to a single force resulting from heave and pitch (i.e., ship in upright condition) is to be determined by the following formula. However, container loads are to comply with the provisions of (4) below. 	(b) Point load F_{cargo} (kN) due to a single force resulting from heave and pitch (i.e., ship in upright condition) is to be determined by the following formula. However, container loads are to comply with the provisions of (4) below.	
$\underline{P} = \underline{P_S}(1 + a_V)$	$\underline{F_{cargo}} = \underline{F_S}(1 + a_V)$	
<u>P_{S}</u> : Static point load due to cargo (kN) av: As specified in (a) above	F_{S} : Static point load due to cargo (<i>kN</i>) <i>av</i> : As specified in (a) above	
(4) Where containers are stowed on hatch covers, cargo loads	(4) Where containers are stowed on hatch covers, cargo loads	UR S21 2.4.3
determined by following (a) to (c) are to be considered:	determined by following (a) to (c) are to be considered:	
(a) Cargo loads (kN) , acting on each corner of a container	(a) Cargo loads (kN) , acting on each corner of a container	
stack, due to heave, pitch and roll motion of the ship	stack, due to heave, pitch and roll motion of the ship	
(i.e., ship in heel condition) are to be determined by the full surface for $CS10(1)$. When the local	(i.e., ship in heel condition) are to be determined by the	
following formulae (see Fig. CS19.1). When the load case of a partially loaded container is considered, the	following formulae (see Fig. CS19.1). When the load case of a partially loaded container is considered, the	
case of a partially loaded container is considered, the	case of a partiality loaded container is considered, the	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
cargo load is at the discretion of the Society.	cargo load is at the discretion of the Society.	
$A_Z = 9.81 \frac{M}{2} (1 + a_V) \left(0.45 - 0.42 \frac{h_m}{b} \right)$	$A_Z = 9.81 \frac{M}{2} (1 + a_V) \left(0.45 - 0.42 \frac{h_m}{b} \right)$	
$B_Z = 9.81 \frac{M}{2} (1 + a_V) \left(0.45 + 0.42 \frac{h_m}{b} \right)$	$B_Z = 9.81 \frac{M}{2} (1 + a_V) \left(0.45 + 0.42 \frac{h_m}{b} \right)$	
$B_Y = 2.4M$	$B_Y = 2.4M$	
M: Maximum designed mass of container stack (t)	M: Maximum designed mass of container stack (t)	
$M = \sum W_i$	$M = \sum W_i$	
$h_{m}: \text{ Design height of the centre of gravity of the stack above hatch cover top plates (m) may be calculated as the weighted mean value of the stack, where the centre of gravity of each tier is assumed to be located at the centre of each container. h_{m} = \sum \frac{(z_{i}W_{i})}{M} z_{i}: \text{ Distance from hatch cover top plate to the centre of ith container (m)} W_{i}: \text{ Weight of ith container (i)} b: \text{ Distance between midpoints of foot points (m)} A_{Z} \text{ and } B_{Z}: \text{ Support forces in vertical direction at the forward and aft stack corners (kN)} B_{Y}: \text{ Support force in transverse direction at the forward and aft stack corners (kN)}$	$h_{m}: \text{ Design height of the centre of gravity of the stack} above hatch cover top plates (m) may be calculated as the weighted mean value of the stack, where the centre of gravity of each tier is assumed to be located at the centre of each container. h_{m} = \sum \frac{(z_{i}W_{i})}{M} z_{i}: \text{ Distance from hatch cover top plate to the centre of ith container (m)} W_{i}: \text{ Weight of ith container (t)} b: \text{ Distance between midpoints of foot points (m)} A_{Z} \text{ and}B_{Z}: \text{ Support forces in vertical direction at the forward and aft stack corners (kN)} B_{Y}: \text{ Support force in transverse direction at the forward and aft stack corners (kN)}$	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
Fig. CS19.1 Forces d	ue to Container Loads	UR S21 Fig.3
 (b) Details of the application of (a) above are to be in accordance with the following: i) The values of A_Z and B_Z applied for the assessment of hatch cover strength are to be shown in the drawings of the hatch covers. ii) It is recommended that container loads, as calculated in (a) above, be considered as the limit for foot point loads of container stacks in cargo securing (container lashing) calculations. (c) Stack load P_{stack} (kN), acting on each corner of a container stack, due to heave and pitch (i.e., ship in upright condition) is to be determined by the following formula. P_{stack} = 9.81 M/4 (1 + a_V) 	 (b) Details of the application of (a) above are to be in accordance with the following: When the strength of a hatch cover structure is assessed by grillage analysis according to 19.2.5-5, h_m and z_i need to be measured from the hatch cover supports, not hatch cover top plates. Force B_Y does not need to be considered in this case. The values of A_Z and B_Z applied for the assessment of hatch cover strength are to be shown in the drawings of the hatch covers. It is recommended that container loads, as calculated in (a) above, be considered as the limit for foot point loads of container stacks in cargo securing (container lashing) calculations. Stack load P_{stack} (kN), acting on each corner of a container stack, due to heave and pitch (i.e., ship in upright condition) is to be determined by the following formula. 	UR S21 2.4.2 UR S21 2.4.3
	133/207	

Amended-Original Requirements Compariso	on Table (Hatch Covers, I	Hatch Coamings and Closin	g Arrangements)
			· · · · · · · · · · · · · · · · · · ·

U	ended	Original	Remarks
a_V : As specified i	n (3) above	a_V : As specified in (3) above	
M: As specified i	n (a) above	M: As specified in (a) above	
assessments of the hatch accordance with the fol (a) Front-end hatch c 290 (kN/m ²) However, where a with the requirement be 220 kN/m ² .	to be considered in strength a coaming of Type 2 ships is to be in lowing (a) or (b). coaming of the foremost cargo hold: forecastle is installed in accordance ents of 11.1, Part 2-3, this value may her than (a) above: $220 (kN/m^2)$	(Newly added)	(Newly added) UR S21 2.2.2
the load in the ship's the elastic deformation of the ship's the ship's the elastic deformation of the ship's	specified in (1) to (5) above, when ransverse direction by forces due to he ship's hull is acting on the hatch ses is to comply with the permissible (5-1(1).	(5) In addition to the loads specified in (1) to (4) above, when the load in the ship's transverse direction by forces due to elastic deformation of the ship's hull is acting on the hatch covers, the sum of stresses is to comply with the permissible values specified in 19.2.5-1(1).	UR S21 2.5
strength assessments of accordance with the fol (a) Stoppers for the ha i) Pressure actir front-end of the However, w accordance w 3, this value r	and $P_{stopper}$ to be considered in Stoppers of Type 2 ships is to be in lowing (a) or (b). the cover to the foremost cargo hold ag in the direction of the stern on the me hatch cover: 230 (kN/m^2) here a forecastle is installed in ith the requirements of 11.1, Part 2- may be 175 kN/m^2 . e transverse direction of the ship: 175	(Newly added)	(Newly added) UR S21 6.2.3

Amended	Original	Remarks
(b) Stoppers for hatch covers other than that specified in (a)		
above		
Pressure acting in the direction of the stern on the front-		
end of the hatch cover and pressure in the		
transverse direction the ship: 175 kN/m ²		

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
19.2.5 Strength Criteria of Steel Hatch Covers and Hatch Beams	19.2.5 Strength Criteria of Steel Hatch Covers and Hatch Beams	UR S21 3.1.1
1 Permissible stresses and deflections	1 Permissible stresses and deflections	
(1) <u>All hatch cover structural members are to comply with the</u>	(1) <u>The equivalent stress σ_E (<i>N/mm²</i>) in steel hatchway covers</u>	
following formulae:	and steel weathertight covers are to be complied with the	
$\sigma_{vm} \leq \sigma_a$ for shell elements in general.	criteria as following (a) and (b):	
$\sigma_{axial} \leq \sigma_a$ for rod or beam elements in general.	(a) For grillage analysis:	
<u>Where:</u> σ_a : Allowable stress as defined in Table CS19.4	$\underline{\sigma_E} = \sqrt{\sigma^2 + 3\tau^2} \le 0.8\sigma_E$	
σ_{am} : Von Mises stress (<i>N/mm²</i>) to be taken as follows:	σ : Nominal stress (<i>N</i> / <i>mm</i> ²)	
	τ : Shear stress (<i>N</i> / <i>mm</i> ²)	
$\underline{\sigma_{vm}} = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2}$	$\overline{\sigma_F}$: Minimum upper yield stress (N/mm ²) or proof	
σ_{axial} : Axial stress (N/mm ²) in rod or beam elements	stress (N/mm ²) of the material. However, when	
	material with a σ_F of more than 355 N/mm ² is	
	used, the value for σ_F is to be taken as deemed	
	<u>appropriate by the Society.</u> (b) For FEM calculations, in cases where the calculations	
	use shell or plane strain elements, the stresses are to be	
	taken from the centre of the individual element.	
	$\underline{\sigma_E} = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau^2} \le 0.8\sigma_F \text{when}$	
	assessed using the design load specified in 19.2.4(1)	
	$\underline{\sigma_E} = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau^2} \le 0.9\sigma_F \qquad \text{when}$	
	assessed using any other design loads	
σ_x : Normal stress (<i>N/mm²</i>) in the <i>x</i> -direction	σ_x : Normal stress (<i>N/mm²</i>) in the x-direction	
σ_y : Normal stress (<i>N/mm²</i>) in the <i>y</i> -direction	σ_y : Normal stress (<i>N/mm²</i>) in the <i>y</i> -direction	
τ_{xy} : Shear stress (<i>N/mm²</i>) in the x-y plane	τ : Shear stress (<i>N/mm²</i>) in the <i>x</i> - <i>y</i> plane	
x, y: Coordinates of a two dimensional Cartesian	\overline{x}, y : Coordinates of a two dimensional Cartesian	
system in the plane of the considered structural	system in the plane of the considered structural	

	Amer		X	Original	Remarks
	material. Howe more than 355	imum yield stress (N/mm^2) of the vever, when material with σ_Y of $\frac{1}{55} N/mm^2$ is used, the value for σ_Y ned appropriate by the Society.		element σ_F : As specified in (a) above of	
		Table CS19.4 A	llowable Stresse	<u>s</u>	(Newly added)
	Members of	Subject to		<u>σ_a (N/mm²)</u>	UR S21 3.1.1
		External pressure, as defined in 19	9.2.4(1)	$0.80\sigma_Y$	
	Hatch cover structure	Other loads, as defined in 19.2.4(2) to	<u>o 19.2.4(5)</u>	$\frac{0.90\sigma_V}{0.72\sigma_V}$ for static+dynamic load case	
(2)		$n (N/mm^2)$ in steel pontoon covers o be greater than $0.68\sigma_Y$, where		equivalent stress $\sigma_{\underline{E}}$ (<i>N/mm</i> ²) in steel pontoon cover atch beams is not to be greater than $0.68\sigma_F$, when	
	σ_Y is as specified in (1) a				Lines, AnnexI
(3)	 For FEM calculations, engineers with unsymmetric and steel weathertight conto the following (a) or (b) (a) FEM calculations unservice to the stream of the stream of the stream which ever is greater. 	quivalent stress $\sigma_{\underline{vm}}$ (<i>N/mm</i> ²) in ral flanges of steel hatchway covers vers is to be determined according s: using the stress obtained for fine sing the stress at the edge of the ss at the centre of the element,	 girders with unsymmetrical flanges of steel hatchway covers and steel weathertight covers is to be determined according to the following (a) or (b): (a) FEM calculations using the stress obtained for fine mesh elements. (b) FEM calculations using the stress at the edge of the element or the stress at the centre of the element, whichever is greater. 		y (3) UR S21 3.1.1 d e
(Oı	mitted)		(Omitted)		

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2 Local net plate thickness of steel hatch covers (1) The local net thickness t_{net} (<i>mm</i>) of steel hatch cover top plating is not to be less than that obtained from the following formula, and it is not to be less than 1% of the spacing of the stiffeners or 6 <i>mm</i> , whichever is greater: $t_{net} = 15.8F_p S \sqrt{\frac{P_{HC}}{0.95\sigma_F}}$ (<i>mm</i>) F_p : Coefficient given by the following formula: $1.9 \sigma/\sigma_a$ (for $\sigma/\sigma_a \ge 0.8$, for the attached plate flange of primary supporting members) 1.5 (for $\sigma/\sigma_a < 0.8$, for the attached plate flange of primary supporting members) σ : Maximum normal stress (<i>N</i> / <i>mm</i> ²) of the attached plate flange of primary supporting members (see Fig. CS19.2). σ_a : Permissible stress (<i>N</i> / <i>mm</i> ²) is to be as given by <u>following formula:</u> $\sigma_a = 0.8\sigma_F$ <u>S</u> : Stiffener spacing (<i>m</i>) $P_{\underline{HC}}$: Design load (<i>kN</i> / <i>m</i> ²) specified in 19.2.4(1) and 19.2.4(3)(a) σ_F : Minimum upper yield stress (<i>N</i> / <i>mm</i> ²) or proof stress (<i>N</i> / <i>mm</i> ²) of the material	(1)UR S21 3.2 (5)UR S21 3.2.2
(Omitted)	(Omitted)	
(5) When cargo likely to cause shear buckling is intended to be carried on a hatch cover, the net thickness t_{net} (<i>mm</i>) is not to be less than that obtained from following formulae. In such cases, "cargo likely to cause shear buckling" refers particularly to especially large or bulky cargo lashed to the	(5) When cargo likely to cause shear buckling is intended to be carried on a hatch cover, the net thickness t_{net} (<i>mm</i>) is not to be less than that obtained from following formulae. In such cases, "cargo likely to cause shear buckling" refers particularly to especially large or bulky cargo lashed to the	

Amended-Original Requirements Com	parison Table (Hatch Cover	s, Hatch Coamings and Clo	sing Arrangements)
0			

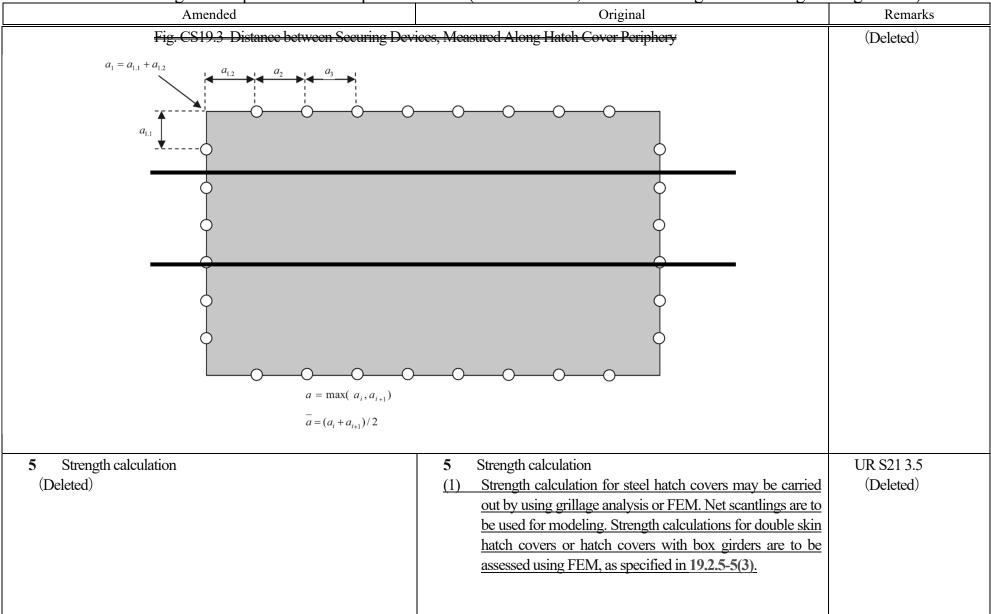
Amended	Original	Remarks
Amendedhatch cover, such as parts of cranes or wind power stations, turbines, etc. Cargo that is considered to be uniformly distributed over the hatch cover (e.g., timber, pipes or steel coils) does not need to be considered. $t_{net} = 6.5_{\underline{S}} \times 10^{-3}$ $t_{net} = 5$ $\underline{s}: As specified in (1) above3 Net scantling of stiffeners(1) The net section modulus Z_{net} (cm^3) of the stiffeners of hatchcover top plates, based on stiffener net member thickness, isnot to be less than that obtained from the following formula.The net section modulus of the stiffeners is to be determinedbased on an attached plate width that is assumed to be equalto the stiffener spacing.Z_{net} = \frac{Ps\ell^2}{f_{bc}\sigma_a} (cm^3)\underline{\ell}: Stiffener span (m) is to be taken as the spacing ofprimary supporting members or the distance between aprimary supporting member and the edge support, asapplicable. When brackets are fitted at both ends of allstiffener spans, the stiffener span may be reduced by anamount equal to 2/3 of the minimum brackets armlength, but not greater than 10% of the gross span, foreach bracket.\underline{s}: Stiffener spacing (mm)P: Design load (kN/m^2) as specified in -2(1) above\sigma_a: Permissible stress (N/mm^2) specified in Table CS19.4f_{bc}: Boundary coefficient of stiffener clamped at bothends.$	$\frac{above}{Z_{net}} = \frac{93SP_{HC}l^2}{\sigma_F} \text{ for the design loads specified in } \underline{19.2}$ $\underline{A(3)(a) above}$ $\underline{l}: \underline{Secondary} \text{ stiffener span } (m) \text{ is to be taken as the spacing of primary supporting members or the distance between a primary supporting member and the edge support, as applicable.}$ $S: \text{Stiffener spacing } (m)$	UR S21 3.3

Amended-Original Requirements Com	parison Table (Hatch Covers	s, Hatch Coamings and Closi	ng Arrangements)
\mathcal{O} 1) 6	0 0 /

Amended	Original	Remarks
AttendedImplementedImplemented in the term of term of the term of	(2) The net shear sectional area A_{net} (cm^2) of the <u>secondary</u> stiffener webs of hatch cover top plates is not to be less than that obtained from the following formula: $\frac{A_{net}}{\sigma_F} = \frac{10.8SP_{HC}l}{\sigma_F} \text{ for the design loads specified in 19.2.4(1)}}{above}$	Keinaiks
(Deleted)	$A_{net} = \frac{9.6SP_{HC}l}{\sigma_F} \text{ for the design loads specified in}$ $19.2.4(3)(a) \text{ above}$ $l, \underline{S} \text{ and } P_{\underline{HC}} \text{: As specified in (1) above}$ $(3) \text{For flat bar secondary stiffeners and buckling stiffeners, the}$ $following \text{ formula is to be applied:}$ $\frac{h}{t_{W,net}} \le 15\sqrt{k}$ $\frac{h: \text{ Height } (mm) \text{ of the stiffener}}{t_{W,net} \text{: Net thickness } (mm) \text{ of the stiffener}}$	(Deleted)
 (3) Stiffeners parallel to primary supporting members are to be continuous at crossing primary supporting member and may be regarded for calculating the cross sectional properties of primary supporting members. (4) The combined stress of those stiffeners induced by the bending of primary supporting members and lateral pressures is not to exceed the permissible stresses according 	 <u>k = 235/σ_F</u> <u>σ_F: As specified in (1) above</u> (4) Stiffeners parallel to primary supporting members and arranged within the effective breadth according to 19.2.5-5(2) are to be continuous at crossing primary supporting member and may be regarded for calculating the cross sectional properties of primary supporting members. (5) The combined stress of those stiffeners induced by the bending of primary supporting members and lateral 	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
to 19.2.5-1(1).	pressures is not to exceed the permissible stresses according to 19.2.5-1 (1).	
(5) For hatch cover stiffeners under compression, sufficient safety against lateral and torsional buckling according to 19.2.5-6 is to be verified.	(6) For hatch cover stiffeners under compression, sufficient safety against lateral and torsional buckling according to 19.2.5-6(3) is to be verified.	
(<u>6</u>) For stiffeners of the lower plating of double skin hatch covers, the requirements in (1) and (2) above do not need to be applied due to the absence of lateral loads <u>and the requirements in this -3 do not need to be applied to stiffeners in cases where the lower plating is not considered to be a <u>strength member</u>.</u>	(<u>7</u>) For <u>secondary</u> stiffeners of the lower plating of double skin hatch covers, the requirements in (1) and (2) above do not need to be applied due to the absence of lateral loads.	
(7) The net thicknesses (<i>mm</i>) of a stiffener (except for U-type stiffeners) web is to not be taken as less than 4 <i>mm</i> .	(8) The net thicknesses (<i>mm</i>) of a stiffener (except for U-type stiffeners) web is to not be taken as less than 4 <i>mm</i> .	
(Deleted)	(9) Single-side welding is not permitted for secondary stiffeners, except for U-type stiffeners.	(Deleted)
(Deleted)	(10) The requirements in this -3 do not to be applied to stiffeners of the lower plating of double skin hatch covers in cases where the lower plating is not considered to be a strength member.	(Deleted)
 4 Primary supporting members of steel hatch covers (1) The scantlings of the primary supporting members of steel hatch covers and hatch beams are to be determined according to -5 below taking into consideration the permissible stresses specified in 19.2.5-1(1). 	 4 Primary supporting members of steel hatch covers and hatch beams (1) The scantlings of the primary supporting members of steel hatch covers and hatch beams are to be determined according to -5 below taking into consideration the neuroiscible structure method in 10.25 1(1) 	UR S21 3.4.1
(Deleted)	 permissible stresses specified in 19.2.5-1(1). (2) The scantlings of the primary supporting members of steel hatch covers and hatch beam with variable cross-sections are to be not less than that obtained from the following formulae. For steel hatchway covers, <i>S</i> and <i>l</i> are to be read as <i>b</i> and <i>S</i>, respectively. 141/207 	(Deleted)


Amended	Original	Remarks
	The net section modulus (<i>cm</i> ³) of hatch beams or primary	
	supporting members at the mid-point	
	$\underline{Z_{net}} = \underline{Z_{net_cs}}$	
	$\underline{Z_{net}} = k_1 \underline{Z_{net_cs}}$	
	The net moment of inertia (cm^4) of hatch beams or primary	
	supporting members at the mid-point	
	$\underline{I_{net}} = \underline{I_{net_cs}}$	
	$\underline{I_{net}} = \underline{k_2} \underline{I_{net_cs}}$	
	Znet cs: Net section modulus (cm ³) complying with	
	$\frac{\text{requirement (1) above}}{V}$	
	<u><i>I_{net_cs}</i>: Net moment of inertia (<i>cm</i>⁴) complying with requirement (1) above</u>	
	S: Spacing (m) of portable beams or primary supporting	
	members	
	<i>l</i> : Unsupported span (<i>m</i>) of portable beams or primary	
	supporting members	
	b: Width (m) of steel hatch covers	
	k_1 and k_2 : Coefficients obtained from the formulae given in	
	Table CS19.4	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
Table CS19.4 Coefficient k1 and k2		(Deleted)
k_1 $1 + \frac{3.2\alpha - \gamma - 0.8}{7\gamma + 0.4}$ k k_2 $1 - 8\alpha^3 \frac{1 - \beta}{0.2 - 3\sqrt{\beta}}$	$\alpha = \frac{l_1}{l}$ $\beta = \frac{I_1}{I_0}$ $\gamma = \frac{Z_1}{Z_0}$	
l = Overall length of portable beam (m) $l_1 = Distance from the end of parallel part to the end of portable be l_0 = Moment of inertia at mid-span (cm4)l_1 = Moment of inertia at ends (cm4)$	xam (m)	
Z_c = Section modulus at mid-span (cm^3) Z_1 = Section modulus at ends (cm^3)		
	1 -	
(2) In addition to (1) above, the scantlings of the primary supporting members of steel hatch cover are to comply with the requirements specified in -6.	 (3) In addition to (1) and (2) above, the scantlings of the primary supporting members of steel hatch cover are to comply with the requirements specified in -6. 	UR S21 3.4.1
(Deleted)	(4) When biaxial compressed flange plates are considered, the effective width of flange plates is to comply with 19.2.5- 6(3).	(Deleted)
(3) In addition to (1) and (2) above, net thickness t_{net} (mm) of the webs of primary supporting members is not to be less than that obtained from the following formulae, whichever is greater: $t_{net} = 6.5 \underline{s \times 10^{-3}}$	(5) In addition to (1) to (4) above, net thickness t_{net} (mm) of the webs of primary supporting members is not to be less than that obtained from the following formulae, whichever is greater: $t_{net} = 6.5\underline{S}$	
$t_{net} = 5$	$t_{net} = 5$	

Amended	Original	Remarks
<u>s</u> : Stiffener spacing (mm)	\underline{S} : Stiffener spacing (m)	
(4) In addition to (1) to (3) above, the net thickness t_{net} (<i>mm</i>) of edge girders exposed to sea wash is not to be less than that obtained from the following formulae, whichever is greater:	(<u>6</u>) In addition to (1) to (<u>5</u>) above, the net thickness t_{net} (<i>mm</i>) of edge girders exposed to sea wash is not to be less than that obtained from the following formulae, whichever is greater:	
$t_{net} = 0.0158s \sqrt{\frac{P_A}{0.95\sigma_Y}}$	$t_{net} = 15.8S \sqrt{\frac{P_H}{0.95\sigma_F}}$	
$t_{net} = 8.5 \underline{s \times 10^{-3}}$ $P_{\underline{A}}$: Design horizontal wave load (kN/m^2) as specified in 19.2.4(2)	$t_{net} = 8.5 \underline{S}$ $P_{\underline{H}}$: Design horizontal wave load (kN/m^2) as specified in	
\underline{s} : Stiffener spacing $(\underline{m}\underline{m})$ σ_{Y} : Minimum yield stress $(\underline{N}/\underline{m}\underline{m}^{2})$ of the material	19.2.4(2) <u>S</u> : Stiffener spacing (m) σ_F : Minimum upper yield stress (N/mm ²) or proof stress	
(Deleted)	 (N/mm²) of the material (7) The moment of inertia (cm⁴) of the edge elements of hatch covers is not to be less than that obtained from the following 	(Deleted)
	$\frac{\text{formula:}}{I = 6pa^4}$ $\underline{a: \text{Maximum of the distance (m), } a_i, \text{ between two}}$	
	consecutive securing devices, measured along the hatch cover periphery, not to be taken as less than 2.5 $\underline{a_C(m)}$, (see Fig. CS19.3)	
	$\frac{a_C: \max(a_{1,1}, a_{1,2}) (m) \text{ (see Fig. CS19.3)}}{p: \text{Packing line pressure } (N/mm), \min 5 N/mm}$ When calculating the actual gross moment of inertia of the	
	edge element, the effective breadth of the attached plating of hatch covers is to be taken as equal to the lesser of the following values:	
	0.165 <i>a</i> Half the distance between the edge element and the adjacent	
	primary member	

Amended-Original Requirements Cor	nparison Table (Hatch Cov	vers, Hatch Coamings and C	losing Arrangements)

Amended	Original	Remarks
(Deleted)	 (2) Effective cross-sectional properties for calculation by grillage analysis are to be determined by the following (a) to (e): (a) The effective breadth of attached plating em of the primary supporting members specified in Table CS19.5 according to the ratio of l and e is to be considered for the calculation of effective cross-sectional properties. For intermediate values of lle, em is to be obtained by linear interpolation. (b) Separate calculations may be required for determining the effective breadth of one-sided or non-symmetrical flanges. (c) The effective cross sectional areas of plates is not to be less than the cross sectional area of the face plate. (d) The cross sectional area of secondary stiffeners parallel to the primary supporting member under consideration within the effective breadth may be included in the calculations (see Fig. CS19.5). (e) For flange plates under compression with secondary stiffeners perpendicular to the web of the primary supporting member, the effective width is to be determined according to 19.2.5-6(3). 	(Deleted)

1		Amended	1		•						Original		Remarks
		Table CS	<u>519.5</u>	Effectiv	re Breac	lth e ≓oi	F Platin	g of Pri	mary S	upporti	ng Members		(Deleted)
		₩e	0	1	글	3	4	÷	6	7	8 and over		
		em#e	Ð	0.36	0.64	0.82	0.91	0.96	0.98	1.00	1.00		
		emzte	θ	0.20	0.37	0.52	0.65	0.75	0.84	0.89	0.90		
	(Notes)												
	emi: Effect	ive breadth (<i>mm</i>) t	to be appli	ied where p	rimary su j	porting m	embers a	re loaded t	y uniforn	ıly distribt	ted loads or by not	less than 6 equally spaced	
	single	loads											
	em2: Effect	ive breadth (<i>mm</i>) t	t o be appli	ed where p	rimary sup	porting m	embers ar	e loaded b	y 3 or less	single loa			
	k ∷ Lengt	h between zero-po				aken equa l	to:						
	Fe	r simply supported r primary support e	a primary ing memb	supporting ers with bo	members th ends eo	: 1 9 n stant : 0.6							
	k:	ported length of the	he primary	-supporting	<u>emember</u>	3							
		r of plating support					idjacent i	insupporte	d fields				
		1 8 11	,				5	11					
							- 1						
	calculation for					~ ~ ~	-	3) Ge	eneral re	equiren	ents for FEM	are as follows:	UR S21 3.5.1
-	ng finite elen												
	re to comply w	with the requi	rement	<u>s in Cha</u>	<u>pter 8,</u>	Part 1.							
Part C.								,					
<u> </u>	ads							(Newl	y addec	1)			(Newly added)
	e design wave	÷			ch cove	rs are to							
be	P_{HC} specific		f the Ru	<u>iles.</u>									
	odelling of Str	uctures											
<u>(2)</u> Mo									$T_{\rm La}$	etructi			
<u>(2)</u> Mo	The structu	ral model is			-			(a	/			to be able to reproduce the	
<u>(2)</u> Mo	The structu behaviour	ral model is of the structu	ure wit	h the h	ighest 1	possible	:	(a	beha	aviour	of the structu	re with the highest possible	
<u>(2)</u> Mo	The structu behaviour of fidelity. Sti	ral model is of the structu ffeners and j	ure wit primary	h the h y suppo	ighest _I rting m	possible nembers		(a	beha fide	aviour lity. Sti	of the structu ffeners and p	re with the highest possible rimary supporting members	
<u>(2)</u> Mo	The structu behaviour of fidelity. Sti subject to	ral model is of the structu ffeners and pressure load	ure wit primary ds are	h the h y suppo to be in	ighest j rting m ncluded	possible nembers l in the		(a	beha fide subj	aviour lity. Sti ject to	of the structu ffeners and p pressure load	re with the highest possible rimary supporting members s are to be included in the	
<u>(2)</u> Mo	The structu behaviour of fidelity. Sti subject to modelling.	ral model is of the structu ffeners and j pressure load However,	ure wit primary ds are bucklin	h the h y suppo to be in ng stiffe	ighest j rting m ncluded	possible nembers l in the		(a	beha fide subj moc	aviour lity. Sti ect to lelling.	of the structu ffeners and p pressure load However, b	re with the highest possible rimary supporting members s are to be included in the puckling stiffeners may be	
<u>(2)</u> Mo	The structure behaviour of fidelity. Sti subject to modelling. disregarded	ral model is of the structu ffeners and pressure load	ure wit primary ds are bucklin culation	h the h y suppo to be in ng stiffe n.	ighest j rting m ncluded mers n	possible nembers l in the nay be		(a	beha fide subj moc disre	aviour lity. Sti ect to lelling. egarded	of the structu ffeners and p pressure load However, b for stress calo	re with the highest possible rimary supporting members s are to be included in the puckling stiffeners may be	

Amended	Original	Remarks
be used for modeling.	be used for modeling.	
(Deleted)	(c) Element size is to be suitable to take effective breadth	(Deleted)
	into account.	
(c) In no case is element width to be larger than stiffener	(d) In no case is element width to be larger than stiffener	
spacing. The ratio of element length to width is not to exceed $\underline{3}$.	spacing. The ratio of element length to width is not to exceed $\underline{4}$.	
(d) The element height of the webs of primary supporting	(e) The element height of the webs of primary supporting	
members is not to exceed one-third of the web height.	members is not to exceed one-third of the web height.	
(e) Stiffeners may be modelled using shell elements, plane	(\underline{f}) Stiffeners may be modelled using shell elements, plane	
stress elements or beam elements.	stress elements or beam elements.	
(f) Hatch covers fitted with U-type stiffeners as shown in	(Newly added)	(Newly added)
Fig. CS19.3 are to be assessed by means of FE analysis.		
(g) The geometry of the U-type stiffeners is to be accurately		
<u>modelled using shell/plate elements.</u> (h) Nodal points are to be properly placed on the		
intersections between the webs of a U-type stiffener and		
the hatch cover plate, and between the webs and flange		
of the U-type stiffener.		
(3) Boundary Conditions		
Wherever applicable the following boundary conditions are		
to be applied to the FE model:		
(a) Boundary nodes in way of a bearing pad on the hatch		
coamings are to be fixed against displacement in the		
direction perpendicular to the pad.		
(b) Lifting stoppers are to be fixed against displacements in		
the direction determined by the stoppers.		
(c) For a folding type hatch cover, the FE nodes connected		
through a hinge are to have the same translational		
displacement in the direction perpendicular to the hatch		
cover top plating.	140/202	

Amended		Original	Remarks
(4) Permissible value			
When the loads specified in (1)	act on the structural model		
specified in (2), the net scantlings			
the stress and deflection generate	d in each structural member		
satisfy the allowable values spec	ified in 19.2.5-1.		
(5) Miscellaneous			
(a) The thickness of the top pla	ting of steel hatch covers is		
to comply with the requirem			
(b) The scantlings of the second			
covers are to comply with the	-		
(c) The buckling strength for			
	rs is to comply with the		
requirements in 19.2.5-6.			
(6) Additional requirements for st	eel hatch covers carrying		
cargoes	. 1. 0 1.1 1		
In addition to (1) to (5), the de			
carrying cargoes are to comply w	• • • • • • • •		
(a) To prevent damage to h	-		
	oppers is to be compatible		
with the relative movement the ship structure.	s between natch covers and		
(b) Hatch covers and suppor	ting structures are to be		
adequately stiffened to ac	-		
hatch covers.	commodate the load nom		
(c) At the cross-joints of multi-	panel covers, vertical guides		
(male/female) are to be f			
relative vertical deflections			
panels.			
(d) The construction and sca	antlings of hatchways on		
exposed parts or on the low	ver deck are to comply with		

Amended-Original Requirements Com	parison Table (Hatch Cover	s, Hatch Coamings and Closi	ng Arrangements)
\mathcal{O} 1		,	0 0 /

Amended	Original	Remarks
the following requirements in addition to those of 19.2.		
i) The loading arrangement is to be clearly shown in		
drawings submitted for approval. In the case of		
freight containers, the type and location are to be		
additionally described.		
ii) Girders or stiffeners are to be provided for		
reinforcement beneath the corner fittings of freight		
containers.		
(e) The scantlings of sub structures subject to concentrated		
loads acting on steel hatch covers are to be determined		
taking into consideration the design cargo loads and		
permissible stresses specified in 19.2.		
(f) The top plates of hatch covers, upon which wheeled		
vehicles are loaded, are to comply with the following:		
i) The thickness of hatch cover top plating may be		
determined by direct calculation or in accordance		
<u>with 17.4.5.</u>		
ii) The scantlings of the stiffeners of hatch covers		
may be determined by direct calculation or in		
accordance with 10.7.1.		

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

	Amended	Original	Remarks
		Cover Fitted with U-type Stiffeners b_2 b_1 b_{eff} h_w t_w t_r b_f	(Newly added)
6 Buckling strengt (Deleted)	h of steel hatch covers	6 Buckling strength of steel hatch covers The buckling strength of the structural members of steel hatch covers is to be in accordance with the following (1) to (3): (1) The buckling strength of a single plate panel of the top and lower steel hatch cover plating is to comply with following formulae: $ \frac{\left(\sigma_x C_{sf}\right)^{e_1} + \left(\sigma_y C_{sf}\right)^{e_2} - B\left(\frac{\sigma_x\sigma_yC_{sf}^2}{\sigma_r^2}\right) + \left(\frac{ \tau C_{sf}\sqrt{3}}{\kappa_\tau\sigma_F}\right)^{e_3} \le 1.0 $ $ \frac{\left(\frac{\sigma_xC_{sf}}{\kappa_x\sigma_F}\right)^{e_1} \le 1.0}{\left(\frac{\sigma_yC_{sf}}{\kappa_y\sigma_F}\right)^{e_2} \le 1.0} $	(Deleted)

151/207

Amended	Original	Remarks
	σ_x , σ_y : Membrane stress in the x-direction and the y-	
	direction (N/mm ²). In cases where the stresses are	
	obtained from FEM and already contain the Poisson-	
	effect, the following modified stress values may be	
	used. Both stresses σ_x^* and σ_y^* are to be compressive	
	stress in order to apply stress reduction according to the	
	following formulae:	
	$\underline{\sigma_x} = (\sigma_x^* - 0.3\sigma_y^*)/0.91$	
	$\underline{\sigma_y = (\sigma_y^* - 0.3\sigma_x^*)/0.91}$	
	σ_x^* and σ_y^* : Stresses containing the Poisson-effect.	
	These values are to comply with the following	
	formulae:	
	$\underline{\sigma}_y = 0$ and $\underline{\sigma}_x = \sigma_x^*$ for $\sigma_y^* < 0.3\sigma_x^*$	
	$\underline{\sigma_x} = 0$ and $\underline{\sigma_y} = \sigma_y^*$ for $\sigma_x^* < 0.3\sigma_y^*$	
	τ : Shear stress (<i>N/mm²</i>) in <i>x</i> - <i>y</i> plane	
	σ_F : Minimum yield stress (<i>N/mm²</i>) of the material.	
	Compressive and shear stresses are to be taken as positive	
	values and tension stresses are to be taken as negative	
	<u>values.</u>	
	<u>C_{sf}: Safety factor taken as equal to:</u> $C_{sf} = 1.25$ for hatch covers when subjected to design	
	vertical wave loads according to 19.2.4(1)	
	$C_{sf} = 1.10$ for hatch covers when subjected to loads	
	according to 19.2.4(3) to (5)	
	<u>F_1: Correction factor for the boundary condition of</u>	
	stiffeners on the longer side of elementary plate panels according to Table CS19.6	
	<u>e1, e2, e3</u> and B: Coefficient obtained from Table CS19.7	
	$\kappa_{\chi}, \kappa_{\chi}$ and κ_{τ} : Reduction factor obtained from Table	
	152/207	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	CS19.8. However, these values are to comply with the	
	following formulae:	
	$\kappa_x = 1.0$ for $\sigma_x \le 0$ (tension stress)	
	$\kappa_y = 1.0$ for $\sigma_y \le 0$ (tension stress)	
	a: Length (mm) of the longer side of the partial plate field	
	$\frac{(x-\text{direction})}{(x-x)} = \int dx + \frac{1}{2} \int dx $	
	<u>b:</u> Length (<i>mm</i>) of the shorter side of the partial plate field (<i>y</i> -direction)	
	<i>n</i> : Number of the elementary plate panel breadths within	
	the partial or total plate panel (see Fig. CS19.4)	
	α : Aspect ratio of a single plate field obtained from the following formula:	
	\overline{a}	
	$\alpha = \overline{b}$	
	λ : Reference degree of slenderness, taken as equal to:	
	$\lambda = \sqrt{\frac{\sigma_F}{K\sigma_e}}$	
	K: Buckling factor according to Table CS19.8	
	σ_e : Reference stress (<i>N/mm²</i>), taken as equal to:	
	$\sigma_e = 0.9E\left(\frac{t}{b}\right)^2$	
	E: Modulus of elasticity (N/mm ²) of the material, taken	
	equal to:	
	$\frac{E = 2.06 \times 10^5}{\text{M}}$ <i>t</i> : Net thickness (<i>mm</i>) of plate under consideration	
	ψ : Edge stress ratio taken as equal to:	
	$\psi = \frac{\sigma_2}{\sigma_2}$	
	$\frac{\varphi - \sigma_1}{\sigma_1}$	

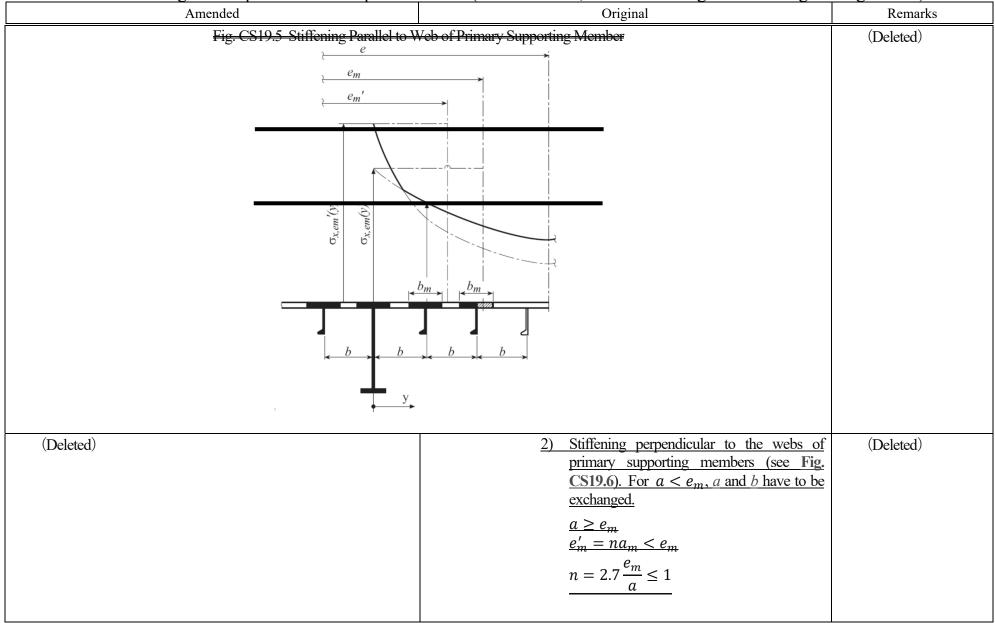
Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

153/207

Amended	Original	Remarks
	$\frac{\sigma_1: \text{ Maximum compressive stress } (N/mm^2)}{\sigma_2: \text{ Minimum compressive stress or tension stress } (N/mm^2)}$	

Amended	•	Original	E E	Remarks				
Fig. CS19. Single field	4 General Art	Partial field		(Deleted)				
Long. s	Transverse stiffener	her						
Transverse	: stiffener in t	the direction of the length a the direction of the breath b						
	1	ection Factor F ₄		(Deleted)				
Boundary condition		Edge stiffener						
Stiffeners sniped at both ends	1.00	TTL - 1						
Guidance value ⁴¹ where both ends are effectively connected to adjacent structures	1.05 1.10	Flat bars Bulb sections						
encenvery connected to adjucent structures	1.10 1.20	Angles and tee sections						
	1.20 1.30	U type sections ⁽²⁾ and girders of high rigidity						
(1) Exact values may be determined	d by direct calculatio	200						
		having different edge stiffeners-						
		uckling strength check of the partial plate field using non-						
linear FEA and deemed approp	riate by the Society.	However, such values are not to be greater than 2.0						

U	Amended			·	Original		Remarks
		Table CS19.7	Coefficiente ₁ , e	≥ , c₃ and B			(Deleted)
	Expo	onents-e4 , e2, e3 and B		Plate panel			
	6 1			$\frac{1+\kappa_{\chi}^4}{2}$			
	ŧ			$\frac{1+\kappa_y^4}{2}$			
	€3			1 + κ_*κ_yκ ≩	25 #		
	₿	For σ_{\ast} and σ_{\ast} points for σ_{\ast} for σ_{\ast} and σ_{\ast} for σ_{\ast} for σ_{\ast} and σ_{\ast} for σ_{\ast}	ositive (compressive	$\left(\kappa_{x}\kappa_{y}\right)^{5}$			
		For σ_{\pm} or σ_{\pm} negation		<u>1</u>			
=	Fable CS19.8	Buckling and Reduc	xtion Factors for	• Plane Elementa	ary Plate Panels	-	(Deleted)
Load case	Edge stress ratio ₩	$\frac{A \text{spect ratio}}{\alpha - \frac{\alpha}{b}}$	Buckling factor K	R	leduction factor 16		
$\frac{1}{\sigma_r}$ σ_r	$\frac{1 \ge \psi \ge 0}{2}$		$\frac{K}{K} = \frac{\frac{9.4}{}}{\psi + 1.1}$	K ,	$f_{*} = 1 \text{for } \lambda \leq \lambda_{e}$		
$\begin{array}{c} \sigma_{x} & \sigma_{x} \\ \hline t & \phi \\ \psi \cdot \sigma_{x} & \phi \\ \hline \end{array} \\ \psi \cdot \sigma_{x} & \phi \\ \hline \end{array}$	$\theta \rightarrow \psi \rightarrow 1$	$\alpha \ge 1$	K = 7.63 ψ(6.2	% 86−10ψ) €	$\frac{1}{2} = c\left(\frac{1}{2} - \frac{1}{2^{\pm}}\right) \text{for } \lambda > \lambda_{e}$ $= (1.25 - 0.12\psi) \le 1.25$ $\notin \left(1 - \sqrt{1 - 0.88}\right)$		
	<u>₩≤-1</u>		K = 5.975(1 ψ	<u>}</u> ≩	$e^{-\frac{e}{2}\left(1+\sqrt{1-\frac{666}{6}}\right)}$		
$\frac{\mathbf{G}}{\mathbf{G}_{y}} \underbrace{ \begin{bmatrix} \mathbf{\psi} \cdot \mathbf{G}_{y} \\ \mathbf{f} \end{bmatrix}}_{t} \underbrace{ \mathbf{\psi} \cdot \mathbf{G}_{y}}_{\mathbf{f}} \underbrace{ \mathbf{g}}_{t} \underbrace$	1≥ψ≥0	∝ ≥ 1	$\frac{K-F_{\pm}\left(1+\frac{\pm}{\alpha^{2}}\right)^{2}}{\alpha^{2}}$	$\frac{2.1}{(\psi + 1.1)}$	$\frac{1}{2^{2}} = c \left(\frac{1}{2} \frac{R + F^{2}(H - R)}{\frac{1}{2}} \right)$ $= (1.25 - 0.12\psi) \le 1.25$		
$\sigma_{y} \qquad \qquad$	0 > ψ > −1	<u>1 ⊆ α ⊆ 1.5</u>	$\frac{K - F_{\pm} \left[\left(1 + \frac{1}{6} \right)^{\frac{1}{6}} - \frac{\psi}{\alpha^2} \right]}{\alpha^2}$	$\frac{\frac{1}{2}}{\frac{2}{2}}^{2} \frac{2.1(1+\psi)}{\frac{1}{2}}_{\frac{1}{2}} \frac{2}{1.1} + \frac{1}{2} \frac$	$\frac{2 - \lambda \left(1 - \frac{*}{\epsilon}\right) \qquad \text{for } \lambda < \lambda_{e}}{\frac{2 - 0.22 \qquad \text{for } \lambda \ge \lambda_{e}}{2}}$ $= \frac{\epsilon}{2} \left(1 + \sqrt{1 - \frac{0.88}{\epsilon}}\right)$		


	nended	1	X	Original	0	Remarks
		4	$K = F_{\pm} \left[\left(1 + \frac{1}{\alpha^2} \right)^2 \frac{2.1(1 + \psi)}{1.1} \\ - \frac{\psi}{\alpha^2} \left(\frac{5.87}{4} + \frac{1.87\alpha^2}{4} + \frac{9.6}{\alpha^2} + \frac{9.6}{\alpha^2} + \frac{9.6}{\alpha^2} + \frac{10\psi}{2} \right) \right] \\ = 5.975F_{\pm} \left(\frac{1 - \psi}{\alpha} \right)^2 \\ K = F_{\pm} \left[3.9675 \left(\frac{1 - \psi}{\alpha} \right)^2 + \frac{1.87}{\alpha} \right]$	$\frac{k}{F} = \left(1 - \frac{k}{1 - \frac{1}{2}}\right) c_{\pm} \ge 0$ $\frac{\lambda_{p}^{2}}{\lambda_{p}^{2}} - \lambda^{2} - 0.5 \text{for} = 1 \le \lambda_{p}^{2} \le 3$ $c_{\pm} = \left(1 - \frac{F_{\pm}}{4}\right) \ge 0$ $H = \lambda - \frac{2\lambda}{c(T + \sqrt{T^{2} - 4})} \ge R$ $T = \lambda + \frac{14}{15\lambda} + \frac{1}{3}$		
$\begin{array}{c c} \sigma_x & \sigma_x \\ \hline & \iota \\ \psi \cdot \sigma_x \\ \hline & \alpha \cdot b \end{array} \psi \cdot \sigma_x \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}$	$\frac{1 \ge \psi \ge 0}{0}$	« > 0	$ \frac{4\left(0.425 + \frac{4}{\alpha^{2}}\right)}{3\psi + 1} \\ \frac{4}{(0.425 + \frac{4}{\alpha^{2}})}{(1 + \psi)} \\ \frac{5\psi(1 - 3.42\psi)}{(1 + 2)} $	$\frac{\kappa_{\pi} = 1 \qquad \text{for } \lambda \leq 0.7}{\kappa_{\pi} = \frac{4}{\lambda^2 + 0.5}}$		
4 $\psi \cdot \sigma_x \qquad \psi \cdot \sigma_x$ $f \qquad f \qquad$	<u>L≥ψ≥ 1</u>	« > 0	$\frac{K}{K} = \left(0.425 + \frac{1}{\alpha^2}\right)^2 \frac{\psi}{2}$	K¥ = 3²+0.51 10F X > 0.7		

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

	Amended	I		ζ.	Original		Remarks
Table	CS19.8 Buck	ling and Reduction F	Factors	for Plane Elementary I	Plate Panels (continued)	_	
Load case	Edge stress ratio ¥	$\frac{Aspect \text{ mtio}}{\alpha = \frac{\alpha}{f_p}}$	Bueklin	ng factor K	Reduction factor +		
5			$\frac{K}{K} = k$	<u>~</u> √3			
τ 1 / τ - σ		<u>æ⊇1</u>	<u>K_</u> =	[<u>5.34 +</u>] (α[∞]]	$\frac{\kappa_{\rm F}}{\kappa_{\rm F}} = 1 \qquad \text{for } \lambda \le 0.84$		
$\langle \alpha \cdot b \rangle$		0 < α < 1	<u>K</u> =	$\begin{bmatrix} 4 & \frac{5 \cdot 3 \cdot 4}{4 + \frac{2}{\alpha^2}} \end{bmatrix}$	$k_{\sharp} = \frac{1}{\lambda}$ for $\lambda > 0.84$		
Boundary condition		plate edge free plate edge simple support					
(Deleted)				of primary requirement (3) The bucklin the structura with the foll (a) The bu second and (require (b) When (d) and plating i) The (s)	g strength of non-stiffened webs a supporting members are to be of (1) above. g strength of partial and total fiel al members of steel hatch covers owing (a) to (e): teckling strength of longitudinal a ary stiffeners is to comply with e). For U-type stiffeners, 1 ments in (e) below may be omitted buckling calculation is carried out the effective breadth of stee may be in accordance with follow the effective breadth a_m or b_m of at ay be determined by the follow the follow the follow for the follow for the follow for the follow the follow for the follow for the follow for the follow the follow for the follow for the follow for the follow the follow for the follow for the follow for the follow the follow for the fol	according to ds included in s is to comply and transverse following (d) nowever, the ed. tt according to el hatch cover wing i) and ii): tached plating ving formulae fective breadth than the value	(Deleted)

Amended	Original	Remarks
	$\underline{a_m} = \kappa_y a$ for transverse stiffeners	
	κ_x and κ_y : As obtained from Table CS19.8	
	a and b: As specified (1) above	
	ii) The effective breadth e'_m of stiffened flange	
	plates of primary supporting members may be	
	determined according to the following 1) and 2).	
	However, a_m and b_m for flange plates are in	
	general to determined for $\psi = 1$.	
	1) Stiffening parallel to the webs of primary	
	supporting members (see Fig. CS19.5). For $h \ge a$, h and a have to be synchronized	
	$\underline{b \ge e_m, b}$ and \underline{a} have to be exchanged. $\underline{b < e_m}$	
	$\frac{b \leq c_m}{e'_m = nb_m}$	
	n: Integer number of stiffener spacing b	
	inside the effective breadth em	
	according to 19.2.5-5, taken as equal to:	
	$n = \operatorname{int}\left(\frac{e_m}{h}\right)$	
	$n = \operatorname{Int}\left(\frac{b}{b}\right)$	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

160/207

Amended	Original	Remarks
Fig. CS19.6 Stiffening Perpendicular to	e Web of Primary Supporting Member	(Deleted)
(Deleted)	 (c) Stresses obtained from the calculation of the scantlings of plating and the stiffeners of steel hatch covers are to comply with the following: The scantlings of plates and stiffeners are in general to be determined according to the maximum stresses σ_x(y) at the webs of primary supporting members and stiffeners respectively. For stiffeners with spacing b under compression arranged parallel to primary supporting members no value less than 0.25σ_F is to be inserted for σ_x(y = b). The stress distribution between two primary supporting members may be obtained by the following formula: 	(Deleted)

Amended	Original	Remarks
	$\sigma(u) = \sigma \int 1$	
	$\underline{\sigma_x(y)} = \underline{\sigma_{x1}} \left\{ 1 \right\}$	
	$\frac{-\frac{y}{2}}{3+c_1-4c_2}$	
	$\frac{-\frac{y}{e} \left[3 + c_1 - 4c_2 - \frac{2y}{e} (1 + c_1 - 2c_2) \right]}{\frac{-2y}{e} (1 + c_1 - 2c_2) \right]}$	
	<u>c1:</u> As given by the following formula:	
	$c_1 = \frac{\sigma_{x1}}{\sigma_{x2}}, \text{however } 0 \le c_1 \le 1$	
	<u>c2:</u> As given by the following formula:	
	$c_2 = \frac{1.5}{e}(e_{m1}'' + e_{m2}'') - 0.5$	
	σ_{x1} and σ_{x2} : Normal stresses in the flange	
	plates of adjacent primary supporting members 1 and 2 with spacing <i>e</i> , based on	
	cross-sectional properties considering the	
	effective breadth or effective width, as	
	appropriate	
	e''_{m1} : Proportionate effective breadth e_{m1} or	
	proportionate effective width e'_{m1} of	
	primary supporting member 1 within the	
	$\frac{\text{distance } e, \text{ as appropriate}}{e_{m2}''}$ Proportionate effective breadth e_{m2} or	
	proportionate effective width e'_{m2} of	
	primary supporting member 2 within the	
	distance e, as appropriate	
	iv) The shear stress distribution in flange plates may	
	be assumed to be linear.	
	(d) For lateral buckling, longitudinal and transverse	
	stiffeners are to comply with following i) to iii):	
	i) Secondary stiffeners subject to lateral loads are to	

Amended-Original Requirements Cor	parison Table (Hate)	h Covers. Hatch Coamin	gs and Closing Arrangements)

Amended	Original	Remarks
	comply with the following criteria:	
	$\frac{\sigma_a + \sigma_b}{\sigma_F} C_{sf} \le 1$	
	σ_F	
	σ_a : Uniformly distributed compressive stress	
	(N/mm^2) in the direction of the stiffener axis,	
	given by the following formula:	
	$\sigma_a = \sigma_x$ for longitudinal stiffeners	
	$\frac{\sigma_a = \sigma_y \text{ for transverse stiffeners}}{\rho_z + \rho_z \rho_z \rho_z}$	
	σ_b : Bending stress (<i>N/mm²</i>) in the stiffeners, given by the following formula:	
	$\sigma_b = \frac{M_0 + M_1}{Z_{st} 10^3}$	
	M_0 : Bending moment (<i>N</i> -mm) due to	
	deformation w of stiffener, given by the	
	following formula:	
	$M_0 = F_{Ki} \frac{p_z w}{c_f - p_z} \underline{\text{with}(c_f - p_z) > 0}$	
	<u>M1</u> : Bending moment (N-mm) due to lateral load	
	<u><i>P</i> given by the following formula:</u>	
	$M_1 = \frac{Pba^2}{24 \cdot 10^3} \text{ for longitudinal stiffeners}$	
	$M_1 = \frac{P(nb)^2}{8c_s 10^3}$ for transverse stiffeners.	
	Where n is to be taken as equal to 1 for	
	ordinary transverse stiffeners	
	<u>Z_{st}:</u> Section modulus of stiffener (cm^3) including the effective breadth of plating according to	
	19.2.5-6(3)	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	cs: Factor accounting for the boundary	
	conditions of the transverse stiffener taken as	
	equal to:	
	$c_s = 1.0$ for a stiffener that is simply	
	$\frac{\text{supported}}{\text{support}}$	
	$c_{S} = 2.0$ for a stiffener that is partially constrained	
	<i>P</i> : Lateral load (kN/m^2) as specified in 19.2.4	
	according to the condition under	
	consideration	
	<u>F_{Ki}: Ideal buckling force (N) of the stiffener given</u>	
	by the following formula:	
	$\underline{F_{Kix}} = \frac{\pi^2}{n^2} E I_x 10^4$ for longitudinal	
	stiffeners	
	$\underline{F_{Kiy}} = \frac{\pi^2}{(nb)^2} EI_y 10^4 \text{ for } \text{ transverse}$	
	stiffeners	
	I_x and I_y : Net moments of inertia (cm^4) of the	
	longitudinal or transverse stiffener, including	
	the effective breadth of attached plating according to 19.2.5-6(3). L_x and L_y are to	
	comply with the following criteria:	
	ht ³	
	$\frac{I_x \ge \frac{bt^3}{12 \cdot 10^4}}{at^3}$	
	$I_y \ge \frac{at^3}{12 \cdot 10^4}$	
	p_{z} : Nominal lateral load (N/mm^2) of the stiffener	
	<u>due to σ_x, σ_y and τ</u>	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
Amended	Original $p_{zx} = \frac{t_a}{b} \left(\sigma_{xl} \left(\frac{\pi b}{a} \right)^2 + 2c_y \sigma_y + \tau_1 \sqrt{2} \right)$ $\overline{\text{for longitudinal stiffeners}}$ $p_{zy} = \frac{t_a}{b} \left(2c_x \sigma_{xl} + \sigma_y \left(\frac{\pi a}{\pi b} \right)^2 \left(1 + \frac{A_y}{\pi t_z} \right) + \tau_1 \sqrt{2} \right) \text{for transverse stiffeners}$	Remarks
	$\frac{t_{a:}}{t_{a:}} \text{Net thickness } (mm) \text{ of attached plating} \\ \frac{c_{x} \text{ and } c_{y:} \text{ Factor taking into account the stresses}}{\text{vertical to the stiffener's axis and distributed}} \\ \frac{variable along the stiffener's length taken as}{equal to:} \\ \frac{0.5(1 + \psi)}{1 + \psi} \text{for } 0 \le \psi \le 1 \\ \frac{0.5}{1 - \psi} \text{for } \psi < 0 \\ \frac{1 - \psi}{1 + \psi} \text{for } \psi < 0 \\ \frac{1 - \psi}{1 + \psi} \text{for } \psi < 0 \\ \frac{1 - \psi}{1 + \psi} \text{for } \psi < 0 \\ \frac{1 - \psi}{1 + \psi} \text{for } \psi < 0 \\ \frac{1 - \psi}{1 + \psi} \text{for } \psi < 0 \\ \frac{1 - \psi}{1 + \psi} \text{for } \psi < 0 \\ \frac{1 - \psi}{1 + \psi} \text{for } \psi < 0 \\ \frac{1 - \psi}{1 + \psi} \text{for } \psi < 0 \\ \frac{1 - \psi}{1 + \psi} \text{for } \psi < 0 \\ \frac{1 - \psi}{1 + \psi} \frac{1 - \psi}{1 + \psi} \frac{1 - \psi}{1 + \psi} \\ \frac{1 - \psi}{1 + \psi} \frac{1 - \psi}{1 + \psi} \frac{1 - \psi}{1 + \psi} \\ \frac{1 - \psi}{1 + \psi} \frac{1 - \psi}{1 + \psi} \frac{1 - \psi}{1 + \psi} \frac{1 - \psi}{1 + \psi} \\ \frac{1 - \psi}{1 + \psi} \frac{1 - \psi}{1 + \psi} \frac{1 - \psi}{1 + \psi} \frac{1 - \psi}{1 + \psi} \\ \frac{1 - \psi}{1 + \psi} 1$	
	$\frac{A_x \text{ and } A_y: \text{ Net sectional area } (mm^2) \text{ of the}}{\frac{\text{longitudinal or transverse stiffener}}{\text{respectively without attached plating}}}$ $\frac{\sigma_{xl} = \sigma_x \left(1 + \frac{A_x}{bt_a}\right)}{\tau_1 = \left[\tau - t\sqrt{\sigma_F E\left(\frac{m_1}{a^2} + \frac{m_2}{b^2}\right)}\right] \ge 0$	
	$\frac{[1 - [1 - \sqrt{b_{F} D} (a^{2} - b^{2})] = 0}{m_{1} \text{ and } m_{2}: \text{ Coefficient given by the following formulae:}}$ $\frac{m_{1} = 1.47 m_{2} = 0.49 \text{ for } \frac{a}{b} \ge 2.0$	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	$\underline{m_1 = 1.96}$ $\underline{m_2 = 0.37}$ for $\frac{a}{b} < 2.0$	
	For transverse stiffeners:	
	$\underline{m_1 = 0.37}$ $m_2 = \frac{1.96}{n^2}$ for $\frac{a}{nb} \ge 0.5$	
	$\underline{m_1 = 0.49} \underline{m_2 = \frac{1.47}{n^2}} \text{for } \frac{a}{nb} < 0.5$	
	$\frac{w = w_0 + w_1}{w_0: \text{ Assumed imperfection } (mm) \text{ taken as equal}}{\underline{\text{to:}}}$	
	$w_0 = \min\left(\frac{a}{250}, \frac{b}{250}, 10\right) $ <u>for</u> longitudinal stiffeners	
	$w_0 = \min\left(\frac{a}{250}, \frac{nb}{250}, 10\right) \qquad \text{for}$	
	transverse stiffeners	
	For stiffeners sniped at both ends wo is not to be taken as less than the distance from the	
	mid-point of attached plating to the neutral	
	axis of the stiffener calculated with the	
	effective width of its attached plating.	
	<u>w_1: Deformation of stiffener (mm) at the mid-</u>	
	point of stiffener span due to lateral load <i>p</i> . In the case of uniformly distributed loads, the	
	following values for <i>w</i> ₁ may be used:	
	$w_1 = \frac{Pba^4}{384 \cdot 10^7 EI_x} \text{for} \text{longitudinal}$	
	stiffeners	
	$w_1 = \frac{5Pa(nb)^4}{384 \cdot 10^7 EI_y c_S^2} \text{for} \text{transverse}$	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	stiffeners	
	cj: Elastic support (N/mm ²) provided by the	
	stiffener taken as equal to:	
	For longitudinal stiffeners:	
	$c_f = F_{Kix} \frac{\pi^2}{a^2} (1 + c_{px})$	
	1	
	$c_{px} = \frac{1}{1 + \frac{0.91\left(\frac{12 \cdot 10^4 I_x}{t^3 b} - 1\right)}{1 + \frac{1}{2}}}$	
	$\frac{c_{xa}}{c_{xa}}$	
	$\frac{c_{xa} = \left[\frac{a}{2b} + \frac{2b}{a}\right]^2}{\underline{2b}} \text{for} a \ge 1$	
	$\frac{c_{xa}}{c_{xa}} = \left[1 + \left(\frac{a}{2b}\right)^2\right]^2 \text{for} a < 1$	
	$\frac{2b}{2b}$	
	For transverse stiffeners:	
	$c_f = c_S F_{Kiy} \frac{\pi^2}{(n \cdot b)^2} (1 + c_{py})$	
	$c_{py} = \frac{1}{(12 + 104I)}$	
	$c_{py} = \frac{1}{1 + \frac{0.91\left(\frac{12 \cdot 10^4 I_y}{t^3 b} - 1\right)}{c_{ya}}}$	
	$c_{\mu\alpha}$: Coefficient taken as equal to:	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	$c_{ya} = \left[\frac{nb}{2a} + \frac{2a}{nb}\right]^2 \underline{\qquad \text{for}}$	
	$\frac{nb \ge 2a}{nb \ge 2a}$	
	$c_{ya} = \left[1 + \left(\frac{nb}{2a}\right)^2\right]^2 \frac{\text{for } nb < 2a}{2a}$	
	ii) For stiffeners not subject to lateral loads, the bending moment σ_h is to be calculated at the	
	mid-point of the stiffener.	
	iii) When lateral loads are acting, stress calculations	
	are to be carried out for both fibres of the	
	stiffener's cross sectional area (if necessary for the biaxial stress field at the plating side).	
	(e) For torsional buckling, longitudinal and transverse	
	stiffeners are to comply with the following i) and ii):	
	i) Longitudinal stiffeners are to comply with	
	following criteria:	
	$\frac{\sigma_{\chi}}{\kappa_T \sigma_F} C_{sf} \le 1.0$	
	κ_T : Coefficient taken as equal to:	
	$\kappa_T = 1.0$ for $\lambda_T \le 0.2$	
	$\frac{\kappa_T = 1.0 \text{for } \lambda_T \le 0.2}{\kappa_T = \frac{1}{\phi + \sqrt{\phi^2 - \lambda_T^2}} \text{for } \lambda_T > 0.2}$	
	$\Phi = 0.5(1 + 0.21(\lambda_T - 0.2) + \lambda_T^2)$	
	λ_T : Reference degree of slenderness taken as equal to:	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	$\lambda_T = \sqrt{rac{\sigma_F}{\sigma_{KiT}}}$	
	$\sigma_{KiT} = \frac{E}{I_P} \left(\frac{\pi^2 I_\omega 10^2}{a^2} \varepsilon + 0.385 I_T \right) \underline{(N/mm^2)}$ $\underline{I_P: \text{ Net polar moment of inertia of the stiffener}}_{(cm^4) \text{ defined in Table CS19.9, and related}}$	
	<u>to point C as shown in Fig. CS19.7.</u> <u>I_T: Net St. Venant's moment of inertia of the</u> <u>stiffener (cm^4) defined in Table CS19.9</u> <u>I_{ω}: Net sectorial moment of inertia of the</u>	
	stiffener (cm^6) defined in Table CS19.9, related to point C as shown in Fig. CS19.7 ε : Degree of fixation taken as equal to:	
	$\varepsilon = 1 + 10^{-3} \cdot \sqrt{\frac{a^4}{\frac{3}{4}\pi^4 I_w \left(\frac{b}{t^3} + \frac{4h_w}{3t_w^3}\right)}}$	
	<u>A_w: Net web area (mm²) equal to:</u> <u>A_w = h_w t_w</u> <u>A_f: Net flange area (mm²) equal to:</u> <u>A_f = b_f t_f</u> t _f = t _f = t _f = t _f	
	$\underline{e_f = h_w + \frac{t_f}{2} (mm)}$ $\underline{h_w, t_w, b_f \text{ and } t_f: \text{ Dimensions of stiffener } (mm) \text{ as}}$ $\underline{specified \text{ in Fig. CS19.7}}$ ii) For transverse secondary stiffeners loaded by	
	<u>compressive stress which are not supported by</u> <u>longitudinal stiffeners, sufficient torsional</u> <u>buckling strength is to be performed analogously</u>	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
	in accordance with i) above.	
	$\begin{array}{c c} c c c c c c c c c c c c c c c c c c$	(Deleted)

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

	Amende	•		Original	5 0	Remarks	
	Table CS19.9 Moments of Inertia						
	Section	Ĩ₽	I_{T}				
	Flat bar	格蒙 ŧ 萊 <u>3 - 10⁴</u>	$\frac{\frac{h_{\rm w} t^{\frac{3}{2}}}{2}}{\frac{2 - 10^4}{2} \left(1 - 0.63 \frac{t_{\rm w}}{h_{\rm w}}\right)}$	格彙t彙 36 - 10⁶			
	Bulb, angle or tee sections-	$\frac{\left(\frac{A_{\overline{w}}h_{\overline{w}}^2}{2} + A_{\overline{f}}e_{\overline{f}}^2\right)10^{-4}}{2}$	$\frac{h_{\rm H}t_{\rm H}^{3}}{2-10^{4}} \left(1-0.63\frac{t_{\rm H}}{h_{\rm H}}\right)$ $\frac{b_{\rm F}t_{\rm F}^{3}}{h_{\rm H}} \left(1-0.63\frac{t_{\rm F}}{h_{\rm H}}\right)$	For bulb and angle sections: $\frac{A_{f}e_{f}^{2}b_{f}^{2}}{12 - 10^{6}} \left(\frac{A_{f} + 2.6A_{W}}{A_{f} + A_{W}}\right)$ For tee sections: $\frac{b_{f}^{2}t_{f}e_{f}^{2}}{12 - 10^{6}}$			
(1) Bucklin	ng assessments for h	atch cover structural memb	oers (Newly added)			(Newly added)	
are to	be performed in c	compliance with Annex 1	4.6			UR S21 3.6	
		essment of Ship Structu					
		for the conditions specified					
		fined in 19.2.5-6, refer to An	nex				
	<u>art 1, Part C.</u>						
	mess requirements are						
		ements are to be in accorda	nce				
	th An2, Annex 14.6,		4				
		nts need not be applied to					
		ble skin hatch covers unless					
		for carriage of ballast or liq					
	<u>rgo.</u> ha brandth of the prin	nary supporting member fla	ngo				
		10% of their depth for later	-				
		reater than 3.0 <i>m</i> . Howe					
		ched to the flange may					
		support for primary support					
	embers.	support for printing support	<u> </u>				

Amended	Original	Remarks
(3) Buckling assessments are to be performed for the following		
structural elements of hatch cover structures subjected to		
compressive stresses, shear stresses and lateral pressures:		
· Stiffened and unstiffened panels, including curved		
panels and panels stiffened with U-type stiffeners.		
 Web panels of primary supporting members in way of 		
openings.		
Procedures and detailed requirements for buckling		
assessment are given in An4, Annex 14.6, Part 1, Part C,		
including idealisation of irregular plate panels, definitions of		
reference stresses and buckling criteria.		
(4) Panel types and assessment methods are to be accordance		
with the following requirements:		
(a) Plate panels of hatch cover structures are to be modelled		
as stiffened panels (SP) or unstiffened panels (UP) as		
defined in An 4.2, Annex 14.6, Part 1, Part C. In		
addition, Method A (-A) and Method B (-B) as defined		
in An1.3, Annex 14.6, Part 1, Part C are to be used in		
accordance with Table CS19.5, Fig. CS19.4 and Fig.		
CS19.5, while the procedures for openings are to be		
used for buckling assessments of web panels with		
openings.		
(b) Hatch covers fitted with U-type stiffeners are also to be		
in accordance with the additional buckling assessment		
requirements specific for panels with U-type stiffeners		
in An5.2.5, Annex 14.6, Part 1, Part C.		
(5) Buckling assessments of hatch covers are based on lateral		
pressure as defined in 19.2.4-1(1), 19.2.4-1(2) and 19.2.4- 1(5) and strasses obtained from FE analyzes (See 10.2.5.5)		
1(5), and stresses obtained from FE analyses (<i>See</i> 19.2.5-5). (6) The safety factor for batch accur structural members is to be		
(6) The safety factor for hatch cover structural members is to be		

Amended	Original	Remarks
taken as S=1.0 for the plating and stiffener buckling capacity		
formulae defined in An5.2.2 and An5.2.3, Annex 14.6, Part		
1, Part C respectively.		
(7) The buckling strength of structural members is to be in		
accordance with the following formula:		
$\eta_{act} \leq \eta_{all}$		
Where:		
η_{act} : Buckling utilisation factor based on applied stress, as		
defined in An1.3.2.2 and An4, Annex 14.6, Part 1,		
Part C, and calculated per An5, Annex 14.6, Part 1,		
<u>Part C.</u>		
η_{act} : Allowable buckling utilisation factor, as given in		
Table CS19.6		

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended		Original	0	Remarks
Table CS19.5	5 Structural Mem	bers and Assessment Methods		(Newly added)
Structural elements	Assessment method ⁽¹⁾⁽²⁾	Normal panel definition		UR S21 3.6.3.2 Tab.5
Hatch cover top/bottom plating structures, see Fi	ig. CS19.4			
Hatch cover top/bottom plating	<u>SP-A</u>	Length: between transverse girders Width: between longitudinal girders		
Irregularly stiffened panels	<u>UP-B</u>	Plate between local stiffeners/PSM		
Hatch cover web panels of primary supporting r	nembers, see Fig. CS19.5			
Web of transverse/longitudinal girder (single skin type)	<u>UP-B</u>	Plate between local stiffeners/face plate/PSM		
Web of transverse/longitudinal girder (double skin type)	<u>SP-B⁽³⁾</u>	<u>Length: between PSM</u> <u>Width: full web depth</u>		
Web panel with opening	Procedure for opening	Plate between local stiffeners/face plate/PSM		
Irregularly stiffened panels	<u>UP-B</u>	Plate between local stiffeners/face plate/PSM		
Note 1: SP and UP stand for stiffened and unspective stand for Method A and Method A and Method A: Note 3: In case that the buckling carlings/braused.	thod B respectively.	<u>r</u> ged in the web of transverse/longitudinal girder, UP-B method may be		

Amended	Original	Remarks
Fig. CS19.4 Hatch Cover To	pp/Bottom Plating Structures	(Newly added)
		UR S21 3.6.3.2 Fig.6
SP-A		

Amended		Original	Remarks
Ē	ig. CS19.5 Hatch Cover Webs	of Primary Supporting Members	(Newly added) UR S21 3.6.3.2 Fig.7
	Table CS19.6 Allowable I	Buckling Utilisation Factors	(Newly added)
Structural component	Subject to	<u>n_{all}. Allowable buckling utilisation factor</u>	UR S21 3.6.3.2 Tab.6
Plates and stiffeners	External pressure, as defined in 19.2.4-	<u>1(1)</u> <u>0.80</u>	
Web of PSM	Other loads, as defined in 19.2.4-1(2) to 19.2.4-1(5)	0.90 for static+dynamic load case 0.72 for static load case	

Amended	Original	Remarks
<u>19.2.6 (Deleted)</u>	19.2.6 <u>Additional Requirements for Steel Hatch C</u> Carrying Cargoes	Left as "19.2.6 (Deleted)"
	1 Where concentrated loads, e.g. container loads, are acti	ing on
	steel hatch covers, direct calculations deemed appropriate b	by the
	Society are required.	
	2 The scantlings of sub structures subject to concentrated	loads
	acting on steel hatch covers are to be determined taking	<u>g_into</u>
	consideration the design cargo loads and permissible st	resses
	specified in this section.	
	<u>3</u> The scantlings of top plates and stiffeners of steel	
	covers subject to wheel loads are determined by direct calculat	ion or
	any other method which deemed appropriate by the Society.	
19.2.7 Portable Beams, Hatchway Covers, Steel Pont Covers and Steel Weathertight Covers	Covers and Steel Weathertight Covers	
1 Portable beams are to comply with the following (1) to (1 Portable beams are to comply with the following (1) to	-
(1) The carriers and sockets for portable beams are to b substantial construction, having a minimum beam surface of 75 mm, and are to be provided with means for efficient fitting and securing of the beams.	substantial construction, having a minimum beau	aming
(2) Coamings are to be stiffened in way of carriers and soc by providing stiffeners from these fittings to the deck or equivalent strengthening.		
(3) Where beams of a sliding type are used, the arrangeme to ensure that the beams remain properly in position w the hatchway is closed.		
(4) The depth of portable beams and the width of their plates are to be suitable to ensure the lateral stability or beams. The depth of beams at their ends is not to be less	plates are to be suitable to ensure the lateral stability	of the

	Amended		Original	Remarks
	0.40 <i>times</i> the depth at their mid-point or 150 mm, whichever is greater.		0.40 <i>times</i> the depth at their mid-point or 150 mm, whichever is greater.	
(5)	The upper face plates of portable beams are to extend to the	(5)	The upper face plates of portable beams are to extend to the	
	ends of the beams. The web plates are to be increased in		ends of the beams. The web plates are to be increased in	
	thickness to at least twice that at the mid-point for at least		thickness to at least twice that at the mid-point for at least	
	180 mm from each end or to be reinforced with doubling		180 mm from each end or to be reinforced with doubling	
	plates.		plates.	
(6)	Portable beams are to be provided with suitable gear for	(6)	Portable beams are to be provided with suitable gear for	
	releasing them from slings without the need for personnel to		releasing them from slings without the need for personnel to	
	get on the beam.		get on the beam.	
(7)	Portable beams are to be clearly marked to indicate the deck,	(7)	Portable beams are to be clearly marked to indicate the deck,	
	hatchway and position to which they belong.		hatchway and position to which they belong.	
<u>(8)</u>	Scantling of hatch beam with variable cross-sections is to be	(Ne	ewly added)	(Newly added)
	not less than that obtained from the following formulae.			
	The net section modulus (<i>cm</i> ³) of hatch beams at the mid-			
	point			
	$\underline{Z_{net}} = \underline{Z_{net}}_{cs}$			
	$\underline{Z_{net}} = k_1 \underline{Z_{net_{cs}}}$			
	The net moment of inertia (<i>cm</i> ⁴) of hatch beams at the mid-			
	point			
	$I_{net} = I_{net_{cs}}$			
	$\underline{I_{net} = k_2 I_{net_{cs}}}$			
	$\underline{Z_{net_{cs}}}$: Net section modulus (<i>cm</i> ³) complying with			
	requirement 19.2.5-4(1)			
	$I_{net_{cs}}$: Net moment of inertia (cm^4) complying with			
	requirement 19.2.5-4(1)			
	S: Spacing (m) of portable beams			
	ℓ : Unsupported span (m) of portable beams			
	\underline{b} : Width (m) of steel hatch covers			

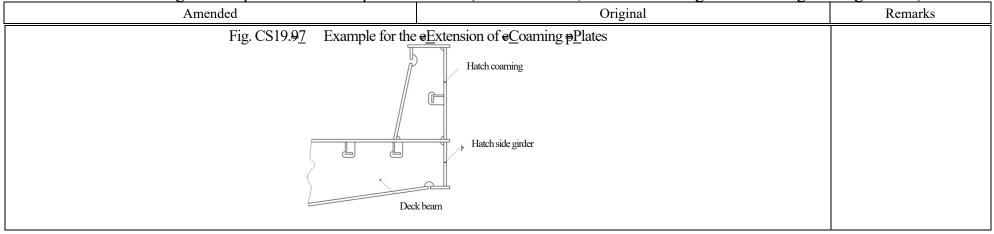
	nended	Original	Remarks
$\frac{k_1 \text{ and } k_2 : \text{ Coefficients}}{\text{ in Table CS19.7}}$	ents obtained from the formulae given		
$ \begin{array}{c} $	Table CS19.7 $1 + \frac{3.2\alpha - \gamma - 0.8}{7\gamma + 0.4}$ $1 + 8\alpha^3 \frac{1 - \beta}{0.2 + 3\sqrt{\beta}}$ Overall length of hatch beam (m) Distance from the end of parallel part to the end of parallel part to the end of parallel part to the end of provide the end of parallel part to the end of paralel paralel parallel part to the end of parallel para	$\frac{Coefficient k_1 \text{ and } k_2}{k_1 \text{ is not to be taken as less than 1.0}}$ $\frac{\alpha = \frac{\ell_1}{\ell}, \ \beta = \frac{l_1}{l_0}, \ \gamma = \frac{Z_1}{Z_0}$ portable beam (m) $\frac{l_0}{Z_0}$	(Newly added)

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
 19.2.9 Hatch Coaming Strength Criteria (Omitted) 2 Scantlings of hatch coamings are to be in accordance with the followings. (1) The local net plate thickness (<i>mm</i>) of the hatch coaming plating t_{coam,net} is not to be less than that obtained from following formula in (a) or (b): (a) For Type 1 ships 	 19.2.9 Hatch Coaming Strength Criteria (Omitted) 2 Scantlings of hatch coamings are to be in accordance with the followings. (1) The local net plate thickness (<i>mm</i>) of the hatch coaming plating t_{coam,net} is not to be less than that obtained from following formula: 	Remarks (1),(2): UR S21 5.1 (3): UR S21 5.1 (4): UR S21 3.6.1 (5): UR S21 5.3.1
$t_{coam,net} = 0.0142s \sqrt{\frac{P_A}{0.95\sigma_Y}} (mm),$ but not to be less than $6 + \frac{L'}{100} (mm)$ $\underline{s}: \underline{S}$ tiffener spacing (\underline{mm}) $P_{\underline{A}}: \text{ As specified in 19.2.4(2)}$ $\sigma_Y: \qquad \underline{Minimum yield stress (\underline{N/mm^2}) of the material}$ $L': \text{ Length of ship}L_1 (m)$ (b) For Type 2 ships	$t_{coam,net} = \frac{14.2S}{\sqrt{\frac{P_H}{\sigma_{a,coam}}}} (mm),$ but not to be less than $6 + \frac{L'}{100} (mm)$ $\frac{S:}{P_H}$: As specified in 19.2.4(2) $\sigma_{a,coam} = 0.95\sigma_F$ σ_F : Minimum upper yield stress (N/mm ²) or proof stress (N/mm ²) of the material L': Length of shipL ₁ (m)	
$t_{coam,net} = 0.016s \sqrt{\frac{P_{coam}}{0.95\sigma_Y}} (mm) ,$ <u>but not to be less than 9.5 (mm)</u> <u>P_{coam} : As specified in 19.2.4(5)</u> <u>s and σ_Y : As specified in (a) above</u> (2) <u>For Type 1 ships, where the hatch coaming stiffener is</u> snipped at both ends, gross thickness $t_{coam,gross}$ (mm) of the coaming plate at the sniped stiffener end is not to be less than that obtained from the following formula:	(2) Where the hatch coaming secondary stiffener is snipped at both ends, gross thickness $t_{coam,gross}$ (<i>mm</i>) of the coaming plate at the sniped stiffener end is not to be less than that obtained from the following formula:	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
$\frac{t_{coam,gross} = 19.6 \sqrt{\frac{P_A s(\ell - 0.0005 s)}{1000 \sigma_Y}} (mm)}{\ell: Stiffener span (m) to be taken as the spacing of coaming staysstaysstaysstaysstays(3) The net section modulus Z_{net} (cm^3) and net shear area (cm^2) of hatch coaming stiffeners are not to be less than that obtained from the following formula.(a) For Type 1 shipsZ_{net} = \frac{P_A s\ell}{f_{bc}\sigma_Y} (cm^3)A_{net} = \frac{P_A s\ell}{\sigma_Y} 10^{-2} (cm^2)\underline{s, \ell, P_A} \text{ and } \underline{\sigma_Y}: As specified in (2) abovef_{bc}: Coefficient according to the type of end connection of stiffeners given by the following formula:= 8 for the end spans of stiffeners sniped at the coaming cornersComercy I = 1.21 \frac{P_{coam} s\ell^2}{f_{bc} c_{p} \sigma_Y} (cm^3)\overline{f_{bc}} : Coefficient according to the type of end connection of stiffeners given by the following formula:f_{bc} = 12 \text{ with both ends constant}= 8 for the end spans of stiffeners sniped at the coaming corners\overline{f_{net}} = 1.21 \frac{P_{coam} s\ell^2}{f_{bc} c_{p} \sigma_Y} (cm^3)\overline{f_{bc}} : Coefficient according to the type of end connection of stiffeners given by the following formula: f_{bc} = 1.21 \frac{P_{coam} s\ell^2}{f_{bc} c_{p} \sigma_Y}}\overline{f_{bc}} : Coefficient according to the type of end connection of stiffeners given by the following formula: f_{bc} = 16 \text{ with both ends constant}\overline{f_{bc}} = 16 \text{ with both ends constant}$	$\frac{t_{coam,gross} = 19.6 \sqrt{\frac{P_{H}S(t-0.5S)}{\sigma_{F}}} (mm)}{\frac{l!}{S} \frac{Secondary stiffener span (m)}{S} to be taken as the spacing of coaming stays \underline{S}, P_{\underline{H}} and \underline{\sigma}_{E}: As specified in (1) above(3) The net section modulus Z_{net} (cm^{3}) and net shear area (cm^{2}) of hatch coaming secondary stiffeners are not to be less than that obtained from the following formula. For snipped stiffeners at coaming corners, section modulus and shear area at the fixed support are to be increased by 35%.Z_{net} = \frac{83 Sl^{2} P_{H}}{\sigma_{F}} (cm^{3}).A_{net} = \frac{10 Sl P_{H}}{\sigma_{F}} (cm^{2}).S, l, P_{\underline{H}} and \underline{\sigma}_{E}. As specified in (2) above$	


Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks
AmendedControl the plastic section modulus to the elastic section modulus of the stiffeners with an attached plate breadth (mm) equal to $40t_{coam,net}$, where $t_{coam,net}$ is the plate net thickness= 1.16 in the absence of more precise evaluation $s, \ell, and \sigma_Y$: As specified in (2) above P_{coam} : As specified in 19.2.4(5)(4) Buckling strength assessment of hatch coaming is to be carried out by the method as deemed appropriate by the Society.Society.(5) The net scantlings of hatch coaming stays are to be in accordance with following (a) to (c) and coaming stays are to be designed for the loads transmitted through them and permissible stresses according to 19.2.5-1.(a) For hatch coaming stays considered to be simple beams (see Examples 1 and 2 of Fig. CS19.6), the net section modulus Z_{net} (cm^3) of such stays at their deck connections and the net scantling $t_{w,net}$ (mm) of their webs are not to be less than that obtained from following formulae. $Z_{net} = \frac{H_c^2 s_c P}{1.9 \sigma_Y}$ (cm^3) H_c : Hatch coaming stay height (m) h : Hatch coaming stay spacing ($m\underline{m}$) Mc : As specified in (1) above	(4) Buckling strength assessment of hatch coaming is to be carried out by the method as deemed appropriate by the Society. (5) The net scantlings of hatch coaming stays are to be in accordance with following (a) to (c): (a) For hatch coaming stays considered to be simple beams (see Examples 1 and 2 of Fig. CS19.8), the net section modulus Z_{net} (cm ³) of such stays at their deck connections and the net scantling $t_{w,net}$ (mm) of their webs are not to be less than that obtained from following formulae. $\frac{Z_{net}}{z_{F}} = \frac{526H_c^2SP_H}{\sigma_F} - (cm^3)}{H_C$: Hatch coaming stay height (m) h: Hatch coaming stay height (m) h: Hatch coaming stay spacing (m) σ_F and P_H : As specified in (1) above	Č /
<u><i>P</i></u> : Pressure (kN/m^2) on coaming taken as P_A defined in	182/207	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

	Original	Č /
Amended	Original	Remarks
<u>19.2.4(2) for Type 1 ships and as P_{Coam} defined in 19.2.4(5) for Type 2 ships.</u>	<u>n</u>	
 (b) For coaming stays other than those in (a) above (see Example 3 of Fig. CS19.6), the stresses are generall to be determined through FEM, and the calculate stresses are to satisfy the permissible stress criteria or 19.2.5-1. (c) For calculating the net section modulus of coamine stays, the area of their face plates is to be taken int account only when it is welded with full penetration welds to the deck plating and an adequate underdect structure is fitted to support the stresses transmitted by them. 	 Example 3 of Fig. CS19.8), the stresses are generally to be determined through grillage analysis or FEM, and the calculated stresses are to satisfy the permissible stress criteria of 19.2.5-1. (c) For calculating the net section modulus of coaming stays, the area of their face plates is to be taken into account only when it is welded with full penetration welds to the deck plating and an adequate underdeck 	
Fig. CS19. 8 6 Exat	mples of eCoaming sStays	
Example1 Ex	Example2 Example3	

Amended	Original	Remarks
(Deleted)	3 The coamings for hatchways in Position I or coamings of	(Deleted)
	760 mm or more in height for hatchways in Position II are to be	
	stiffened in a suitable position below the upper edge by a horizontal	
	stiffener; the breadth of the horizontal stiffener is not to be less than	
	<u>180 mm.</u>	
<u>3</u> Coamings are to be additionally supported by efficient	<u>4</u> Coamings are to be additionally supported by efficient	
brackets or stays provided from the horizontal stiffeners to the deck at	brackets or stays provided from the horizontal stiffeners specified in -	
intervals of approximately 3 metres.	$\underline{3}$ to the deck at intervals of approximately 3 metres.	
<u>4</u> Coaming plates are to extend to the lower edge of the deck	5 Coaming plates are to extend to the lower edge of the deck	
beams or hatch side girders are to be fitted that extend to the lower	beams or hatch side girders are to be fitted that extend to the lower	
edge of the deck beams (see Fig. CS19.7). Extended coaming plates	edge of the deck beams (see Fig. CS19.9). Extended coaming plates	
and hatch side girders are to be flanged or fitted with face bars or half-	and hatch side girders are to be flanged or fitted with face bars or half-	
round bars, except where specially approved by the Society.	round bars, except where specially approved by the Society.	
5 Hatch coamings and hatch coaming stays are to comply with	<u>6</u> Hatch coamings and hatch coaming stays are to comply with	
the following requirements:	the following requirements:	
(Omitted)	(Omitted)	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended		Original	Remarks
19.2 .]	10 Closing Arrangements	19.2.10 Closing Arrangements	UR S21 6.1
1	Securing devices	1 Securing devices	
(1)	Securing devices between covers and coamings and at cross-joints are to ensure weathertightness.	 Securing devices between covers and coamings and at cross-joints are to ensure weathertightness. 	
(2)	 The means for securing and maintaining weathertightness by using gaskets and securing devices are to comply with the following (a) to (f). The means for securing and maintaining weathertightness of weathertight covers are to be to the satisfaction of the Society. Arrangements are to ensure that weathertightness can be maintained in any sea condition. (a) The weight of covers and any cargo stowed thereon are to be transmitted to the ship structure. 	 (2) The means for securing and maintaining weathertightness by using gaskets and securing devices are to comply with the following (a) to (f). The means for securing and maintaining weathertightness of weathertight covers are to be to the satisfaction of the Society. Arrangements are to ensure that weathertightness can be maintained in any sea condition. (a) The weight of covers and any cargo stowed thereon are to be transmitted to the ship structure <u>through steel to standard</u>. 	
	 (b) Gaskets and compression flat bars or angles which are arranged between covers and the ship structure and cross-joint elements are to be in compliance with the following i) to iv): i) Compression bars or angles are to be well rounded where in contact with the gaskets and are to be made of corrosion-resistant materials. ii) The gaskets are to be of relatively soft elastic materials. The material is to be of a quality suitable 	 steel contact. (b) Gaskets and compression flat bars or angles which are arranged between covers and the ship structure and cross-joint elements are to be in compliance with the following i) to <u>iii</u>): i) Compression bars or angles are to be well rounded where in contact with the gaskets and are to be made of corrosion-resistant materials. ii) The gaskets are to be of relatively soft elastic 	
	 for all environmental conditions likely to be experienced by the ship, and is to be compatible with the cargoes carried. iii) A continuous gasket is to be effectively secured to the cover. The material and form of gasket selected are to be considered in conjunction with the type of cover, the securing arrangement and 	 in) The gastets are to be of relatively soft elastic materials. The material is to be of a quality suitable for all environmental conditions likely to be experienced by the ship, and is to be compatible with the cargoes carried. iii) A continuous gasket is to be effectively secured to the cover. The material and form of gasket selected are to be considered in conjunction with 	
	the expected relative movement between the	the type of cover, the securing arrangement and	

Amended	Original	Remarks
cover and ship structure.iv)The specification or grade of the packing materialis to be indicated on the drawings.	the expected relative movement between the cover and ship structure. (Newly added)	(Newly added)
 (c) Securing devices attached to hatchway coamings, decks or covers are to be in compliance with the following i) to vi): i) Arrangement and spacing of securing devices are to be determined with due attention to the effectiveness for weathertightness, depending upon the type and the size of hatch cover as well as to the stiffness of the cover edges between the securing devices. ii) The moment of inertia (cm⁴) of the edge elements of hatch covers is not to be less than that obtained from the following formula: <i>I</i> = 6pa⁴ (cm⁴)_ <i>a</i> : Spacing (m) between securing devices, not to be taken less than 2 m <i>p</i> : Packing line pressure (N/mm), minimum 5 	 (c) Securing devices attached to hatchway coamings, decks or covers are to be in compliance with the following i) to <u>v</u>): i) Arrangement and spacing of securing devices are to be determined with due attention to the effectiveness for weathertightness, depending upon the type and the size of hatch cover as well as to the stiffness of the cover edges between the securing devices. (Newly added) 	UR S21 6.1.4 (Newly added)
iii) The gross sectional area (cm^2) of each securing device is not to be less than that obtained from the following formula. However, rods or bolts are to have a net diameter not less than 19 mm for hatchways exceeding 5 m^2 in area. A = 0.28 ap/f	ii) The gross sectional area (cm^2) of each securing device is not to be less than that obtained from the following formula. However, rods or bolts are to have a net diameter not less than 19 mm for hatchways exceeding 5 m^2 in area. $A = 0.28\bar{a}p/f$	
	$\underline{\overline{a:}} \text{Half the distance } (m) \text{ between two adjacent}}$ $\underline{\overline{a:}} \text{Half the distance } (m) \text{ between two adjacent}}$	

Amended-Original Requirements Com	parison Table (Hatch C	Covers, Hatch Coamin	gs and Closing Arrangements)

Amended	Original	Remarks
f: As obtained from the following formula: $f = (\underline{\sigma_Y}/235)^e$	$\frac{\text{cover periphery (see Fig. CS19.3)}}{p: Packing line pressure (N/mm), minimum 5}$ $\frac{N/mm}{f: As obtained from the following formula:}$ $f = (\underline{\sigma_F}/235)^e$	
$\frac{\sigma_Y : \text{Minimum yield stress } (N/mm^2) \text{ of the steel}}{\text{used for fabrication, but not to be taken}}$ $\frac{\text{greater than 70\% of the ultimate tensile}}{\text{strength}}$ $e: A \text{ coefficient determined according to the}}{\text{value of } \sigma_Y, \text{ as follows:}}$ $1.0 \text{ for } \sigma_Y \leq 235 \text{ N/mm^2}$ $0.75 \text{ for } \sigma_Y > 235 \text{ N/mm^2}$	$\frac{\sigma_F: \text{ Minimum upper yield stress } (N/mm^2) \text{ of the}}{\text{ steel used for fabrication, but not to be taken}} \\ \frac{\sigma_F: \text{ Minimum upper yield stress } (N/mm^2) \text{ of the ultimate tensile}}{\text{ strength}} \\ e: \frac{\text{Coefficient taken as equal to}}{1.0 \text{ for } \sigma_F} \le 235 \text{ N/mm}^2} \\ 0.75 \text{ for } \sigma_F > 235 \text{ N/mm}^2 \end{cases}$	
<u>a and p: As specified in (ii) above</u> <u>iv</u>) Individual securing devices on each cover are to have approximately the same stiffness characteristics.	iii) Individual securing devices on each cover are to have approximately the same stiffness characteristics.	
\underline{v}) Where rod cleats are fitted, resilient washers or	\underline{iv}) Where rod cleats are fitted, resilient washers or	
cushions are to be incorporated.vi)Where hydraulic cleating is adopted, a positive means is to be provided to ensure that it remains mechanically locked in the closed position in the event of failure of the hydraulic system.	 cushions are to be incorporated. <u>v</u>) Where hydraulic cleating is adopted, a positive means is to be provided to ensure that it remains mechanically locked in the closed position in the event of failure of the hydraulic system. 	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended	Original	Remarks	
(d) A drainage arrangement equivalent to the standards	(d) A drainage arrangement equivalent to the standards	(d)(i),(ii),(iv): UR S21	
specified in the following is to be provided.	specified in the following is to be provided.	5.4.5	
i) Drainage is to be arranged inside the line of	i) Drainage is to be arranged inside the line of	(d)(iii): Rec.No14	
gaskets by means of a gutter bar or vertical	gaskets by means of a gutter bar or vertical	3.2.2	
extension of the hatch side and end coaming. If an	extension of the hatch side and end coaming. If an	(f): UR S21 6.1.4	
application is made by the owner of a container	application is made by the owner of a container		
carrier and the Society deems it to be appropriate,	carrier and the Society deems it to be appropriate,		
special consideration will be given to this	special consideration will be given to this		
requirement.	requirement.		
ii) Drain openings are to be arranged at the ends of	ii) Drain openings are to be arranged at the ends of		
drain channels and are to be provided with	drain channels and are to be provided with		
effective means such as non-return valves or the	effective means such as non-return valves or the		
equivalent for preventing the ingress of water	equivalent for preventing the ingress of water		
from outside. It is unacceptable to connect fire	from outside.		
hoses to the drain openings for this purpose.			
iii) Cross-joints of multi-panel covers are to be	iii) Cross-joints of multi-panel covers are to be		
arranged with a drainage channel for water from	arranged with a drainage channel for water from		
space above the gasket and a drainage channel	space above the gasket and a drainage channel		
below the gasket.	below the gasket.		
iv) If a continuous outer steel contact between cover	iv) If a continuous outer steel contact between cover		
and ship structure is arranged, drainage from the	and ship structure is arranged, drainage from the		
space between the steel contact and the gasket is	space between the steel contact and the gasket is		
also to be provided for.	also to be provided for.	(Newly added)	
v) Drain openings in hatch coamings are to be	(Newly added)	(Incurry added)	
arranged with sufficient distance to areas of stress			
concentration (e.g. hatch corners, transitions to			
<u>crane posts).</u>			
(e) It is recommended that ships with steel weathertight	(e) It is recommended that ships with steel weathertight		
covers are supplied with an operation and maintenance	covers are supplied with an operation and maintenance		
manual which includes the following i) to v):	manual which includes the following i) to v):		

Amended Original Amended		Remarks
 i) Opening and closing instructions ii) Maintenance requirements for packing, securing devices and operating items iii) Cleaning instructions for drainage systems iv) Corrosion prevention instructions v) List of spare parts (f) Securing devices of special design in which significant bending or shear stresses occur may be designed as anti-lifting devices according to -2 below. The packing line pressure q is to be specified, and as load, q multiplied by the spacing between securing devices a (m) is to be applied. 	 i) Opening and closing instructions ii) Maintenance requirements for packing, securing devices and operating items iii) Cleaning instructions for drainage systems iv) Corrosion prevention instructions v) List of spare parts (f) Securing devices of special design in which significant bending or shear stresses occur may be designed as anti-lifting devices according to -2 below. 	
2 The securing devices of hatch covers, on which cargo is to be lashed, are to be designed for a lifting force resulting from the loads according to 19.2.4(4) (see Fig. CS19.8). Unsymmetrical loading, which may occur in practice, is to be considered. Under such loading, the equivalent stress (<i>N/mm²</i>) in securing devices is not to be greater than that obtained from the following formula. Anti-lifting devices may be dispensed with at the discretion of the Society. $\sigma_E = \frac{150}{k_l}$ <i>k</i> : As obtained from the following formula: $k_l = \left(\frac{235}{\frac{\sigma_Y}{\sigma_Y}}\right)^e$ $\sigma_Y : \text{Minimum yield stress (N/mm2) of the material e: As given below 0.75 for \sigma_Y > 235$	The securing devices of hatch covers, on which cargo is to be are to be designed for a lifting force resulting from the loads ing to 19.2.4(4) (see Fig. CS19.8). Unsymmetrical loading, may occur in practice, is to be considered. Under such loading, tivalent stress (<i>N/mm</i> ²) in securing devices is not to be greater at obtained from the following formula. Anti-lifting devices e dispensed with at the discretion of the Society. $\sigma_E = \frac{150}{k_l}$ <i>k_l</i> : As obtained from the following formula: $k_l = \left(\frac{235}{\sigma_Y}\right)^e$ $\frac{\sigma_Y : Minimum yield stress (N/mm2) of the materiale: As given below 2 The securing devices of hatch covers, on which cargo is to belashed, are to be designed for a lifting force resulting from the loadsaccording to 19.2.4(4) (see Fig. CS19.10). Unsymmetrical loading,which may occur in practice, is to be considered. Under such loading,the equivalent stress (N/mm2) in securing devices is not to be greaterthan that obtained from the following formula:k_l = \left(\frac{235}{\sigma_Y}\right)^e \frac{\sigma_Y : Minimum yield stress (N/mm2) of the materiale: As given below 2 The securing devices of hatch covers, on which cargo is to belashed, are to be designed for a lifting force resulting from the loadsaccording to 19.2.4(4) (see Fig. CS19.10). Unsymmetrical loading,which may occur in practice, is to be considered. Under such loading,the equivalent stress (N/mm2) in securing devices is not to be greaterthan that obtained from the following formula:k_l = \left(\frac{235}{\sigma_F}\right)^e \sigma_F : Minimum upper yield stress (N/mm2) or proof stress(N/mm2) of the material$	

Amended	Original	Remarks
1.00 for $\sigma_Y \le 235$	1.00 for $\sigma_F \leq 235$	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amended		Original	Remarks
Fig	g. CS19. 10 8 Lifting f I	Forces at a <u>hH</u> atch <u>eC</u> over	
		$B_{Z} \downarrow \uparrow A_{Z} B_{Z} \downarrow \uparrow A_{Z} B_{Z} \downarrow$	

Amended	Original	Remarks
 19.2.11 Hatch Cover Supports, Stoppers and Supporting Structures <u>1</u> Hatch cover supports, stoppers and supporting structures subject to the provisions of 19.2 are to comply with the following (1) to (3): 	 19.2.11 Hatch Cover Supports, Stoppers and Supporting Structures Hatch cover supports, stoppers and supporting structures subject to the provisions of 19.2 are to comply with the following (1) to (3): 	UR S21 6.2
(1) For the design of the securing devices for the prevention of shifting, the horizontal mass forces F obtained from the following formula are to be considered. Acceleration in the longitudinal direction, a_X , and in the transverse direction, a_Y , does not need to be considered as acting simultaneously.	(1) For the design of the securing devices for the prevention of shifting, the horizontal mass forces F obtained from the following formula are to be considered. Acceleration in the longitudinal direction, a_X , and in the transverse direction, a_Y , does not need to be considered as acting simultaneously.	
$F = ma$ <i>m</i> : Sum of mass of cargo lashed on the hatch cover and mass of hatch cover <i>a</i> : Acceleration obtained from the following formula $a_X = 0.2g$ for longitudinal direction $a_Y = 0.5g$ for transverse direction (2) The design load for determining the scantlings of stoppers is	 F = ma m: Sum of mass of cargo lashed on the hatch cover and mass of hatch cover a: Acceleration obtained from the following formula a_X = 0.2g for longitudinal direction a_Y = 0.5g for transverse direction (2) The design load for determining the scantlings of stoppers is 	
 not to be less than that obtained from 19.2.4(2) and (1), whichever is greater. Stress in the stoppers is to comply with the criteria specified in 19.2.5-1(1). (3) The details of hatch cover supporting structures are to be in 	 not to be less than that obtained from 19.2.4(2) and (1), whichever is greater. Stress in the stoppers is to comply with the criteria specified in 19.2.5-1(1). (3) The details of hatch cover supporting structures are to be in 	
 (5) The details of haten cover supporting sudctates are to be in accordance with the following (a) to (g): (a) The nominal surface pressure (<i>N/mm²</i>) of a hatch cover supports is not to be greater than that obtained from the following formula: 	 (a) The nominal surface pressure (<i>N/mm²</i>) of a hatch cover supports is not to be greater than that obtained from the following formula: 	
$\frac{P_{n max}}{P_{n max}} = dP_n \qquad \text{in general}$ $\frac{P_{n max}}{P_{n max}} = 3P_n \qquad \text{for metallic supporting}$	$\frac{p_{n \max}}{p_{n \max}} = d \frac{p_n}{p_n} $ in general $\frac{p_{n \max}}{p_n \max} = 3 \frac{p_n}{p_n} $ for metallic supporting	

Amended-Original Requirements Comparison	Table (Haten Covers, Haten Coannigs and Closing An	(angements)
Amended	Original	Remarks
surface not subjected to relative displacements	surface not subjected to relative displacements	
 d: As given by the following formula. Where d exceeds 3, d is to be taken as 3. d = 3.75 - 0.015L₁ d_{min} = 1.0 in general d_{min} = 2.0 for partial loading conditions L₁: Distance (m) measured on the waterline at the scantling draught ds from the forward side of the stem to the centre of the rudder stock. L₁ is to be not less than 96% and need not exceed 97% of the extreme length on the waterline at the scantling draught ds. In ships without rudder stocks (e.g. ships fitted with azimuth thrusters), the Rule length L₁ is to be taken equal to 97% of the extreme length on the waterline at the scantling draught ds. ds: Scantling draught (m) at which the strength requirements for the scantlings of the ship are met and represents the full load condition; it is to be not less than that corresponding to the assigned freeboard. <u>P_n</u>: As obtained from Table CS19.8 	 d: As given by the following formula. Where d exceeds 3, d is to be taken as 3. d = 3.75 - 0.015L₁ d_{min} = 1.0 in general d_{min} = 2.0 for partial loading conditions L1: Distance (m) measured on the waterline at the scantling draught ds from the forward side of the stem to the centre of the rudder stock. L1 is to be not less than 96% and need not exceed 97% of the extreme length on the waterline at the scantling draught ds. In ships without rudder stocks (e.g. ships fitted with azimuth thrusters), the Rule length L1 is to be taken equal to 97% of the extreme length on the waterline at the scantling draught ds. ds: Scantling draught (m) at which the strength requirements for the scantlings of the ship are met and represents the full load condition; it is to be not 	

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

Amende	d			(Original	Remarks
Table CS19. 10 8Permissible #No			Surfac	e p Pressure p_n P _n	ı	UR S21 6.2.2 Tab.7
		$p_n \mathbf{v}$	/hen load	led by		
	Material	Vertical force		Horizontal force (on stoppers)		
	Hull structure steel	25		40		
	Hardened steel	35		50		
	Lower friction materials	50		-		
(b) Where large relative d	isplacements of the supp	orting	(b)	Where large rel	ative displacements of the supporting	UR S21 6.2
surfaces are to be expe	cted, the use of material h	naving		surfaces are to b	be expected, the use of material having	
low wear and frictional	properties is recommend	ed.		low wear and fr	ictional properties is recommended.	
	rts are to be submitted. In		(c)		e supports are to be submitted. In these	
Ç <u> </u>	d maximum pressure giv			e	ermitted maximum pressure given by	
the material manufactur	1 0	5		U 1	nufacturer is to be specified.	
	er of the vertical hatch	cover	(d)		ufacturer of the vertical hatch cover	
support material can pr	ovide proof that the mate	erial is		support materia	l can provide proof that the material is	
sufficient for the increa	ased surface pressure, no	t only		sufficient for th	e increased surface pressure, not only	
statically but under	dynamic conditions,	the		statically but	under dynamic conditions, the	
permissible nominal	surface pressure $P_{n max}$	c, as		permissible no	minal surface pressure $p_{n max}$ as	
specified in (a) above, 1	may be relaxed at the disc	retion		specified in (a)	above, may be relaxed at the discretion	
of the Society. Ho	owever, realistic long	term		of the Societ	ty. However, realistic long term	
distributions of spectra	for vertical loads and re	elative		distributions of	spectra for vertical loads and relative	
horizontal motion betw	ween hatch covers and	hatch		horizontal moti	on between hatch covers and hatch	
	s deemed appropriate b	y the		cover stoppers	are as deemed appropriate by the	
Society.				Society.		
	urrangement of stoppers		(e)		the arrangement of stoppers, the	
	to transmit the following	torce			be able to transmit the following force	
$\underline{P_h}$ in the longitudinal a	and transverse direction.			$\underline{p_h}$ in the longit	udinal and transverse direction.	
P_V			r	$p_v = u \frac{p_v}{m}$		
$\underline{P_h} = \mu \frac{\overline{\sqrt{d}}}{\sqrt{d}}$			P	$p_{\underline{h}} = \mu \frac{\underline{m}}{\sqrt{d}}$		
P_{V} : Vertical supporting	a formo			p_{v} : Vertical su	pporting force	
r_V . verucai supporting	giore					

Amended-Original Requirements Com	parison Table (Hatch Covers	s. Hatch Coamings and Closing	Arrangements)
		-) = =	

	Table (Hatch Covers, Hatch Coannings and Closing All	0 /
Amended	Original	Remarks
 μ: Friction coefficient generally to be taken as 0.5. For non-metallic or low-friction materials, the friction coefficient may be reduced as appropriate by the Society. However, in no case μ is to be less than 0.35. (f) Stresses in supporting structures are to comply with the criteria specified in 19.2.5-1(1). (g) For substructures and adjacent constructions of supports subjected to horizontal forces P_h, special consideration is to be given to fatigue strength. 2 For steel weathertight hatch covers of Type 2 ships, effective means for stoppers complying with the requirements in Table CS19.9 against the horizontal green sea forces acting on them are to be provided. 	 μ: Friction coefficient generally to be taken as 0.5. For non-metallic or low-friction materials, the friction coefficient may be reduced as appropriate by the Society. However, in no case μ is to be less than 0.35. (f) Stresses in supporting structures are to comply with the criteria specified in 19.2.5-1(1). (g) For substructures and adjacent constructions of supports subjected to horizontal forces p_h, special consideration is to be given to fatigue strength. -2. (Newly added) 	(Newly added) UR S21 6.2.3
	Requirements for Stoppers	(Newly added) UR S21 6.2.3
Design pressure <u>As specified in 19.2.4(7).</u>	at the standard and a land at the theost of welder the active lant	
	ad the stopper welds (calculated at the throat of welds), the equivalent e of 0.8 times the yield stress of the material.	

	Amended	Original	Remarks
	EFFECTIVE DATE AND APPLICATION		
1.	The effective date of the amendments is 1 July 2024.		
2.	Notwithstanding the amendments to the Rules, the current		
	requirements apply to ships for which the date of contract		
	for construction* is before the effective date.		
	* "contract for construction" is defined in the latest version		
	of IACS Procedural Requirement (PR) No.29.		
	IACS PR No.29 (Rev.0, July 2009)		
4			
1.	The date of "contract for construction" of a vessel is the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. This date and the		
	construction numbers (i.e. hull numbers) of all the vessels included in the contract are to be		
	declared to the classification society by the party applying for the assignment of class to a newbuilding.		
2.	The date of "contract for construction" of a series of vessels, including specified optional vessels		
	for which the option is ultimately exercised, is the date on which the contract to build the series is signed between the prospective owner and the shipbuilder.		
	For the purpose of this Procedural Requirement, vessels built under a single contract for		
	construction are considered a "series of vessels" if they are built to the same approved plans for classification purposes. However, vessels within a series may have design alterations from		
	the original design provided:		
	 such alterations do not affect matters related to classification, or If the alterations are subject to classification requirements, these alterations are to 		
	comply with the classification requirements in effect on the date on which the		
	alterations are contracted between the prospective owner and the shipbuilder or, in the absence of the alteration contract, comply with the classification requirements in effect		
	on the date on which the alterations are submitted to the Society for approval.		
	The optional vessels will be considered part of the same series of vessels if the option is exercised not later than 1 year after the contract to build the series was signed.		
3.	If a contract for construction is later amended to include additional vessels or additional options,		
	the date of "contract for construction" for such vessels is the date on which the amendment to the contract, is signed between the prospective owner and the shipbuilder. The amendment to		
	the contract is to be considered as a "new contract" to which 1, and 2, above apply.		
4.	If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessel, or vessels, is the date on which revised contract or new		
	contract is signed between the Owner, or Owners, and the shipbuilder.		
Note			
This P	rocedural Requirement applies from 1 July 2009.		

	Table (Haich Covers, Haich Coannings and Closing An	0 /
Amended	Original	Remarks
	CONSTRUCTION OF STEEL SHIPS ASS SURVEYS ENERAL	
B1.3 Definitions	B1.3 Definitions	UR S21 7.2
B1.3.1 Terms (Omitted.) 3 "Hatch covers and hatch coamings for cargo holds of ships stipulated otherwise by the Society" in 1.3.1(6)(b) , Part B of the Rules is as specified in the following (1) to (5). (Omitted) (4) Hatch covers and hatch coamings of ships which are contracted for construction on or after 1 July 2012 <u>except</u> <u>bulk carriers defined in 1.3.1(13), Part B (excluding those <u>affixed with the notation "<i>CSR</i>"), self-unloading ships defined in 1.3.1(19), Part B and ships other than ordinary <u>bulk carriers with a single deck, and bilge hopper tanks,</u> topside tanks and a double bottom for the length of the cargo <u>area.</u> Renewal thickness (<i>t</i>renewal) is given by the following formula. If a voluntary addition is included in as built thickness, the value may be at the discretion of the Society. <i>t</i>renewal = <i>t</i>as-built $-t_c + 0.5 (mm)$ <i>t</i>as-built: as built thickness (<i>mm</i>) <i>tc</i>: Corrosion addition specified in Table B1.3.1-1(d) Where corrosion addition <i>t_c</i> is 1.0 (<i>mm</i>), renewal</u></u>	B1.3.1 Terms (Omitted) 3 "Hatch covers and hatch coamings for cargo holds of ships stipulated otherwise by the Society" in 1.3.1(6)(b) , Part B of the Rules is as specified in the following (1) to (<u>4</u>). (Omitted) (4) Hatch covers and hatch coamings of ships <u>complying with the</u> <u>requirements in 14.6, Part 1, Part C of the Rules or 19.2, Part</u> <u>CS of the Rules, and ships</u> which are contracted for construction on or after 1 July 2012. Renewal thickness (<i>t</i> _{renewal}) is given by the following formula. If a voluntary addition is included in <u>the</u> as built thickness, the value may be at the discretion of the Society. <i>t</i> _{renewal} = <i>t</i> _{as-built} - <i>t</i> _c + 0.5 (<i>mm</i>) <i>t</i> _{as-built} : as built thickness (<i>mm</i>) <i>t</i> : Corrosion addition specified in Table B1.3.1-1(d) Where corrosion addition <i>t</i> _c is 1.0 (<i>mm</i>), renewal	

Amended	Original	Remarks
thickness may be given by the formula $t_{\text{renewal}} = t_{\text{as-built}}$ —	thickness may be given by the formula $t_{\text{renewal}} = t_{\text{as-built}}$ —	
$t_{\rm c}$ (mm)	$t_{\rm c} (mm)$	
(Omitted)	(Omitted)	
(5) Hatch covers and hatch coamings of ships which are	(Newly added)	(Newly added)
contracted for construction on or after 1 July 2024		(Incomy addied)
(excluding those affixed with the notation "CSR"). Renewal		
thickness (trenewal) is given by the following formula. If a		
voluntary addition is included in as built thickness, the value		
may be at the discretion of the Society.		
$\underline{t_{\text{renewal}} = t_{\text{as-built}} - t_{\text{c}} + 0.5 (mm)}$		
tas-built: as built thickness (mm)		
tc: Corrosion addition specified in Table B1.3.1-1(e)		
Where corrosion addition to is 1.0 (mm), renewal		
thickness may be given by the formula $t_{\text{renewal}} = t_{\text{as-built}}$		
<u>tc (mm)</u>		

Amended-Original Requirements Comparison Table (Hatch Covers, Hatch Coamings and Closing Arrangements)

		Amended		Original	0 0	Remarks
	Table B1.3		31.3.1-1(e)		(Newly added)	
	<u>Type</u>	Ship type		Framing system	<u>t_c (mm)</u>	UR S21 7.1
			Single skin hatch	covers	<u>2.0</u>	
		Ships other than the below	Double skin	Top, side and bottom plating	<u>1.5</u>	
	Type 1		hatch covers	Internal structural members	<u>1.0</u>	
	ship		Hatch coamings,	hatch coaming stays and stiffeners	<u>1.5</u>	
		Container carrier	Hatch covers (in	<u>general)</u>	<u>1.0</u>	
		Car carrier	Hatch coamings		<u>1.5</u>	
		Ore carrier	Single skin hatch	covers	<u>2.0</u>	
	T 0	Combination carriers which are designed to carry either oil or solid cargoes in bulk, like ore/oil carriers.	Double skin hatch covers	Top, side and bottom plating	<u>2.0</u>	
	<u>Type 2</u> ship	<u>Self-unloading ships</u> (Ships specified in 1.3.1(13) , Part	haich covers	Internal structural members	<u>1.5</u>	
		B(excluding those affixed with the notation "CSR") and (19)	Hatch coamings,	hatch coaming stays and stiffeners	<u>1.5</u>	
		osion additions for both sides of hatch covers and hatch definitions of Type 1 ship and Type 2 ship are given 14.		exposed decks are to be as deemed appropriate by the Society trees to be a second appropriate by the Society trees are to be as deemed appropriate by the Society trees are to be as deema are to be a	<u>'</u>	
l						
	EFF	FECTIVE DATE AND APPLICATION	J			
1.		fective date of the amendments is 1 July				
2.	curre	thstanding the amendments to the G ent requirements apply to the surveys f ication is submitted to the Society before	for which the			
	aute	•		200/202		

Amended	Original	Remarks
	N AND EQUIPMENT OF SMALL SHIPS	
CS19.2 Hatchways	CS19.2 Hatchways	
(Deleted)	 <u>CS19.2.1 Application</u> <u>1</u> Notwithstanding ship length, the construction and means for closing cargo and other hatchways of bulk carriers defined in <u>1.3.1(13)</u>, Part B of the Rules, self-unloading ships defined in <u>1.3.1(19)</u>, Part B of the Rules and ships intended to be registered as "bulk carriers" are to comply with relevant requirements in Part <u>CSR-B&T or Part CSR-B of the Rules.</u> <u>2</u> When the requirements for hatchways in Part CSR-B&T or Part CSR-B of the Rules apply to hatchways of ships in accordance with -1 above, the corrosion additions for hatch coamings, hatch coaming stays and stiffeners may be taken as 1.5 mm. 	(Deleted)
 CS19.2.4 Design Loads for Steel Hatch Covers, Portable Beams and Hatchway Coamings 1 Design vertical wave load P_{HC} as specified in 19.2.4(1), Part CS of the Rules is to comply with the following requirements. (1) Positions I and II may be determined in accordance with Fig. CS19.2.4-1 and -2. (2) Where an increased freeboard is assigned, the design load for hatch covers according to 19.2.4(1), Part CS of the Rules on the actual freeboard deck may be as required for a superstructure deck, provided the summer freeboard is such 	 CS19.2.4 Design Loads for Steel Hatch Covers, Portable Beams and Hatchway Coamings 1 Design vertical wave load P_V as specified in 19.2.4(1), Part CS of the Rules is to comply with the following requirements. (1) Positions I and II may be determined in accordance with Fig. CS19.2.4-1 and -2. (2) Where an increased freeboard is assigned, the design load for hatch covers according to 19.2.4(1), Part CS of the Rules on the actual freeboard deck may be as required for a superstructure deck, provided the summer freeboard is such 	UR S21 1.2.2

Amended	Original	Remarks
		Keinarks
that the resulting draught will not be greater than that	0 0 0	
corresponding to the minimum freeboard calculated from	corresponding to the minimum freeboard calculated from	
an assumed freeboard deck situated at a distance at least	an assumed freeboard deck situated at a distance at least	
equal to one superstructure standard height (as per	equal to one superstructure standard height (as per	
Regulation 33 of the "International Convention on Load	c	
Lines, 1966 and Protocol of 1988 relating to the	Lines, 1966 and Protocol of 1988 relating to the	
International Convention on Load Lines, 1966") below the	International Convention on Load Lines, 1966") below the	
actual freeboard deck (see Fig. CS19.2.4-2).	actual freeboard deck (see Fig. CS19.2.4-2).	
(Omitted)	(Omitted)	
(Deleted)		(Deleted)
	CS19.2.5 Strength Criteria of Steel Hatch Covers and Hatch	
	Beams	
	<u>1</u> Where scantlings of structural members of steel hatch covers	
	are determined based upon direct calculations, the following	
	requirements are to be applied. Those not specified in this paragraph	
	are to comply with the requirements in Chapter 8, Part 1, Part C of	
	the Rules.	
	(1) Loads	
	The design wave loads imposed on steel hatch covers are to	
	be Py specified in 19.2.4(1), Part CS of the Rules.	
	(2) Modelling of structures	
	(a) The structural model is to be able to reproduce the	
	behaviour of the structure with the highest possible	
	fidelity. Stiffeners and primary supporting members	
	subject to pressure loads are to be included in the	
	modelling. However, buckling stiffeners may be	
	disregarded for stress calculation.	
	(b) Net scantlings which do not include corrosion additions	
	are to be used for modelling.	
	(c) In no case is element width to be larger than stiffener	

Amended	Original	Remarks
	spacing. The ratio of element length to width is not to	
	exceed 4. The element height of the webs of primary	
	supporting members is not to exceed one-third of the	
	web height.	
	(d) The structural model is to be supported by pads. If the	
	arrangement of pads differs from the arrangement of	
	stiffeners, the edge elements of steel hatch covers are	
	also to be modelled.	
	(3) Permissible value	
	When the loads specified in (1) act on the structural model	
	specified in (2), the net scantlings are to be determined so	
	that the stress and deflection generated in each structural	
	member satisfy the allowable values specified in 19.2.5-1,	
	Part CS of the Rules.	
	(4) Miscellaneous	
	(a) The thickness of the top plating of steel hatch covers is	
	to comply with the requirements in 19.2.5-2, Part CS	
	of the Rules.	
	(b) The scantlings of the secondary stiffeners of steel	
	hatch covers are to comply with the requirements in	
	19.2.5-3, Part CS of the Rules.	
	(c) The buckling strength for the structural members	
	forming steel hatch covers is to comply with the	
	requirements in 19.2.5-6, Part CS of the Rules.	
	requirements in 17120 of 1 art of or the reason	

(Deleted) (Deleted) CS19.2.6 Additional Requirements for Steel Hatch Covers Carrying Cargoes (Deleted) 1 "Direct calculations deemed appropriate by the Society" in 19.2.6-1, Part CS of the Rules refers to calculations that comply with the following requirements. Those not specified in this paragraph are to comply with the requirements in Chapter 8, Part 1, Part C of the Rules (1) Loads (a) The loads acting on steel hatch covers are to be according to 19.2.4, Part CS of the Rules based on the type of load and loading condition. Except as deemed necessary by the Society, no loads are to be assumed to act jointly. (b) No dynamic loads due to ship motion are to be	Amended	Original	Remarks
assumed as the wheel loads from wheeled vehicles only used for loading/unloading while in port. (2) Modelling of Structures (a) The structural model is to be able to reproduce the behaviour of the structure with the highest possible fidelity. Stiffeners and primary supporting members subject to pressure loads are to be included in the modelling. However, buckling stiffeners may be disregarded for stress calculation. (b) Net scantlings which do not include corrosion additions are to be used for modelling. (c) In no case is element width to be larger than stiffener spacing. The ratio of element length to width is not to exceed 4. The element height of the webs of primary supporting members is not to exceed one-third of the		CS19.2.6 Additional Requirements for Steel Hatch Covers Carrying Cargoes 1 "Direct calculations deemed appropriate by the Society" in 19.2.6-1, Part CS of the Rules refers to calculations that comply with the following requirements. Those not specified in this paragraph are to comply with the requirements in Chapter 8, Part 1, Part C of the Rules (1) Loads (a) The loads acting on steel hatch covers are to be according to 19.2.4, Part CS of the Rules based on the type of load and loading condition. Except as deemed necessary by the Society, no loads are to be assumed to act jointly. (b) No dynamic loads due to ship motion are to be assumed as the wheel loads from wheeled vehicles only used for loading/unloading while in port. (2) Modelling of Structures (a) The structural model is to be able to reproduce the behaviour of the structure with the highest possible fidelity. Stiffeners and primary supporting members subject to pressure loads are to be included in the modelling. However, buckling stiffeners may be disregarded for stress calculation. (b) Net scantlings which do not include corrosion additions are to be used for modelling. (c) In no case is element width to be larger than stiffener spacing. The ratio of element length to width is not to exceed 4. The element height of the webs of primary	

Amended-Original Requirements Com	parison Table (Hatch C	Covers, Hatch Coaming	gs and Closing Arrar	gements)
∂ $ $				0)

Amended	Original	Remarks
	web height.	
	(d) The structural model is to be supported by pads. If the	
	arrangement of pads differs from the arrangement of	
	stiffeners, the edge elements of steel hatch covers are	
	also to be modelled.	
	(3) Permissible values	
	When the loads specified in (1) act on the structural model	
	specified in (2), the net scantlings are to be determined so	
	that the stress and deflection generated in each structural	
	member satisfy the allowable values specified in 19.2.5-1,	
	Part CS of the Rules.	
	<u>2</u> The details for steel hatch covers carrying cargoes are to comply with the following (1) to (4):	
	(1) To prevent damage to hatch covers and the ship structure,	
	the location of stoppers is to be compatible with the relative	
	movements between hatch covers and the ship structure.	
	(2) Hatchway covers and supporting structures are to be	
	adequately stiffened to accommodate the load from hatch	
	covers.	
	(3) At the cross-joints of multi-panel covers, vertical guides	
	(male/female) are to be fitted to prevent excessive relative	
	vertical deflections between loaded/unloaded panels.	
	(4) The construction and scantlings of hatchways on exposed	
	parts or on the lower deck are to comply with the following	
	requirements in addition to those of 19.2, Part CS of the	
	Rules.	
	(a) The loading arrangement is to be clearly shown in	
	drawings submitted for approval. In the case of freight	
	containers, the type and location are to be additionally	
	described.	

Amended	Original	Remarks
CS19.2.12 Steel Hatchway Covers for Container Carriers 1 In the application of the requirements of 19.2.12, Part CS of the Rules, the height of coamings above the upper surface of the deck where the hatchway covers are fitted is to be at least 600 mm. (Omitted)	 (b) Girders or stiffeners are to be provided for reinforcement beneath the corner fittings of freight containers. (c) The top plates of hatch covers, upon which wheeled vehicles are loaded, are to comply with the following: i) The thickness of hatch cover top plating may be determined by direct calculation or in accordance with CS17.4.5. ii) The scantlings of the stiffeners of hatch covers may be determined by direct calculation or in accordance with CS10.7.1. CS19.2.12 Steel Hatchway Covers for Container Carriers 1 In the application of the requirements of 19.2.12, Part CS of the Rules, the height of coamings above the upper surface of the deck where the hatchway covers are fitted is to be at least 600 mm in Position II. (Omitted) 	UR S21 4.2.2

Amended	Original	Remarks
EFFECTIVE DATE AND APPLICATION	Oliginal	Remarks
EFFECTIVE DATE AND AFFLICATION		
1. The effective date of the amendments is 1 July 2024.		
2. Notwithstanding the amendments to the Guidance, the		
current requirements apply to ships for which the date of		
contract for construction* is before the effective date.		
* "contract for construction" is defined in the latest version		
of IACS Procedural Requirement (PR) No.29.	1	
of IACS Procedural Requirement (PR) No.29.		
IACS PR No.29 (Rev.0, July 2009)		
 The date of "contract for construction" of a vessel is the date on which the contract to build th vessel is signed between the prospective owner and the shipbuilder. This date and th construction numbers (i.e. hull numbers) of all the vessels included in the contract are to b declared to the classification society by the party applying for the assignment of class to newbuilding. 	e e	
 The date of "contract for construction" of a series of vessels, including specified optional vessel for which the option is ultimately exercised, is the date on which the contract to build the series is signed between the prospective owner and the shipbuilder. For the purpose of this Procedural Requirement, vessels built under a single contract for construction are considered a "series of vessels" if they are built to the same approved plar for classification purposes. However, vessels within a series may have design alterations from the original design provided: (1) such alterations do not affect matters related to classification, or (2) If the alterations are subject to classification requirements, these alterations are to comply with the classification requirements in effect on the date on which the alterations are subject to the society for approval. The optional vessels will be considered part of the same series of vessels if the option is exercise not later than 1 year after the contract to build the series was signed. If a contract for construction is later amended to include additional vessels or additional option the contract is to be considered as a "new contract" to which 1. and 2. above apply. If a contract for construction is amended to change the ship builder. The amendment the contract is signed between the Owner, or Owners, and the shipbuilder. 	s s s s s s s s s s s s s s s s s s s	
Note: This Procedural Requirement applies from 1 July 2009.		