Amendment on 27 June 2024 Resolved by Technical Committee on 30 January 2024

Buckling Strength Assessments of Ship Structural Elements

Object of Amendment

Rules for the Survey and Construction of Steel Ships Part C

Reason for Amendment

IACS Unified Requirements (UR) S11 and S11A specify requirements for hull girder buckling strength assessments, and UR S21 and S21A specify requirements for hatch cover buckling strength assessments. In addition, the IACS Common Structural Rules for Bulk Carriers and Oil Tankers (CSR-BC&OT) also specify the requirements for buckling strength assessments. ClassNK has already incorporated UR S11, S11A, S21 and S21A into Rules for the Survey and Construction of Steel Ships Part C and CSR-BC&OT into Rules for the Survey and Construction of Steel Ships Part CSR-B&T.

Since buckling strength assessment methods specified in each of the above URs and CSR-BC&OT were different, IACS decided to harmonise them based on the buckling assessment methods specified in the CSR-BC&OT to unify assessment methods and adopted UR S35 in February 2023 as result.

Accordingly, relevant requirements are amended in accordance with UR S35.

Outline of the Amendment

Specify general requirements related to buckling strength assessments in the Rules for the Survey and Construction of Steel Ships Part C Annex.

Effective Date and application

This amendment applies to ships for which the date of contract for construction is on or after 1 July 2024. This includes those ships to which Part C of the Rules for the Survey and Construction of Steel Ships applied prior to its comprehensive revision.

ID: DH23-06

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structu	/ 1
Amended	Remarks
RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS	UR S35, Section1, Symbols
Part C HULL CONSTRUCTION AND EQUIPMENT	
Part 1 GENERAL HULL REQUIREMENTS	
Annex 14.6 BUCKLING STRENGTH ASSESSMENT OF SHIP STRUCTURAL ELEMENTS	
Symbols	
EPP: Elementary Plate Panel, as specified in An1.2.3.1	
PSM : Primary Supporting Member	
SP: Stiffened Panel, as specified in An1.2.3.3	
UP : Unstiffened Panel, as specified in An1.2.3.3	
An1 Application and Definitions	UR S35, Section1, 1.1.1
An1.1 Application	
An1.1.1 General	
An1.1.1.1 This annex specifies a general buckling assessment procedure and is to be applied in conjunction with relevant requirements.	

Amended	Remarks
An1.1.2 Overview	UR S35, Section1, 1.2.1
<u>An1.1.2.1</u>	
The buckling checks are to be performed according to	
An1: General definitions regarding buckling capacity, allowable buckling utilisation factors and buckling check criteria.	
An2: The slenderness requirements of longitudinal and transverse stiffeners.	
An3: The prescriptive buckling requirements of plates, longitudinal and transverse stiffeners, primary supporting members and other	
structures subject to hull girder stresses.	
An4: Direct strength analysis (usually by finite element method) buckling requirements of hatch cover structural members including plates,	
stiffeners and primary supporting members.	
An5: The determination of buckling capacities of plate panels, stiffeners, primary supporting members and column structures.	
	UR S35, Section1, 1.2.2
An1.1.2.2 Buckling Assessment	
For the buckling assessment of a ship hull girder, a hatch cover or some structural component, the slenderness requirements as specified	
in An2, and the buckling requirements as specified in An3 or An4 are to be checked as per the requirements of the applicable relevant	
requirements.	
	UR S35, Section1, 1.2.3
An1.1.2.3 Alternative Methods This ensure contains the concern with the determination of hughling consulting of aleter could stiffeners minute surrouting	
This annex contains the general methods for the determination of buckling capacities of plate panels, stiffeners, primary supporting	
members, and columns. For special cases not covered in this annex, such as a whole plate structure with stiffeners in two directions (i.e. a	
stiffened panel with both primary and secondary stiffeners), other more advanced methods, such as finite element analysis methods, can be	
used as deemed appropriate by the Society.	

Amended -Original Requirements Comparison Table (Buckning Strength Assessments of Ship Structure Amended	Remarks
An1.2 Terms and Assumptions	UR S35, Section1, 2.1.1
An1.2.1 Buckling	
An1.2.1.1 Buckling Strength	
Buckling strength or capacity refers to the strength of a structure under in-plane compressions and/or shear and lateral load. Buckling	
strength with consideration of the buckling behavior in An1.2.1.2 gives a lower bound estimate of ultimate capacity, or the maximum load a	
structural member can carry without suffering major permanent set.	
For each structural member, its buckling strength is to be taken as corresponding to the most unfavourable or critical buckling mode.	
An1.2.1.2 Buckling Behaviour	UR S35, Section1, 2.1.2
Buckling strength assessment takes into account both elastic buckling and post-buckling behaviours. Post-buckling can consider the	
internal redistribution of loads depending on the load situation, slenderness and type of structure. Such as for the buckling assessment of plates,	
generally its positive elastic post-buckling effect can be utilised.	
As such, for slender structures, the calculated buckling strength is typically higher than the ideal elastic buckling stress (minimum	
eigenvalue). Accepting elastic buckling of slender plate panels implies that large elastic deflections and reduced in-plane stiffness may occur	
at higher buckling utilisation levels.	
An1.2.2 Net Scantling Approach	UR S35, Section1, 2.2.1
An1.2.2.1 General	
<u>Unless otherwise specified, all the scantling requirements, including slenderness requirements, in this annex are based on net scantlings</u> obtained by removing full corrosion addition <i>t_c</i> from the gross offered thicknesses.	
	UR S35, Section1, 2.2.2
An1.2.2.2 Corrosion Addition	
Corrosion addition tc referred in this annex is defined in the relevant requirements.	
	UR S35, Section1, 2.2.3
An1.2.2.3 Stress Calculation Models	
The structural models used for the calculation of stresses to be applied for buckling assessment, which are usually based on net	
scantlings, are defined in the relevant requirements.	

Amended An1.2.3 Structural Idealisation An1.2.3.1 Elementary Plate Panel	Remarks UR S35, Section1, 2.3.1
An1.2.3.1 Elementary Plate Panel	
An elementary plate panel (<i>EPP</i>) is the unstiffened part of the plating between stiffeners and/or primary supporting members. The plate panel length, <i>a</i> , and breadth, <i>b</i> , of the <i>EPP</i> are defined respectively as the longest and shortest plate edges, as shown in Fig. An1 .	
Fig. An1 Elementary Plate Panel (<i>EPP</i>) Definition PSM or Stiffener BSM or Stiffener PSM or Stiffener PSM or Stiffener Longitudinal/horizontal framing Fig. An1 Elementary Plate Panel (<i>EPP</i>) Definition PSM or Stiffener PSM or Stiffener Transverse/vertical framing	
An1.2.3.2 Standard Types of Stiffeners Definitions of the cross-sectional dimensions of typical stiffener types are shown in Fig. An2, which are flat bars, bulb flats, angles	-
L2 and T bars. If applicable, other types of stiffeners can be idealised to one of the typical types in Fig. An2 for buckling check. For the U-type stiffener which is usually fitted in some hatch covers, the definition of its cross-sectional dimensions is shown in Fig. An3. Unless otherwise specified, the full span or full length ℓ (<i>mm</i>) of a stiffener is to be used for buckling check, which equals to the spacing between primary supporting members. Symbolic dimensions of the cross-sections are as below: b_1 : Width (<i>mm</i>) of the attached plate enclosed by the U-type stiffener, as shown in Fig. An3.	

Amended	Remarks
$\frac{h_2}{b_f}: \text{Width } (mm) \text{ of the attached plate between adjacent U-type stiffeners, as shown in Fig. An3.}$ $\frac{h_f}{b_f}: \text{Width } (mm) \text{ of the flange or face plate of the stiffener, as shown in Fig. An2 and Fig. An3.}$ $\frac{h_{f-out}: \text{Maximum distance } (mm) \text{ from mid thickness } (mm) \text{ of the web to the flange edge, as shown in Fig. An2.}$ $\frac{d_f: \text{Breadth } (mm) \text{ of the extended part of the flange for L2 profiles, as shown in Fig. An2.}$ $\frac{d_f: \text{Distance } (mm) \text{ from attached plating to centre of flange, as shown in Fig. An2.}$ $\frac{h_w: \text{Depth } (mm) \text{ of stiffener web, as shown in Fig. An2 and Fig. An3.}$ $\frac{t_f: \text{Net flange thickness } (mm).}{t_w: \text{Net web thickness } (mm).}$	
$Fig. An2 Dimensions of Typical Stiffener Cross Sections$ $h_{w} \downarrow t_{w} \downarrow t_$	UR S35, Section1, Figure 3

Amended-Original Requirements Comparison Table (Buckning Strength Assessments of Ship Structu	/
Amended	Remarks
Fig. An3 Dimensions of a U-type Stiffener Cross Section	UR S35, Section1, Figure 4
b_2 b_1 t_w t_r b_r	
An1.2.3.3 Stiffened Panel (SP) and Unstiffened Panel (UP) For a panel with relatively strong interactive effect between the stiffener and its attached plate, each stiffener with its attached plate as a whole is to be modelled as a stiffened panel (SP), so as to be able to consider both of its local and global buckling modes. However, for an EPP, if its buckling strength can be checked without considering its interactive effect with stiffeners fitted along its edges, it's to be modelled as an unstiffened panel (UP).	
An1.2.4 Sign Convention An1.2.4.1 Stresses In this annex, compressive and shear stresses are to be taken as positive, tension stresses are to be taken as negative.	UR S35, Section1, 2.4.1

Amended	Remarks
An1.3 Assessment Methods and Acceptance Criteria An1.3.1 Assessment Methods	UR S35, Section1, 3.1.1
An1.3.1.1 Method A and Method B The buckling assessment is to be carried out according to one of the following two methods taking into account different boundary condition types:	
 Method A: All the edges of the <i>EPP</i> are forced to remain straight (but free to move in the in-plane directions) due to the surrounding structure/neighbouring plates. Method B: The edges of the <i>EPP</i> are not forced to remain straight due to low in-plane stiffness at the edges and/or no surrounding 	
structure/neighbouring plates. An1.3.1.2 SP-A, SP-B, UP-A and UP-B Models For the buckling assessment of the stiffened panel (SP) and unstiffened panel (UP) structural models defined in An1.2.3.3, with	UR S35, Section1, 3.1.2
application of either Method A or Method B for the plate buckling assessment, the following four buckling assessment models are established: SP-A: a stiffened panel with application of Method A SP-B: a stiffened panel with application of Method B	
UP-A: an unstiffened panel with application of Method A UP-B: an unstiffened panel with application of Method B	UR S35, Section1, 3.2.1
An1.3.2 Buckling Utilisation Factor An1.3.2.1 The utilisation factor, η , is defined as the ratio between the applied loads and the corresponding buckling capacity.	

Amended Singinal Requirements Comparison Fable (Backing Strength Assessments of Sing Stretter	Remarks
	UR S35, Section1, 3.2.2
<u>An1.3.2.2</u>	
For combined loads, the utilisation factor, η_{act} , is to be defined as the ratio of the applied equivalent stress and the corresponding	
buckling capacity, as shown in Fig. An4, and is to be taken as:	
$\eta_{act} = \frac{W_{act}}{W_U} = \frac{1}{\gamma_c}$	
Where:	
<u><i>W_{act}</i>: Equivalent applied stress. The actual applied stresses are given in An3 and An4 respectively for buckling assessment by prescriptive and direct strength analysis.</u>	
W_u : Equivalent buckling capacity. For plates and stiffeners, their respective buckling or ultimate capacities are given in An5.	
γ_c : Stress multiplier factor at failure.	
For each typical failure mode, the corresponding buckling capacity of the panel is calculated by applying the actual stress combination and	
then increasing or decreasing the stresses proportionally until collapse occurs, i.e. when the increased or decreased stresses are on a buckling	
strength interaction curve or surface.	
Fig. An4 illustrates the buckling capacity and the buckling utilisation factor of a structural member subject to σ_x and σ_y stresses.	
Fig. An4 Example of Buckling Capacity and Buckling Utilisation Factor	UR S35, Section1, Figure 5
Buckling capacity interaction curve	
Wu	
W _{act}	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

Amended-Original Requirements Com	parison Table (Bucklin	g Strength Assessments of Shi	p Structural Elements)
		0 ·- ·- 0 · 0 · - · · · · · · · · · ·	

Amended	Remarks
An1.3.3 Allowable Buckling Utilisation Factor	UR S35, Section1, 3.3.1
<u>An1.3.3.1</u> The allowable buckling utilisation factor η_{all} is to be taken according to the relevant requirements.	
An1.3.4 Buckling Acceptance Criteria	UR S35, Section1, 3.4.1
<u>An1.3.4.1</u>	
A structural member is considered to have an acceptable buckling strength if it satisfies the following criterion:	
$\frac{\eta_{act} \le \eta_{all}}{W^{h_{act}}}$	
<u>Where:</u> η_{act} : Buckling utilisation factor based on the applied stress, defined in An1.3.2.2.	
η_{all} : Allowable buckling utilisation factor as defined in An1.3.3.1.	

Amended Amended	Remarks
Symbols	UR S35, Section2, Symbols
For symbols not defined in this section, refer to An1.2.3.2. σ_Y : Specified minimum yield stress (<i>N/mm</i> ²) of the structural member being considered	
An2 Slenderness Requirements	UR S35, Section2, 1.1.1
<u>An2.1 General</u>	
An2.1.1 Introduction	
<u>An2.1.1.1</u> <u>The stiffener elements except for U-type stiffeners are to comply with the applicable slenderness and proportion requirements given in An2.</u>	
An2.2Stiffeners	UR S35, Section2, 2.1.1
An2.2.1 Proportions of Stiffeners	
An2.2.1.1Net Thickness of All Stiffener TypesThe net thickness of stiffeners is to satisfy the following criteria:(a)Stiffener web plate: $t_w \ge \frac{h_w}{C_w} \sqrt{\frac{\sigma_Y}{235}}$	
$\begin{array}{c c} \underline{(b)} & \overline{\text{Flange:}} \\ \hline t_f \ge \frac{b_{f-out}}{C_f} \sqrt{\frac{\sigma_Y}{235}} \end{array}$	
C_{ν}, C_{i} : Slenderness coefficients given in Table An1	
If requirement (b) is not fulfilled, the effective free flange outstand (<i>mm</i>) used in strength assessment including the calculation of actual net section modulus, is to be taken as:	
	Į

Amended -Original Requirements Comparison Table (Buckning Strength Assessments of Ship Structur Amended				Remarks	
$b_{f-out-max} = C_f t_f \sqrt{\frac{235}{\sigma_Y}}$	-				
	Table An1	Slenderness Co	oefficients		UR S35, Section2, Table 1
	Type of Stiffener	\underline{C}_{w}	<u>C</u> f		
	Angle and L2 bars	<u>75</u>	<u>12</u>		
	<u>T-bars</u>	<u>75</u>	<u>12</u>		
	Bulb flats	<u>45</u>	<u>-</u>		
	<u>Flat bars</u>	<u>22</u>	=		
alternative the web can be assessed assessed as a flat bar stiffener accord	-		-	a Table An1, and the edge stiffener can be apply.	
	s of Angle and T-Bars (<i>mm</i>) for angle and T-bar	s is to satisfy the	following criterion	<u>.</u>	UR S35, Section2, 2.1.2
An2.3 Primary Supporting Members An2.3.1 Proportions and Stiffness			UR S35, Section2, 3.1.1		
An2.3.1.1 Proportions of Web Plate and Flange The scantlings of webs and flanges of primary supporting members are to comply with the relevant requirements.					

Amended Amended	Remarks
Symbols	UR S35, Section3, Symbols
<i>η_{all}</i> : Allowable buckling utilisation factor, as defined in An1.3.3.1 <u>LCP</u> : Load Calculation Point as defined in An3.1.2.1	
An3 Buckling Requirements for Hull Girder	UR S35, Section3, 1.1.1
An3.1 General	
An3.1.1 Introduction	
<u>An3.1.1.1</u> <u>This section applies to plate panels including plane and curved plate panels, stiffeners and corrugation of longitudinal corrugated</u> <u>bulkheads subject to hull girder compression and shear stresses.</u>	
An2112	UR S35, Section3, 1.1.2
<u>An3.1.1.2</u> <u>The ship longitudinal extent where the buckling check is performed for structural elements subject to hull girder stresses is to be in accordance with the relevant requirements.</u>	
An3.1.1.3 Design Load Sets	UR S35, Section3, 1.1.3
An3.1.1.3 Design Load Sets The buckling check is to be performed for all design load sets corresponding to the design loading conditions defined in the relevant requirements with most unfavourable pressure combinations. For each design load set, for all static and dynamic load cases, the lateral pressure is to be determined at the load calculation point defined	
in An3.1.2.1, and is to be applied together with the hull girder stress combinations defined in the relevant requirements.	

An3.1.2 Definitions	UR S35, Section3, 1.2.1
	,,,,
An3.1.2.1 Load Calculation Point	
The load calculation points (LCP) for both elementary plate panels (EPP) and stiffeners are defined as follows:	
(a) LCP for hull girder stresses of EPP	
The hull girder stresses for <i>EPP</i> are to be calculated at the load calculation points defined in Table An2 .	
(b) LCP for hull girder stresses of longitudinal stiffeners	
The hull girder stresses for longitudinal stiffeners are to be calculated at the following load calculation point:	
• at the mid length of the considered stiffener	
• at the intersection point between the stiffener and its attached plate	
(c) LCP for pressure of horizontal stiffeners	
The load calculation point for the pressure is located at:	
• Middle of the full length, ℓ , of the considered stiffener	
• The intersection point between the stiffener and its attached plate	
(d) LCP for pressure of non-horizontal stiffeners	
The lateral pressure, P is to be calculated as the maximum between the value obtained at middle of the full length, ℓ , and the	
value obtained from the following formulae:	
$P = \frac{p_U + p_L}{2}$ when the upper end of the vertical stiffener is below the lowest zero pressure level.	
$P = \frac{\ell_1 p_L}{\ell_2}$ when the upper end of the vertical stiffener is at or above the lowest zero pressure level, see Fig. An6.	
Where:	
ℓ_1 : Distance (m) between the lower end of vertical stiffener and the lowest zero pressure level.	
p_{U}, p_{L} : Lateral pressures at the upper and lower end of the vertical stiffener span ℓ , respectively.	

Table An2 Load Calculation Points (<i>LCP</i>) Coordinates for Plate Buckling Assessment UR S35, Section3, Table 1 LCP coordinate: Hull girler breaking stress Hull girler breaking stress Hull girler breaking stress UR S35, Section3, Table 1 LCP coordinate: Mon horizontal plating Horizontal plating Hull girler breaking Hull girler breaking Hull girler breaking Hull girler breaking UR S35, Section3, Table 1 2.coordinate: Midekende (the <i>EPP</i>) Outboard and inboard ends of the <i>EPP</i> (points./1 and ./2 in Fig. An5) Midepoint of <i>EPP</i> (points./1 and ./2 in Fig. An5) Image: Coordinate (points./1 and ./2 in Fig. A	Amended	Remarks
$\frac{LCP \ coordinates}{Non horizontal plating} Horizontal plating} Hurizontal plating} Hull grider shear stress} \\ \frac{x \ coordinate}{Mid-length of the EPP} \\ y \ coordinate} Both upper and lower ends of the EPP [youth Carl and All in Fig. An5] (points All All in$	Table An2 Load Calculation Points (LCP) Coordinates for Plate Buckling Assessment	UR S35, Section3, Table 1
$\frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}}} = \frac{16 \text{ circuital plating}}{\frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}}} = \frac{16 \text{ circuital plating}}{16 \text{ circuital plating}}} = \frac{16 \text{ circuital plating}}{16 circuital pla$	Hull girder bending stress	
y coordinate Both upper and lower ends of the <i>EPP</i> (points.A1 and A2 in Fig. An5) Outboard and inboard ends of the <i>EPP</i> (point B in Fig. An5) Mid-point of <i>EPP</i> (point B in Fig. An5) z coordinate Corresponding to x and y values Image: Anstance of the section of the se	<u>LCP coordinates</u> <u>Huil girder shear stress</u> Non horizontal plating Horizontal plating	
$\frac{y \text{coordinate}}{z \text{ coordinate}} \qquad (\text{points /1 and /2 in Fig. An5}) \qquad (\text{point // in Fig. An5})}{z \text{ coordinate}} \qquad UR S35, Section 3, Figure 1$ $Fig. An5 LCP \text{ for Plate Buckling Assessment} \\ Considered transverse section \\ \hline Considered transverse section \\ \hline A2 \\ B \\ A1 \\ FM \\ PSM $	<u>x coordinate</u> <u>Mid-length of the EPP</u>	
$\frac{1}{2 \operatorname{continate}} \underbrace{\operatorname{Corresponding to x and y values}}_{\text{Considered transverse section}} \underbrace{\operatorname{Fig. An5 } LCP \text{ for Plate Buckling Assessment}}_{\text{Considered transverse section}} \underbrace{\operatorname{UR S35, Section3, Figure 1}}_{\text{A2}} \underbrace{\operatorname{H}}_{\text{A2}} \underbrace{\operatorname{H}}_{\text{A2}} \underbrace{\operatorname{H}}_{\text{A2}} \underbrace{\operatorname{H}}_{\text{A3}} \underbrace{\operatorname{H}}_{\text{A4}} \underbrace{\operatorname{H}}_{A$	12 coordinate	
$\begin{array}{c} \hline Fig. An5 LCP \text{ for Plate Buckling Assessment} \\ \hline Considered transverse section \\ \hline \hline \\ A2 \\ B \\ c \\ C$	(points A1 and A2 in Fig. An5) (points A1 and A2 in Fig. An5) (point B in Fig. An5)	
Considered transverse section Considered transverse section A2 A1	<u>z coordinate</u> <u>Corresponding to x and y values</u>	
Considered transverse section Considered transverse section A^{2} A^{2}		
Considered transverse section Considered transverse section A^{2} A^{2}		
A2 + + A2 + PSM + A2 + - + A2 + PSM + A2 + - + A2 + - + A2 + PSM + A2 + - + A2 + PSM + A2 + - + + A2 + PSM + A2 + - + + A2 + PSM + A2 + - + + A2 + PSM + A2 + - + + A2 + PSM + A2 + - + + A2 + PSM + A2 + - + + + A2 + PSM + A2 + - + + + + + + + + + + + + + + + + +	Fig. An5 LCP for Plate Buckling Assessment	UR S35, Section3, Figure 1
$\begin{vmatrix} A2 \\ B \\ A1 \\ PSM \\ $	Considered transverse section Considered transverse section	
$\begin{vmatrix} A2 \\ B \\ A1 \\ PSM \\ $		
$\begin{bmatrix} B & a & B & B & B & B & B & B & B & B &$		
$\begin{bmatrix} B & a & B & B & B & B & B & B & B & B &$		
$\begin{vmatrix} A1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
PSM PSM PSM		
$\begin{vmatrix} & & a \\ PSM \\ $		
PSM PSM FSM		
Longitudinal Framing Transverse Framing		
	Longitudinal Framing Transverse Framing	

Amended	Remarks
<u>Fig. An6 Definition of Pressure for Vertical Stiffeners</u> ℓ_1	UR S35, Section3, Figure 2
An3.1.3 Assumptions for Equivalent Plate Panels An3.1.3.1 Longitudinal Stiffening with Varying Plate Thickness In longitudinal stiffening arrangement, when the plate thickness varies over the width b, of a plate panel, the buckling check is to be performed for an equivalent plate panel width, combined with the smaller plate thickness, t_1 . The width (mm) of this equivalent plate panel, b_{eq} is defined by the following formula: b_{eq} is defined by the following formula: $b_{eq} = \ell_1 + \ell_2 \left(\frac{t_1}{t_2}\right)^{1.5}$ Where: ℓ_1 Width of the part of the plate panel with the smaller plate thickness, t_1 (mm) as defined in Fig. An7. ℓ_2 Width of the part of the plate panel with the greater plate thickness, t_2 (mm) as defined in Fig. An7.	UR S35, Section3, 1.3.1

Amended Amended	Remarks
$Fig. An7 Plate Thickness Change Over the Width$ t_2 t_1 t_2 t_2	UR S35, Section3, Figure 3
An3.1.3.2 Transverse Stiffening with Varying Plate Thickness In transverse stiffening arrangement, when an <i>EPP</i> is made with different thicknesses, the buckling check of the plate and stiffeners is to be made for each thickness considered constant on the <i>EPP</i> , the stresses and pressures being estimated for the <i>EPP</i> at the <i>LCP</i> .	UR S35, Section3, 1.3.2
An3.1.3.3 Plate Panel with Different Materials When the plate panel is made of different materials, the minimum yield strength is to be used for the buckling assessment.	UR S35, Section3, 1.3.3
An3.2 Buckling Criteria An3.2.1 Overall Stiffened Panel	UR S35, Section3, 2.1.1
An3.2.1.1	

Amended-Original Requirements Comparison Table (Buckning Strength Assessments of Ship Structur Amended	Remarks
	UR S35, Section3, 2.2.1
An3.2.2 Plates	
<u>An3.2.2.1</u>	
The buckling strength of elementary plate panels is to satisfy the following criterion:	
$\eta_{plate} \leq \eta_{all}$	
Where:	
η_{plate} : Maximum plate buckling utilisation factor as defined in An5.2.2 where SP-A model is to be used.	
For the determination of η_{plate} of the vertically stiffened side shell plating of single side skin bulk carrier between hopper and	
topside tanks, the cases 12 and 16 of Sec 5, Table An5 corresponding to the shorter edge of the plate panel clamped are to be considered together with a mean σ_v stress and $\psi_v = 1$.	
$\psi_{\gamma} = 1.$	UR S35, Section3, 2.3.1
An3.2.3 Stiffeners	01(055, 5000015, 2.5.1
A 2 3 2 1	
An3.2.3.1 The buckling strength of stiffeners or of side frames of single side skin bulk carriers is to satisfy the following criterion:	
$\eta_{stiffener} \leq \eta_{all}$	
Where:	
$\eta_{stiffener}$: Maximum stiffener buckling utilisation factor as defined in An5.2.3.	
Note 1: This buckling check can only be fulfilled when the overall stiffened panel buckling check, as defined in An3.2.1, is satisfied.	
Note 2: The buckling check of the stiffeners is only applicable to the stiffeners fitted along the long edge of the buckling panel.	
An3.2.4 Vertically Corrugated Longitudinal Bulkheads	UR S35, Section3, 2.4.1
This.2.4 Vertically Confugated Longitudinal Burkicads	
<u>An3.2.4.1</u>	
The shear buckling strength of vertically corrugated longitudinal bulkheads is to satisfy the following criterion:	
$\eta_{shear} \le \eta_{all}$	
η_{shear} : Maximum shear buckling utilisation factor defined as	
$\eta_{shear} = \frac{\tau_{bhd}}{\tau_c}$	
τ_{hhd} : Shear stress (<i>N/mm²</i>) in the bulkhead taken as the hull girder shear stress defined in the relevant requirements.	

Amended	Remarks
$\underline{\tau_c}$: Shear critical stress (<i>N/mm²</i>) as defined in An5.2.2.3.	
An3.2.5 Horizontally Corrugated Longitudinal Bulkheads An3.2.5.1 Each corrugation unit within the extension of half flange, web and half flange (i.e. single corrugation as shown in grey in Fig. An8) is to satisfy the following criterion: $\eta_{column} \leq \eta_{all}$ Where: η_{column} : Overall column buckling utilisation factor, as defined in An5.3.1.	UR S35, Section3, 2.5.1
Fig. An8 Single Corrugation	UR S35, Section3, Figure 4

Amended	Remarks
Symbols	UR S35, Section4, Symbols
$\sigma_{Y,P}$: Yield stress of the plate panel, as defined in An4.2.1.3	
σ_{Y} s: Yield stress of the stiffener, as defined in An4.2.1.3	
α : Aspect ratio of the plate panel, as defined in the symbol list of An5	
η_{all} : Allowable buckling utilisation factor, as defined in An1.3.3.1	
An4 Buckling Requirements for Direct Strength Analysis of Hatch Covers	UR S35, Section4, 1.1.1
An4.1 General	
An4.1.1 Introduction	
<u>An4.1.1.1</u>	
The requirements of this section apply for the buckling assessment of hatch cover structural members based on direct strength analysis	
(usually by finite element method) and subjected to normal stress, shear stress and lateral pressure.	
	UR S35, Section4, 1.1.2
<u>An4.1.1.2</u>	
All structural elements in the direct strength analysis carried out according to the relevant requirements are to be assessed individually.	
The buckling checks are to be performed for the following structural elements:	
Stiffened and unstiffened panels	
Web plate in way of openings	

Amended Amended	Remarks
An4.2 Stiffened and Unstiffened Panels	UR S35, Section4, 2.1.1
An4.2.1 General	
<u>An4.2.1.1</u>	
The plate panel of a hatch cover structure is to be modelled as stiffened panel (SP) or unstiffened panel (UP), with either Method A or	
Method B as defined in An1.3.1.1 to be used for the calculation of the plate buckling capacity, which in combination is also equivalent to use	
the buckling assessment models defined in An1.3.1.2.	
	UR S35, Section4, 2.1.2
And.2.1.2 Average Thickness of Plate Panel	
For FE analysis, where the plate thickness along a plate panel is not constant, the panel used for the buckling assessment is to be	
$\frac{\text{modelled with a weighted average thickness taken as:}}{\sum^n A_i t_i}$	
$t_{avr} = \frac{\sum_{i=1}^{n} A_i t_i}{\sum_{i=1}^{n} A_i}$	
Where:	
$\underline{A_i}$: Area of the <i>i</i> -th plate element.	
t_i : Net thickness of the <i>i</i> -th plate element.	
<u><i>n</i></u> : Number of finite elements defining the buckling plate panel.	UR S35, Section4, 2.1.3
An4.2.1.3 Yield Stress of the Plate Panel and Stiffener	UK 555, Section4, 2.1.5
The panel yield stress σ_{YP} is taken as the minimum value of the specified yield stresses of the elements within the plate panel.	
The stiffener yield stress σ_{YS} is taken as the minimum value of the specified yield stresses of the elements within the stiffener.	

Amended-Original Requirements Comparison Table (Buckning Strength Assessments of Ship Structur Amended	Remarks
An4.2.2 Stiffened Panels <u>An4.2.2.1</u> For a stiffened panel (SP), each stiffener with attached plate is to be idealised as a stiffened panel model of the extent defined in the relevant requirements.	UR S35, Section4, 2.2.1
An4.2.2.2 If the stiffener properties or stiffener spacing varies within the stiffened panel, the calculations are to be performed separately for all configurations of the panels, i.e. for each stiffener and plate between the stiffeners. Plate thickness, stiffener properties and stiffener spacing at the considered location are to be assumed for the whole panel.	UR S35, Section4, 2.2.2
<u>An4.2.2.3</u> <u>The buckling check of the stiffeners of stiffened panels is only applicable to the stiffeners fitted along the longer side edges of the buckling panel.</u>	UR S35, Section4, 2.2.3
An4.2.3 Unstiffened Panels An4.2.3.1 Irregular Plate Panel In way of web frames and brackets, the geometry of the panel (i.e. plate bounded by web stiffeners/face plate) may not have a rectangular shape. In this case, for FE analysis, an equivalent rectangular panel is to be defined according to An4.2.3.2 for irregular geometry and An4.2.3.3 for triangular geometry and to comply with buckling assessment.	UR S35, Section4, 2.3.1
An4.2.3.2 Equivalent EPP of an Unstiffened Panel with Irregular Geometry Unstiffened panels with irregular geometry are to be idealised to equivalent panels for plate buckling assessment according to the following procedure:	UR S35, Section4, 2.3.2

Amended Amended	Remarks
(a) The four corners closest to a right angle, 90 deg, in the bounding polygon for the plate are identified.	
$(b) \text{The distances along the plate bounding polygon between the corners are calculated, i.e. the sum of all the straight-line segments} \\ between the end points. \\ d_{4} \qquad \qquad$	UR S35, Section4, 2.3.2
(c) The pair of opposite edges with the smallest total length is identified, i.e. minimum of d_1+d_3 and d_2+d_4 .	UR S35, Section4, 2.3.2
(d) A line joins the middle points of the chosen opposite edges (i.e. a mid-point is defined as the point at half the distance from one end). This line defines the longitudinal direction for the capacity model. The length of the line defines the length of the capacity model, <i>a</i> measured from one end point.	UR S35, Section4, 2.3.2
(e) The length of shorter side, $b (mm)$ is to be taken as:	UR S35, Section4, 2.3.2

Amended	Remarks
(f) The stresses from the direct strength analysis are to be transformed into the local coordinate system of the equivalent rectangular panel. These stresses are to be used for the buckling assessment.	UR S35, Section4, 2.3.2
An4.2.3.3 Modelling of an Unstiffened Plate Panel with Triangular Geometry Unstiffened panels with triangular geometry are to be idealised to equivalent panels for plate buckling assessment according to the following procedure: (a) Medians are constructed as shown below.	UR S35, Section4, 2.3.3
(b) The longest median is identified. This median the length of which is ℓ_1 (<i>mm</i>) defines the longitudinal direction for the capacity model.	UR S35, Section4, 2.3.3
(c) The width of the model, ℓ_2 (<i>mm</i>) is to be taken as: $\ell_2 = \frac{A}{\ell_1}$ <u>Where:</u> <u>A</u> : Area of the plate (<i>mm</i> ²)	UR S35, Section4, 2.3.3

Amended Amended	Remarks
(d) The lengths of shorter side, <i>b</i> (<i>mm</i>), and of the longer side, <i>a</i> (<i>mm</i>) of the equivalent rectangular plate panel are to be taken as: $ \frac{b = \frac{\ell_2}{C_{tri}}}{a = \ell_1 C_{tri}} $ $ \frac{Where:}{C_{tri} = 0.4 \frac{\ell_2}{\ell_1} + 0.6 $	UR S35, Section4, 2.3.3
(e) The stresses from the direct strength analysis are to be transformed into the local coordinate system of the equivalent rectangular panel and are to be used for the buckling assessment of the equivalent rectangular panel.	UR S35, Section4, 2.3.3
<u>An4.2.4 Reference Stress</u> <u>An4.2.4.1</u>	UR S35, Section4, 2.4.1
The stress distribution is to be taken from the direct strength analysis according to the relevant requirements and applied to the buckling model.	
<u>An4.2.4.2</u> <u>For FE analysis, the reference stresses are to be calculated using the stress based reference stresses as defined in Appendix 14.6</u> <u>[STRESS BASED REFERENCE STRESSES]</u> .	UR S35, Section4, 2.4.2

An4.2.5 Lateral Pressure An4.2.5.1 The lateral pressure applied to the direct strength analysis is also to be applied to the buckling assessment. An4.2.5.2 For FE analysis, where the lateral pressure is not constant over a buckling panel defined by a number of finite plate elements, and verage lateral pressure (<i>N/mm²</i>) is calculated using the following formula: $P_{avr} = \frac{\sum_{i=1}^{n} A_i P_i}{\sum_{i=1}^{n} A_i}$ Where: A_i : Area of the <i>i</i> -th plate element (<i>nm²</i>) P_i : Lateral pressure of the <i>i</i> -th plate element (<i>N/mm²</i>) $n:$ Number of finite elements in the buckling panel An42.6 Buckling Criteria An42.6.1 UP-A The compressive buckling strength of UP-A is to satisfy the following criterion:	UR S35, Section4, 2.5.1 UR S35, Section4, 2.5.2 <u>n</u>
An4.2.5.2 For FE analysis, where the lateral pressure is not constant over a buckling panel defined by a number of finite plate elements, and verage lateral pressure (N/mm^2) is calculated using the following formula: $P_{avr} = \frac{\sum_{i=1}^{n} A_i P_i}{\sum_{i=1}^{n} A_i}$ Where: A_i : Area of the <i>i</i> -th plate element (mm^2) P_i : Lateral pressure of the <i>i</i> -th plate element (N/mm^2) n : Number of finite elements in the buckling panel	
An4.2.5.2 For FE analysis, where the lateral pressure is not constant over a buckling panel defined by a number of finite plate elements, and verage lateral pressure (N/mm^2) is calculated using the following formula:	
For FE analysis, where the lateral pressure is not constant over a buckling panel defined by a number of finite plate elements, an verage lateral pressure (N/mm^2) is calculated using the following formula: $P_{avrr} = \frac{\sum_{1}^{n} A_i P_i}{\sum_{1}^{n} A_i}$ <u>Where:</u> A_i : Area of the <i>i</i> -th plate element (mm^2) P_i : Lateral pressure of the <i>i</i> -th plate element (N/mm^2) n : Number of finite elements in the buckling panel An4.2.6 Buckling Criteria	
For FE analysis, where the lateral pressure is not constant over a buckling panel defined by a number of finite plate elements, and verage lateral pressure (N/mm^2) is calculated using the following formula:	<u>n</u>
$P_{avr} = \frac{\sum_{1}^{n} A_i P_i}{\sum_{1}^{n} A_i}$ $\frac{Where:}{A_i: \text{ Area of the } i\text{-th plate element } (mm^2)}{P_i: \text{ Lateral pressure of the } i\text{-th plate element } (N/mm^2)}$ $\frac{n: \text{ Number of finite elements in the buckling panel}}$ An4.2.6 Buckling Criteria An4.2.6.1 UP-A	
Where: A_i: Area of the i-th plate element (nnm²) P_i: Lateral pressure of the i-th plate element (N/mm²) n: Number of finite elements in the buckling panel An4.2.6 Buckling Criteria An4.2.6.1 UP-A	
A_i : Area of the <i>i</i> -th plate element (<i>mm</i> ²) P_i : Lateral pressure of the <i>i</i> -th plate element (<i>N/mm</i> ²) n : Number of finite elements in the buckling panel An4.2.6 Buckling Criteria An4.2.6.1 UP-A	
P_i: Lateral pressure of the <i>i</i> -th plate element (N/mm ²) n: Number of finite elements in the buckling panel An4.2.6 Buckling Criteria An4.2.6.1 UP-A	
An4.2.6 Buckling Criteria An4.2.6.1 UP-A	
<u>An4.2.6.1 UP-A</u>	UR S35, Section4, 2.6.1
	OK 555, Section4, 2.0.1
The compressive buckling strength of UP-A is to satisfy the following criterion:	
$\eta_{UP-A} \le \eta_{all}$	
Where:	
η_{UP-A} : Plate buckling utilisation factor, equal to η_{plate} as defined in An5.2.2 where UP-A model is to be used.	
An4.2.6.2 UP-B	UR S35, Section4, 2.6.2
The compressive buckling strength of UP-B is to satisfy the following criterion:	
$\frac{\eta_{UP-B} \le \eta_{all}}{\text{Where:}}$	
η_{UP-B} : Plate buckling utilisation factor, equal to η_{plate} as defined in An5.2.2 where UP-B model is to be used.	

Amended-Original Requirements Con	parison Table (Buckling Strength	Assessments of Ship Structural Elements)

Amended Amended Amended	Remarks
	UR S35, Section4, 2.6.3
<u>An4.2.6.3 SP-A</u>	
The compressive buckling strength of SP-A is to satisfy the following criterion:	
$\eta_{SP-A} \leq \eta_{all}$	
Where:	
η_{SP-A} : Buckling utilisation factor of the stiffened panel, taken as the maximum of the buckling utilisation factors calculated as below:	
• The overall stiffened panel buckling utilisation factor $\eta_{overall}$ as defined in An5.2.1.	
• The plate buckling utilisation factor η_{plate} as defined in An5.2.2 where SP-A model is to be used.	
• The stiffener buckling 27 tilization factor $\eta_{stiffener}$ as defined in An5.2.3 considering separately the properties	
(thickness, dimensions), the pressures defined in An4.2.5.2 and the reference stresses of each <i>EPP</i> at both sides of the	
stiffener.	
Note 1: The stiffener buckling strength check can only be fulfilled when the overall stiffened panel capacity check, as defined in	
An5.2.1 is satisfied.	
	UR S35, Section4, 2.6.4
<u>An4.2.6.4 SP-B</u>	
The compressive buckling strength of SP-B is to satisfy the following criterion:	
$\eta_{SP-B} \leq \eta_{all}$	
Where:	
η_{SP-B} : Buckling utilisation factor of the stiffened panel, taken as the maximum of the buckling utilisation factors calculated as below:	
• The overall stiffened panel buckling utilisation factor $\eta_{overall}$ as defined in An5.2.1.	
• The plate buckling utilisation factor η_{plate} as defined in An5.2.2 where SP-B model is to be used.	
• The stiffener buckling utilisation factor $\eta_{stiffener}$ as defined in An5.2.3 considering separately the properties	
(thickness, dimensions), the pressures defined in An4.2.5.2 and the reference stresses of each <i>EPP</i> at both sides of the	
stiffener.	
Note 1: The stiffener buckling strength check can only be fulfilled when the overall stiffened panel capacity check, as defined in	
An5.2.1, is satisfied.	

Amended-Original Requirem	ents Comparison Table	(Buckling Strength A	Assessments of Shir	o Structural Elements)	

Amended	Remarks
	UR S35, Section4, 2.6.5
An4.2.6.5 Web Plate in Way of Openings	
The web plate of primary supporting members with openings is to satisfy the following criterion:	
$\eta_{opening} \leq \eta_{all}$	
Where:	
$\eta_{opening}$: Maximum web plate utilisation factor in way of openings, calculated with the definition in An1.3.2.2 and the stress	s multiplier
<u>factor at failure γ_c which can be calculated following the requirements in An5.2.4.</u>	

Amended Amended	Remarks
Symbols	UR S35, Section5, Symbols
$\mathbf{A} = \mathbf{N} + \mathbf{A} = \mathbf{A} + $	
<u>A_p: Net sectional area (<i>mm</i>²) of the stiffener attached plating taken as:</u> A = st	
$A_p = st_p$ A_s : Net sectional area (mm ²) of the stiffener without attached plating	
a: Length (<i>mm</i>) of the longer side of the plate panel	
b: Length (mm) of the shorter side of the plate panel	
<u>b_{eff}: Effective width (mm) of the attached plating of a stiffener as defined in An5.2.3.5</u>	
b_{eff1} : Effective width (mm) of the attached plating of a stiffener without the shear lag effect taken as:	
\therefore For $\sigma_x > 0$	
For prescriptive assessment:	
$b_{eff1} = \frac{C_{x1}b_1 + C_{x2}b_2}{2}$	
$\frac{B_{eff1}-2}{2}$	
• For FE analysis:	
$b_{eff1} = C_x b$	
\cdot For $\sigma_x \leq 0$	
$b_{eff1} = b$	
b_f : Breadth (<i>mm</i>) of the stiffener flange	
b_1, b_2 : Width (<i>mm</i>) of plate panel on each side of the considered stiffener. For stiffened panels fitted with U-type stiffeners, b_1 and b_2 are	
as defined in Fig. An3.	
C_{x1} , C_{x2} : Reduction factor defined in Table An5 calculated for the EPP1 and EPP2 on each side of the considered stiffener according to	
case 1	
<u>d: Length (<i>mm</i>) of the side parallel to the cylindrical axis of the cylinder corresponding to the curved plate panel as shown in Table An6</u>	
d_f : Breadth (<i>mm</i>) of the extended part of the flange for L2 profiles as shown in Fig. An2	
e_f : Distance (<i>mm</i>) from attached plating to centre of flange as shown in Fig. An2 to be taken as:	
$\frac{e_f = h_w \text{ for flat bar profile}}{e_f = h_w - 0.5t \text{ for bulb profile}}$	
$\frac{e_f = h_w - 0.5t_f \text{ for bulb profile}}{1000 \text{ for angle L2 and T profiles}}$	
$e_f = h_w + 0.5t_f$ for angle, L2 and T profiles F_{long} : Coefficient defined in An5.2.2.4	
<u>rlong</u> . Coemercia definica in Alio.2.2.4	

Amended-Original Rec	uirements Com	parison Table (Buckling	Strength Assessme	nts of Shir	Structural Elements)	
				~			

Amended	Remarks
F _{tran} : Coefficient defined in An5.2.2.5	
h_w : Depth (<i>mm</i>) of stiffener web as shown in Fig. An2	
1: Span (mm) of stiffener equal to spacing between primary supporting members or span of side frame equal to the distance between the	
hopper tank and top wing tank in way of the side shell	
<u>R: Radius (mm) of curved plate panel</u>	
σ_{Y_P} : Specified minimum yield stress (N/mm ²) of the plate	
σ_{Y_S} : Specified minimum yield stress (N/mm ²) of the stiffener	
S: Partial safety factor, unless otherwise specified in the relevant requirements, to be taken as 1.0	
t_p : Net thickness (<i>mm</i>) of plate panel	
<u>t_w: Net stiffener web thickness (<i>mm</i>)</u>	
t_f : Net flange thickness (<i>mm</i>)	
x-axis: Local axis of a rectangular buckling panel parallel to its long edge	
y-axis: Local axis of a rectangular buckling panel perpendicular to its long edge	
$\frac{\alpha: \text{Aspect ratio of the plate panel, defined in Table An5 to be taken as:}}{\alpha}$	
$\alpha = \frac{\alpha}{b}$	
<u>β: Coefficient taken as:</u>	
$\beta = \frac{1-\psi}{lpha}$	
$p = \frac{\alpha}{\alpha}$	
ω : Coefficient taken as:	
$\underline{\omega = \min(3, \alpha)}$	
σ_x : Normal stress (N/mm ²) applied on the edge along x-axis of the buckling panel	
σ_y : Normal stress (N/mm ²) applied on the edge along y-axis of the buckling panel	
σ_1 : Maximum normal stress (N/mm ²) along a panel edge	
σ_2 : Minimum normal stress (N/mm ²) along a panel edge	
σ_E : Elastic buckling reference stress (N/mm ²) to be taken as:	
For the application of the limit state of plane plate panels according to An5.2.2.1:	
$\sigma_E = \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t_p}{b}\right)^2$	
$\frac{12(1-v^2) (b)}{2}$	

F

Amended	Remarks
For the application of the limit state of curved plate panels according to An5.2.2.6:	
$\sigma_E = \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t_p}{d}\right)^2$	
τ : Applied shear stress (N/mm ²)	
τ_c : Buckling strength in shear (N/mm ²) as defined in An5.2.2.3	
ψ : Edge stress ratio to be taken as:	
$\psi = \frac{\sigma_2}{r}$	
$\underline{\sigma_1}$	
γ : Stress multiplier factor acting on loads. When the factor is such that the loads reach the interaction formulae, $\gamma = \gamma_c$.	
γ_c : Stress multiplier factor at failure	
γ_{GEB} : Stress multiplier factor of global elastic buckling capacity	
An5 Buckling Capacity	UR S35, Section5, 1.1.1
An5.1 General	
An5.1.1 Introduction	
<u>An5.1.1.1</u>	
This section contains the methods for determination of the buckling capacities of plate panels, stiffeners, primary supporting members,	
and columns.	
<u>An5.1.1.2</u>	UR S35, Section5, 1.1.2
For the application of this section, the stresses σ_{χ} , σ_{χ} and τ applied on the structural members are defined in:	
An3 for hull girder prescriptive buckling requirements.	
• An4 for direct strength analysis buckling requirements of hatch covers.	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structur	ai Elements)
Amended	Remarks
<u>An5.1.1.3</u> <u>Buckling Capacity</u> <u>The buckling capacity is calculated by applying the actual stress combination and then increasing or decreasing the stresses</u> <u>proportionally until the interaction formulae defined in An5.2.1.1, An5.2.2.1 and An5.2.3.4 are equal to 1.0, respectively.</u>	UR S35, Section5, 1.1.3
An5.1.1.4 Buckling Utilisation Factor The buckling utilisation factor of the structural member is equal to the highest utilisation factor obtained for the different buckling modes.	UR S35, Section5, 1.1.4
An5.1.1.5 Lateral Pressure The lateral pressure is to be applied and considered as constant for the calculation of buckling capacities as defined in An5.1.1.3.	UR S35, Section5, 1.1.5
An5.2 Buckling Capacity of Plate Panels An5.2.1 Overall Stiffened Panels	UR S35, Section5, 2.1.1
$\frac{\text{An5.2.1.1}}{\text{The elastic stiffened panel limit state is based on the following interaction formula, which sets a precondition for the buckling check of stiffeners in accordance with An5.2.3.4: \frac{\gamma_c}{\gamma_{GEB}} = 1 with corresponding buckling utilisation factor defined as$	
$\frac{\eta_{overall} = \frac{1}{\gamma_c}}{\text{where the stress multiplier factors of global elastic buckling capacity, } \gamma_{GEB}, \text{ are to be calculated based on the following formulae:}}$ $\frac{\gamma_{GEB} = \gamma_{GEB,bi+\tau} \text{for } \tau \neq 0 \text{ and } (\sigma_x > 0 \text{ or } \sigma_y > 0)}{\gamma_{GEB} = \gamma_{GEB,bi} \text{for } \tau = 0 \text{ and } (\sigma_x > 0 \text{ or } \sigma_y > 0)}$ $\gamma_{GEB} = \gamma_{GEB,\tau} \text{for } \tau \neq 0 \text{ and } (\sigma_x \leq 0 \text{ and } \sigma_y \leq 0)$ $\gamma_{GEB} = \gamma_{GEB,\tau} \text{for } \tau \neq 0 \text{ and } (\sigma_x \leq 0 \text{ and } \sigma_y \leq 0)$ $\gamma_{GEB} = \gamma_{GEB,t}, \gamma_{GEB,\tau} \text{and } \gamma_{GEB,t+\tau} \text{ are stress multiplier factors of the global elastic buckling capacity for different load}$	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structur	ral Elements)
Amended	Remarks
combinations as defined in An5.2.1.2, An5.2.1.3 and An5.2.1.4, respectively. For the calculation of $\gamma_{GEB,bi}$, $\gamma_{GEB,\tau}$ and	
$\gamma_{GEB,bi+\tau}$, neither σ_x nor σ_y are to be taken less than 0.	
σ_x , σ_y : Applied normal stress (<i>N/mm²</i>) to the plate panel to be taken as defined in An5.2.2.7.	
τ : Applied shear stress (<i>N/mm²</i>) to be taken as defined in An5.2.2.7.	
4-5212	UR S35, Section5, 2.1.2
<u>An5.2.1.2</u> The stress multiplier factor $\gamma_{GFB \ bi}$ for the stiffened panel subjected to biaxial loads is taken as:	
$\gamma_{GEB,bi} = \frac{\pi^2}{L_{B1}^2 L_{B2}^2} \frac{[D_{11}L_{B2}^4 + 2(D_{12} + D_{33})n^2 L_{B1}^2 L_{B2}^2 + n^4 D_{22} L_{B1}^4]}{L_{B2}^2 N_x + n^2 L_{B1}^2 N_y}$	
$-\frac{L_{B1}L_{B2}}{L_{B2}N_x + h^- L_{B1}N_y}$	
Where:	
N_x : Load per unit length applied on the edge along x-axis (N/mm) of the stiffened panel taken as	
$N_x = \sigma_{x,av}(A_p + A_s)/s$	
For stiffened panels fitted with U-type stiffeners, stiffener spacing s is taken as:	
$\underline{s} = \underline{b_1} + \underline{b_2}$	
where b_1 and b_2 are as defined in Fig. An3.	
Ny: Load per unit length applied on the edge along y-axis (N/mm) of the stiffened panel taken as	
$N_y = c\sigma_y t_p$	
<u>L_{B1}: Stiffener span (mm) distance between primary supporting members, i.e. $L_{B1} = \ell$. Specially, for vertically stiffened side shell of single side skin bulk carriers, $L_{B1} = 0.8\ell$.</u>	
L_{B2} : Total width (<i>mm</i>) of stiffened panel between lateral supports taken as 6 times of the stiffener spacing, i.e. 6s.	
<i>n</i> : Number of half waves along the direction perpendicular to the stiffener axis. The factor $\gamma_{GEB \ bi}$ is to be minimised with respect	
to the wave parameters n , i.e. to be taken as the smallest value larger than zero.	
c: Factor taking into account the normal stress distribution in the attached plating acting perpendicular to the stiffener's axis:	
$\underline{c = 0.5(1 + \Psi) \text{ for } 0 \le \Psi \le 1}$	
$c = \frac{1}{2(1-\Psi)} \text{ for } \Psi < 0$	
<u>Ψ: Edge stress ratio for case 2 according to Table An5</u>	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

Amended	Remarks
$\sigma_{x,av}$: Average stress for both plate and stiffener, taken as:	
$\overline{\sigma_{x,av}} = \sigma_x - vc\sigma_y A_s / (A_p + A_s) \ge 0 \text{ for } \sigma_x > 0 \text{ and } \sigma_y > 0$	
$\overline{\sigma_{x,av} = \sigma_x \text{ for } \sigma_x \le 0 \text{ or } \sigma_y \le 0}$	
$D_{11}, D_{12}, D_{22}, D_{33}$: Bending stiffness coefficients (Nmm) of the stiffened panel, defined in general as:	
$D_{11} = \frac{EI_{eff}10^4}{s}$	
$D_{12} = \frac{E t_p^3 \nu}{12(1-\nu^2)}$	
$D_{22} = \frac{Et_p^3}{12(1-\nu^2)} \left\{ \right.$	
$D_{33} = \frac{Et_p^3}{12(1+\nu)} $	
For stiffened panels fitted with U-type stiffeners, D_{12} and D_{22} are defined as:	
$D_{22} = \frac{Et_p^3}{12(1-\nu^2)} \left[1.2 + 4.8 \times Min\left(1.0, \frac{b_1^2}{h_w(b_1+b_2)}\right) \times Min\left(1.0, \left(\frac{t_w}{t_p}\right)^3\right) \right]$	
$D_{12} = \nu D_{22}$	
<u>h_w: Breadth of U-type stiffener web as defined in Fig. An3.</u> <u>I_{eff}: Moment of inertia (cm^4) of the stiffener including effective width of attached plating, the same as 1 defined in An5.2.3.4.</u>	
<u><i>Leff</i></u> . Moment of metua (<i>cm</i>) of the sumener metuding effective width of attached platting, the same as <i>T</i> defined in Ali3.2.3.4.	UR S35, Section5, 2.1.3
<u>An5.2.1.3</u>	
The stress multiplier factor $\gamma_{GEB,\tau}$ for the stiffened panel subjected to pure shear load is taken as:	
$\gamma_{GEB,\tau} = \frac{\sqrt[4]{D_{11}^3 D_{22}}}{(L_{B1}/2)^2 N_{xy}} \left[8.125 + 5.64 \sqrt{\frac{(D_{12}+D_{33})^2}{D_{11}D_{22}}} - 0.6 \frac{(D_{12}+D_{33})^2}{D_{11}D_{22}} \right] \frac{\text{for } D_{11}D_{22} \ge (D_{12}+D_{33})^2}{(D_{12}+D_{33})^2} \frac{1}{(D_{12}+D_{33})^2} \frac$	
$\gamma_{GEB,\tau} = \frac{\sqrt{2D_{11}(D_{12}+D_{33})}}{(L_{B1}/2)^2 N_{xy}} \left[8.3 + 1.525 \frac{D_{11}D_{22}}{(D_{12}+D_{33})^2} - 0.493 \frac{D_{11}^2 D_{22}^2}{(D_{12}+D_{33})^4} \right] \frac{1}{(D_{11}D_{22} - (D_{12}+D_{33})^2)} = \frac{1}{(D_{11}D_{22} - (D_{12}+D_{33})^2)} \frac{1}{(D_{12}+D_{33})^4} \frac{1}{(D_{12}+D_{13})^4} \frac{1}{(D_{12}+D_{13})^$	
Where:	

Amended-Original Requirements Comparison Table (Buckning Strength Assessments of S Amended	Remarks
$N_{xy} = \tau t_p$	
<u>An5.2.1.4</u>	UR S35, Section5, 2.1.4
The stress multiplier factor $\gamma_{GEB, bi+\tau}$ for the stiffened panel subjected to combined loads is taken as:	
$\gamma_{GEB,bi+\tau} = \frac{1}{2} \gamma_{GEB,\tau}^2 \left[-\frac{1}{\gamma_{GEB,bi}} + \sqrt{\frac{1}{\gamma_{GEB,bi}}^2 + 4\frac{1}{\gamma_{GEB,\tau}^2}} \right]$	
where $\gamma_{GEB,bi}$ and $\gamma_{GEB,\tau}$ are as defined in An5.2.1.2 and An5.2.1.3, respectively.	
An5.2.2 Plates	UR S35, Section5, 2.2.1
An5.2.2.1 Plate Limit State	
<u>The plate limit state is based on the following interaction formulae:</u> e_0	
$\left(\frac{\gamma_{c1}\sigma_x S}{\sigma_{cx}}\right)^{e_0} - B\left(\frac{\gamma_{c1}\sigma_x S}{\sigma_{cx}}\right)^{\frac{e_0}{2}} \left(\frac{\gamma_{c1}\sigma_y S}{\sigma_{cy}}\right)^{\frac{e_0}{2}} + \left(\frac{\gamma_{c1}\sigma_y S}{\sigma_{cy}}\right)^{e_0} + \left(\frac{\gamma_{c1} \tau S}{\tau_c}\right)^{e_0} = 1$	
$\frac{\left(\frac{\gamma_{c2}\sigma_x S}{\sigma_{cx}}\right)^{2/\beta_p^{0.25}} + \left(\frac{\gamma_{c2} \tau S}{\tau_c}\right)^{2/\beta_p^{0.25}} = 1}{\left(\frac{\gamma_{c3}\sigma_y S}{\sigma_{cy}}\right)^{2/\beta_p^{0.25}} + \left(\frac{\gamma_{c3} \tau S}{\tau_c}\right)^{2/\beta_p^{0.25}} = 1} \frac{\text{for } \sigma_x \ge 0}{\frac{1}{\sigma_{cy}} + \frac{1}{\sigma_{cy}} + \frac{1}$	
$\left(\frac{\gamma_{c3}\sigma_y S}{\sigma_{cy}}\right)^{2/\beta_p^{0.25}} + \left(\frac{\gamma_{c3} \tau S}{\tau_c}\right)^{2/\beta_p^{0.25}} = 1 \text{ for } \sigma_y \ge 0$	
$\frac{\frac{\langle \sigma_{cy} \rangle}{\gamma_{c4} \tau S}}{\frac{\tau_c}{\tau_c} = 1}$	
τ_c	
with	
$\underline{\gamma_c} = Min(\gamma_{c1}, \gamma_{c2}, \gamma_{c3}, \gamma_{c4})$	
and corresponding buckling utilisation factor defined as	
$\eta_{plate} = \frac{1}{\gamma_c}$	
Where:	

	Amended				
σ_x, σ_y : Applied normal stress (<i>N/mm²</i>)					
τ : Applied shear stress (<i>N/mm²</i>) to the p					
σ_{cx} : Ultimate buckling stress (N/mm ²) in					
σ_{cy} : Ultimate buckling stress (N/mm ²) is					
τ_c : Ultimate buckling shear stress (N/m	τ_c : Ultimate buckling shear stress (<i>N/mm²</i>) as defined in An5.2.2.3.				
$\gamma_{c1}, \gamma_{c2}, \gamma_{c3}, \gamma_{c4}$: Stress multiplier fac					
considered when $\sigma_x \ge 0$ and σ_y					
<u>B: Coefficient given in Table An3.</u>					
<u>e₀: Coefficient given in Table An3.</u>					
β_p : Plate slenderness parameter taken as					
$\beta_p = \frac{b}{t_m} \sqrt{\frac{\sigma_{Y_p}}{F_p}}$					
$Pp t_p \sqrt{E}$					
<u>Table An3</u> Definition of Coefficients B and e_0			UR S35, Section5, Table 1		
Applied stress	<u>B</u>	<u>e</u> o			
$\sigma_x \ge 0$ and $\sigma_y \ge 0$	$\underline{0.7 - 0.3 \beta_p / \alpha^2}$	$\frac{2/\beta_p^{0.25}}{p}$			
$\sigma_x < 0 \text{ or } \sigma_y < 0$	<u>1.0</u>	<u>2.0</u>			
An5.2.2.2 Reference Degree of Slender	UR S35, Section5, 2.2.2				
The reference degree of slenderness is to					
$\sigma_{V,P}$					
$\lambda = \left \frac{\delta Y_{\perp} P}{K \sigma_E} \right $					
$\sqrt{\frac{10E}{10E}}$					
Where:					
K: Buckling factor, as defined in Table					

Amended Amended	Remarks
	UR S35, Section5, 2.2.3
An5.2.2.3 Ultimate Buckling Stresses	
The ultimate buckling stresses (N/mm^2) of plate panels are to be taken as:	
$\underline{\sigma_{cx}} = \underline{C_x} \sigma_{\underline{Y}_p}$	
$\underline{\sigma_{cy} = C_y \sigma_{Y_p}}$	
<u>The ultimate buckling stress of plate panels subject to shear (N/mm^2) is to be taken as:</u>	
$\frac{\tau_c = C_\tau \frac{\sigma_{YP}}{\sqrt{3}}}{}$	
Where:	
C_x, C_y, C_τ : Reduction factors, as defined in Table An5	
• For the 1st Equation of An2.2.1, when $\sigma_x < 0$ or $\sigma_y < 0$, the reduction factors are to be taken as:	
$\underline{C_x = C_y = C_\tau = 1}$	
• For other cases:	
• For SP-A and UP-A, C _v is calculated according to Table An5 by using	
$c_1 = \left(1 - \frac{1}{\alpha}\right) \ge 0$	
• For SP-B and UP-B, Cy is calculated according to Table An5 by using	
$c_1 = 1$	
• For vertically stiffened single side skin of bulk carrier, C_v is calculated according to Table An5 by using	
$c_1 = \left(1 - \frac{1}{\alpha}\right) \ge 0$	
• For corrugation of corrugated bulkheads, Cy is calculated according to Table An5 by using	
$c_1 = \left(1 - \frac{1}{\alpha}\right) \ge 0$	
The boundary conditions for plates are to be considered as simply supported, see cases 1, 2 and 15 of Table An5. If the boundary conditions	
differ significantly from simple support, a more appropriate boundary condition can be applied according to the different cases of Table An5	
subject to the agreement of the Society.	

Amended-Original Requirements Con	parison Table (Buckling S	Strength Assessments of Shin	Structural Elements)
i mienaea enginar reequinemes een			

Amended-Original Requirements Con	parison Table (Bucklin	g Strength Assessments of Shi	p Structural Elements)
		0 0	

		8	/	
	Amended			
			UR S35, Section5, 2.2.4	
An5.2.2.4 Correction Factor	<u>F_{long}</u>			
The correction factor F _{long} of	lepending on the edge stiffener types on the longe	r side of the buckling panel is defined	in Table	
An4. An average value of F_{long} is to b	be used for plate panels having different edge stiffene	rs. For stiffener types other than those m	nentioned	
in Table An4, the value of c is to be a	agreed by the Society. In such a case, value of c	nigher than those mentioned in Table A	An4 can	
be used, provided it is verified by buc	<u>kling strength check of panel using non-linear FE an</u>	alysis and deemed appropriate by the So	ociety.	
			-	

	0	•	Amended		Remarks
		Table An4 C	Correction Factor F _{long}		UR S35, Section5, Table 2
Structural element typ	pes		E _{long} .	<u>c</u>	
Unstiffened Panel	1		1.0	<u>N/A</u>	
	Stiffener not fixed at bo	<u>th ends</u>	<u>10</u>	<u>N/A</u>	
		<u>Flat bar</u> (1)	t	<u>0.10</u>	
		Bulb profile	$F_{long} = c + 1 \ for \ \frac{w}{t_p} > 1$	<u>0.30</u>	
		Angle and L2 profiles	$F_{long} = c + 1 \text{ for } \frac{t_w}{t_p} > 1$ $F_{long} = c \left(\frac{t_w}{t_p}\right)^3 + 1 \text{ for } \frac{t_w}{t_p} \le 1$	<u>0.40</u>	
		<u>T profile</u>		<u>0.30</u>	
<u>Stiffened</u> Panel		<u>Girder of high rigidity (e.g. bottom</u> <u>transverse</u>)	<u>14</u>	<u>N/A</u>	
	<u>Stiffener fixed at both</u> ends	<u>U-type profile fitted on hatch cover⁽²⁾</u>	$\frac{-\text{ Plate on which the U-type profile is fitted, including EPP } b_1 \text{ and } EPP \ b_2}{-\text{For } b_2 < b_1: F_{long} = 1}$ $\frac{-\text{For } b_2 > b_1:}{F_{long} = \left(1.55 - 0.55 \frac{b_1}{b_2}\right) \left[1 + c \left(\frac{t_w}{t_p}\right)^3\right]}$ $\frac{-\text{ Other plates of the U-type profile:}}{F_{long} = 1}$	<u>0.2</u>	
	b thickness (<i>mm</i>) withou are defined in Fig. An3.	t the correction defined in An.5.2.3.2.		1	

Amended Amended	Remarks
An5.2.2.5 Correction Factor F_{tran}	UR S35, Section5, 2.2.5
The correction factor F_{tran} is to be taken as:	
• For transversely framed <i>EPP</i> of single side skin bulk carrier, between the hopper and top wing tank:	
• F _{tran} =1.25 when the two adjacent frames are supported by one tripping bracket fitted in way of the adjacent plate panels.	
• F _{tran} =1.33 when the two adjacent frames are supported by two tripping brackets each fitted in way of the adjacent plate panels.	
$\cdot F_{tran} = 1.15$ elsewhere.	
• For the attached plate of a U-type stiffener fitted on a hatch cover:	
$F_{tran} = Max(3 - 0.08(F_{tran0} - 6)^2, 1.0) \le 2.25$	
Where:	
$F_{tran0} = Min\left(\frac{b_2}{b_1} + \frac{6b_2^2}{\pi^2 h_w(b_1 + b_2)} \left(\frac{t_w}{t_p}\right)^3, 6\right) \underline{\text{for } EPP \ b_2}$	
$\frac{F_{tran0} = Min\left(\frac{b_2}{b_1} + \frac{6b_2^2}{\pi^2 h_w(b_1 + b_2)} \left(\frac{t_w}{t_p}\right)^3, 6\right) \text{ for } EPP b_2}{F_{tran0} = Min\left(\frac{b_1}{b_2} + \frac{6b_1^2}{\pi^2 h_w(b_2 + b_1)} \left(\frac{t_w}{t_p}\right)^3, 6\right) \text{ for } EPP b_1}$	
with b_1 , b_2 and h_w as defined in Fig. An3.	
Coefficient <i>F</i> defined in case 2 of Table An5 is to be replaced by the following formula: $F = \left[1 - \left(\frac{K_y}{0.91F_{tran}} - 1\right)/\lambda_p^2\right]c_1 \ge 0$	
• For other cases: $F_{tran} = 1$.	
	UR S35, Section5, 2.2.6
<u>An5.2.2.6 Curved Plate Panels</u> This requirement for curved plate limit state is applicable when $R/t_p \le 2500$. Otherwise, the requirement for plate limit state given	
in An5.2.2.1 is applicable.	
The curved plate limit state is based on the following interaction formula:	
$\left(\frac{\gamma_c \sigma_{ax} S}{C_{ax} \sigma_{Y_P}}\right)^{1.25} - 0.5 \left(\frac{\gamma_c \sigma_{ax} S}{C_{ax} \sigma_{Y_P}}\right) \left(\frac{\gamma_c \sigma_{tg} S}{C_{tg} \sigma_{Y_P}}\right) + \left(\frac{\gamma_c \sigma_{tg} S}{C_{tg} \sigma_{Y_P}}\right)^{1.25} + \left(\frac{\gamma_c \tau \sqrt{3} S}{C_\tau \sigma_{Y_P}}\right)^2 = 1.0$	
with corresponding buckling utilisation factor defined as	
$n_{\text{minimal plate}} = \frac{1}{n_{\text{minimal plate}}}$	
$\eta_{curved_plate} = \frac{1}{\gamma_c}$	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

Amended-Original Requirements Co	nparison Table (Buckling	g Strength Assessments of Shi	p Structural Elements)

Amended	Remarks
Where: σ_{ax} : Applied axial stress (N/mm²) to the cylinder corresponding to the curved plate panel. In case of tensile axial stresses, $\sigma_{ax} = 0$. σ_{tg} : Applied tangential stress (N/mm²) to the cylinder corresponding to the curved plate panel. In case of tensile tangential stresses, $\sigma_{tg} = 0$. $\sigma_{cgx}, C_{tg}, C_{\tau}$: Buckling reduction factor of the curved plate panel, as defined in Table An6.The stress multiplier factor, γ_c , of the curved plate panel need not be taken less than the stress multiplier factor, γ_c , for the expanded plane panel according to An5.2.2.1.	
Fig. An9 Transverse Stiffened Bilge Plating	UR S35, Section5, Figure 1

	Amended Amended				
Table	Table An5 Buckling Factor and Reduction Factor for Plane Plate Panels				
	$\frac{\text{Aspect}}{\text{io } \psi \text{ ratio } \alpha} = \frac{\text{Buckling factor } K}{\text{Buckling factor } K}$	Reduction factor C			
[±] σ _x σ _x	$ \begin{array}{c} \widehat{\bigwedge} \\ \widehat{\searrow} \\ \widehat{\bigwedge} \\ \widehat{\longleftarrow} \end{array} \\ \underbrace{K_x = F_{long} \frac{8.4}{\psi + 1.1}} \\ \end{array} $	When $\sigma_x \leq 0$: $C_x = 1$ When $\sigma_x > 0$: $C_x = 1$ for $\lambda \leq \lambda_c$			
	$\begin{bmatrix} 1 \\ \land \\ \neg \\ \land \\ \circ \end{bmatrix} = K_x = F_{long}[7.63 - \psi(6.26 - 10\psi)]$	$\frac{C_x = c \left(\frac{1}{\lambda} - \frac{0.22}{\lambda^2}\right) \text{ for } \lambda > \lambda_c}{Where:}$ $c = (1.25 - 0.12\psi) \le 1.25$			
	$\begin{bmatrix} I \\ V \\ \Rightarrow \end{bmatrix} \frac{K_x = F_{long}[5.975(1-\psi)^2]}{[5.975(1-\psi)^2]}$	$\underline{\lambda_c = \frac{c}{2} \left(1 + \sqrt{1 - \frac{0.88}{c}} \right)}$			
a_{y}	$ \begin{array}{c} \bigcap_{\Lambda \\ \uparrow \\ \uparrow \\ \Lambda \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow$	When $\sigma_y \leq 0$: $C_y = 1$ When $\sigma_y > 0$: $C_y = c \left(\frac{1}{\lambda} - \frac{R + F^2(H - R)}{\lambda^2}\right)$ Where: $c = (1.25 - 0.12\psi) \leq 1.25$ $R = \lambda(1 - \lambda/c) \text{ for } \lambda < \lambda_c$ $R = 0.22 \text{ for } \lambda \geq \lambda_c$ $\lambda_c = 0.5c(1 + \sqrt{1 - 0.88/c})$			
	$\begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} = $	$\frac{\kappa_c = 0.5c(1 + \sqrt{1 - 0.50/c})}{F = \left[1 - \left(\frac{\kappa}{0.91} - 1\right)/\lambda_p^2\right]c_1 \ge 0}$ $\frac{\lambda_p^2 = \lambda^2 - 0.5 \text{ for } 1 \le \lambda_p^2 \le 3$ $C_1 \text{ as defined in An5.2.2.3}$ $H = \lambda - \frac{2\lambda}{c(T + \sqrt{T^2 - 4})} \ge R$			

	1	Amended	88	 Remarks
	$3(1-\psi) \le \alpha \le 6(1-\psi)$	$\frac{f_1 = \frac{1}{\beta} - 1}{\frac{f_2 = f_3 = 0}{2}}$	$\frac{T = \lambda + \frac{14}{15\lambda} + \frac{1}{3}}{2}$	
	$1.5(1-\psi) \leq \alpha < 3(1-\psi)$	$\frac{f_1 = \frac{1}{\beta} - (2 - \omega\beta)^4 - 9(\omega\beta - 1)(\frac{2}{3} - \beta)}{\frac{f_2 = f_3 = 0}{2}}$		
	$\frac{1-\frac{\pi u}{3}}{1.5(1-\psi)}$	For $\alpha > 1.5$: $ \frac{f_1 = 2\left(\frac{1}{\beta} - 16(1 - \frac{\omega}{3})^4\right)\left(\frac{1}{\beta} - 1\right)}{f_2 = 3\beta - 2} $ $ \frac{f_2 = 0}{f_3 = 0} $ For $\alpha < 1.5$: $ \frac{f_1 = 2\left(\frac{1.5}{1 - \psi} - 1\right)\left(\frac{1}{\beta} - 1\right)}{\frac{f_2 = \frac{\psi(1 - 16f_4^2)}{1 - \alpha}}{f_3 = 0}} $ $ \frac{f_4 = (1.5 - Min(1.5; \alpha))^2}{(1 - 2)^2} $		

Amended-Original Requirements Comparison Table (Buckning Strength Assessments of Ship Structure Amended				Remarks
		$\frac{f_{1} = 0}{f_{2} = 1 + 2.31(\beta - 1) - 48\left(\frac{4}{3} - \beta\right)f_{4}^{2}}$ $\frac{f_{3} = 3f_{4}(\beta - 1)\left(\frac{f_{4}}{1.81} - \frac{\alpha - 1}{1.31}\right)}{f_{4} = (1.5 - Min(1.5; \alpha))^{2}}$		
	$\psi < 1 - \frac{4\alpha}{3}$	$\frac{K_y = 5.972F_{tran}\frac{\beta^2}{1-f_3}}{\frac{Where:}{f_3 = f_5\left(\frac{f_5}{1.81} + \frac{1+3\psi}{5.24}\right)}}{\frac{f_5 = \frac{9}{16}(1 + Max(-1;\psi))^2}}$		
$\frac{3}{\varphi_{x}} \xrightarrow{\varphi_{x}} \xrightarrow{\varphi_{x}$	> -1 $1 > \psi > 0$	$K_{x} = \frac{4(0.425 + 1/\alpha^{2})}{3\psi + 1}$	_	
	$0 > \psi >$	$K_x = 4(0.425 + 1/\alpha^2)(1 + \psi) - 5\psi(1 - 3.42\psi)$	$\frac{\text{For UP-A:}}{C_x = 1 \text{ for } \lambda \le 0.75}$	
$\frac{4}{\sigma_x} \xrightarrow{\psi \cdot \sigma_x} \xrightarrow{\psi \cdot \sigma_x} b$	$1 \ge \psi \ge -1$	$\frac{K_x = \left(0.425 + \frac{1}{\alpha^2}\right)\frac{3 - \psi}{2}}{2}$	$C_x = \frac{0.75}{\lambda} \text{ for } \lambda > 0.75$ $For UP-B:$ $C_x = 1 \text{ for } \lambda < 0.7$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	=	$\frac{\frac{59}{5}}{\frac{59}{5}} \qquad \frac{K_x = 1.28}{\frac{1}{\alpha^2} + 0.56 + 0.13\alpha^2}$	$C_{\chi} = \frac{1}{\lambda^2 + 0.51} \text{ for } \lambda > 0.7$	

Amended-Original Requirements Com	parison Table (Buckling Stre	ength Assessments of Shi	p Structural Elements)
			1 /

	Amended-Original Requirements Comparison Table (Buckning Strength Assessments of Ship Structura Amended		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$K_{y} = \frac{4(0.425 + \alpha^{2})}{(3\psi + 1)\alpha^{2}}$		
$\sigma_{y} \qquad \qquad$	$-5\psi(1-3.42\psi)$	ForUP-A:	
$ \frac{7}{\psi \cdot \sigma_{y}} \qquad $	$K_{y} = 4(0.425 + \alpha^{2})\frac{(3 - \psi)}{2\alpha^{2}}$	$\frac{C_x = 1 \text{ for } \lambda \le 0.75}{C_x = \frac{0.75}{\lambda} \text{ for } \lambda > 0.75}$ $\frac{For UP-B:}{C_y = 1 \text{ for } \lambda \le 0.7}$ $\frac{C_y = \frac{1}{\lambda^2 + 0.51} \text{ for } \lambda > 0.7}{D_y = \frac{1}{\lambda^2 + 0.51} \text{ for } \lambda > 0.7}$	
$ \begin{array}{c} \frac{8}{\sigma_{y}} \\ t_{\rho} \\ t_{\rho} \\ t_{\rho} \\ a \\ \end{array} $	$\frac{K_y = 1 + \frac{0.56}{\alpha^2} + \frac{0.13}{\alpha^4}}{\alpha^4}$		
$\begin{array}{c} 9\\ \sigma_x & \sigma_x \\ \hline t_p & b \\ \star & a \end{array}$	$K_{x} = 6.97$	$\frac{C_x = 1 \text{ for } \lambda \le 0.83}{C_x = 1.13 \left(\frac{1}{\lambda} - \frac{0.22}{\lambda^2}\right) \text{ for } \lambda > 0.83}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{K_y = 4 + \frac{2.07}{\alpha^2} + \frac{0.67}{\alpha^4}}{\alpha^4}$	$\frac{C_y = 1 \text{ for } \lambda \le 0.83}{C_y = 1.13 \left(\frac{1}{\lambda} - \frac{0.22}{\lambda^2}\right) \text{ for } \lambda > 0.83}$	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

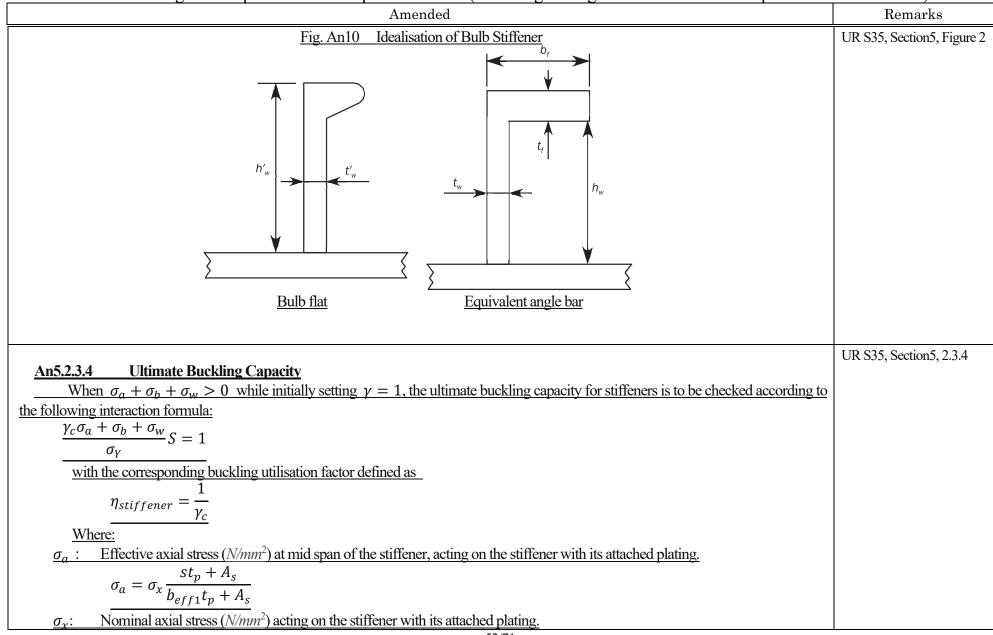
Amended Amended			Remarks
$\begin{bmatrix} 11 \\ a_x & a_x \\ \vdots & \vdots \\ a \end{bmatrix} = \begin{bmatrix} a_x & a_x \\ \vdots & a_x \end{bmatrix} = \begin{bmatrix} a_x & a_x \\ \vdots & a_x \end{bmatrix} = \begin{bmatrix} a_x & a_x \\ \vdots & a_x \end{bmatrix} = \begin{bmatrix} a_x & a_x \\ \vdots & a_x \end{bmatrix}$	$\underline{\alpha \ge 4} \underline{K_x = 4}$ $\underline{\alpha \le 4} \underline{K_x = 4 + 2.74 \left[\frac{4 - \alpha}{3}\right]^4}$	$-\frac{C_x = 1 \text{ for } \lambda \le 0.83}{C_x = 1.13 \left(\frac{1}{\lambda} - \frac{0.22}{\lambda^2}\right) \text{ for } \lambda > 0.83}$	
$\begin{array}{c} 12 \\ a_{y} \\ t_{p} \\ a_{y} \\ a \end{array} \qquad \qquad$	$K_y = K_y$ determined as per case 2	For $\alpha < 2$: $C_y = C_{y2}$ For $\alpha \ge 2$: $C_y = \left(1.06 + \frac{1}{10\alpha}\right)C_{y2}$ Where: C_{y2} : C_y determined as per case 2	
$\begin{bmatrix} 13 \\ \sigma_x \\ \vdots \\ t_p \\ \vdots \\ a \end{bmatrix} = \begin{bmatrix} a_x \\ b \\ \vdots \\ b \\ \vdots \\ b \\ a \end{bmatrix} = \begin{bmatrix} a_x \\ b \\ \vdots \\ b \\ a \end{bmatrix} = \begin{bmatrix} a_x \\ b \\ b \\ \vdots \\ b \\ a \end{bmatrix} = \begin{bmatrix} a_x \\ b \\ b \\ b \\ b \\ b \\ a \end{bmatrix} = \begin{bmatrix} a_x \\ b \\ c \\ c$	$\underline{\alpha \ge 4} \qquad \underline{K_x = 6.97}$ $\underline{\alpha \le 4} \qquad \underline{K_x = 6.97 + 3.1 \left[\frac{4 - \alpha}{3}\right]^4}$	$\frac{C_x = 1 \text{ for } \lambda \le 0.83}{C_x = 1.13 \left(\frac{1}{\lambda} - \frac{0.22}{\lambda^2}\right) \text{ for } \lambda > 0.83}$	
$ \begin{array}{c} \frac{14}{\sigma_{y}} \\ t_{b} \\ \sigma_{y} \\ \vdots \\ a \\ \end{array} $	$\frac{K_y = \frac{6.97}{\alpha^2} + \frac{3.1}{\alpha^2} \left[\frac{4 - 1/\alpha}{3}\right]^4}{3}$	$\frac{C_y = 1 \text{ for } \lambda \le 0.83}{C_y = 1.13 \left(\frac{1}{\lambda} - \frac{0.22}{\lambda^2}\right) \text{ for } \lambda > 0.83}$	
$ \begin{array}{c} \frac{15}{\tau} \\ \downarrow \\ \downarrow \\ a \\ \end{array} \\ \begin{array}{c} \tau\\ \downarrow \\ \downarrow \\ \downarrow \\ a \\ \end{array} \\ \begin{array}{c} \tau\\ \downarrow \\ \downarrow $	$\frac{K_{\tau} = \sqrt{3} \left[5.34 + \frac{4}{\alpha^2} \right]}{1 + \frac{1}{\alpha^2}}$	$\frac{C_{\tau} = 1 \text{ for } \lambda \le 0.84}{C_{\tau} = \frac{0.84}{\lambda} \text{ for } \lambda > 0.84}$	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

Amended	Remarks
$\frac{16}{\tau}$ t_{p} $K_{\tau} = \sqrt{3} \left\{ 5.34 + Max \left[\frac{4}{\alpha^{2}}; \frac{7.15}{\alpha^{2.5}} \right] \right\}$	
$\frac{17}{t_{a}}$ $\frac{d_{a}}{t_{b}}$ $\frac{K_{\tau} = K_{\tau case15}r}{K_{\tau case15} : K_{\tau}}$ $\frac{K_{\tau} = K_{\tau case15}r}{r \cdot \text{ opening reduction factor taken as:}}$ $\frac{r = \left(1 - \frac{d_{a}}{a}\right)\left(1 - \frac{d_{b}}{b}\right)}{\frac{\text{with } \frac{d_{a}}{a} \le 0.7 \text{ and } \frac{d_{b}}{b} \le 0.7}$	
$ \begin{array}{c c} 18 \\ \hline \\ \hline$	<u>λ ≤ 0.84</u>
$\begin{bmatrix} 19 & \tau \\ t_{b} \\ \hline & \tau \\ \hline & a \end{bmatrix} = \begin{bmatrix} K_{\tau} = 8 \\ K_{\tau} = 8 \end{bmatrix}$	
Edge boundary conditions: Plate edge free. Plate edge simply supported. Plate edge clamped. Note 1: Cases listed are general cases. Each stress component (σ_x , σ_y) is to be understood in 1	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

		Amended		Remarks
Table An6	Buckling and	d Reduction Factor for Curved Plate Par	nel with $R/t_p \le 2500$	UR S35, Section5, Table 4
Case	Aspect ratio	Buckling factor K	Reduction factor C	
d R R C R C R C C C C C C C C C C C C C	$\frac{\frac{d}{R} \le 0.5 \sqrt{\frac{R}{t_p}}}{\frac{d}{R} > 0.5 \sqrt{\frac{R}{t_p}}}$	$K = 1 + \frac{2}{3} \frac{d^2}{Rt_p}$ $K = 0.267 \frac{d^2}{Rt_p} \left[3 - \frac{d}{R} \sqrt{\frac{t_p}{R}} \right] \ge 0.4 \frac{d^2}{Rt_p}$	For general application: $C_{ax} = 1 \text{ for } \lambda \le 0.25$ $C_{ax} = 1.233 - 0.933\lambda$ for $0.25 < \lambda \le 1$ $C_{ax} = \frac{0.3}{\lambda^3} \text{ for } 1 < \lambda \le 1.5$ $C_{ax} = \frac{0.2}{\lambda^2} \text{ for } \lambda > 1.5$ For curved single fields, e.g. bilge plating, which are bounded by plane panels as shown in Fig. An9:	
	$\frac{d}{R} > 1.63 \sqrt{\frac{R}{t_p}}$	$\frac{K = \frac{d}{\sqrt{Rt_p}} + 3\frac{(Rt_p)^{0.175}}{d^{0.35}}}{K = 0.3\frac{d^2}{R^2} + 2.25\left(\frac{R^2}{dt_p}\right)^2}$	$\frac{C_{ax} = \frac{0.65}{\lambda^2} \le 1.0}{\frac{C_{ax} = 1 \text{ for } \lambda \le 0.4}{\lambda^2} \le 1.0}$ For general application: $\frac{C_{tg} = 1 \text{ for } \lambda \le 0.4}{C_{tg} = 1.274 - 0.686\lambda}$ for $0.4 < \lambda \le 1.2$ $C_{tg} = \frac{0.65}{\lambda^2} \text{ for } \lambda > 1.2$ For curved single fields, e.g. bilge plating, which are bounded by plane panels as shown in Fig. An9: $\frac{C_{ax} = \frac{0.8}{\lambda^2} \le 1.0}{\frac{C_{ax} = 0.8}{\lambda^2} \le 1.0}$	
3 <i>a</i> <i>b</i> <i>b</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i>	$\frac{\frac{d}{R} \leq \sqrt{\frac{R}{t_p}}}{\frac{d}{R} > \sqrt{\frac{R}{t_p}}}$	$K = \frac{0.6d}{\sqrt{Rt_p}} + \frac{\sqrt{Rt_p}}{d} - 0.3\frac{Rt_p}{d^2}$ $K = 0.3\frac{d^2}{R^2} + 0.291\left(\frac{R^2}{dt_p}\right)^2$	<u>As in load case 2.</u>	


Amended-Original Requirement	nts Comparison Table	(Buckling Strength Assessments	of Ship Structural Elements)

Amended	Remarks
$\frac{4}{R} \leq 8.7 \sqrt{\frac{R}{t_p}} \qquad K = \sqrt{3} \sqrt{28.3 + \frac{0.67d^3}{R^{1.5}t_p^{1.5}}} \qquad \frac{C_{\tau} = 1 \text{ for } \lambda \leq 0.4}{C_{\tau} = 1.274 - 0.686\lambda}$ $\frac{d}{R} > 8.7 \sqrt{\frac{R}{t_p}} \qquad \frac{K = \sqrt{3} \frac{0.28d^2}{R\sqrt{Rt_p}}}{K = \sqrt{3} \frac{0.28d^2}{R\sqrt{Rt_p}}} \qquad \frac{C_{\tau} = \frac{0.65}{\lambda^2} \text{ for } \lambda > 1.2}{K = \sqrt{3} \frac{100}{R} \sqrt{Rt_p}}$	
Explanations for boundary conditions: Plate edge free. Plate edge simply supported. Plate edge clamped.	
An5.2.2.7Applied Normal and Shear Stresses to Plate PanelsThe normal stress, σ_x and σ_y . (N/mm²) to be applied for the overall stiffened panel capacity and the plate panel capacity calculationsas given in An5.2.1.1 and An5.2.2.1 respectively, are to be taken as follows:• For FE analysis, the reference stresses as defined in An4.2.4.• For prescriptive assessment of the overall stiffened panel capacity and the plate panel capacity, the axial or transverse compressivestresses calculated according to the relevant requirements, at load calculation points of the considered stiffener or the consideredelementary plate panel, as defined in item (a) and item (b) of An3.1.2.1 respectively. However, in case of transverse stiffening arrangement, the transverse compressive stress used for the assessment of the overall stiffened panel capacity is to be taken as the compressive stress calculated at load calculation points of the stiffened panel capacity is to be taken as: $\sigma_x = \frac{\sigma_{xb} + v \sigma_{yb}}{1 - v^2}$ $\sigma_y = \frac{\sigma_{yb} + v \sigma_{xb}}{1 - v^2}$ $\overline{\sigma_{yb} + v \sigma_{xb}}$ $\overline{\sigma_{xb}, \sigma_{yb} : Stress (N/mn²)}$ from grillage beam analysis respectively along x or y axis of the plate attached to the PSM web.The shear stress τ (N/mn²) to be applied for the overall stiffened panel capacity and the plate panel capacity calculations as given in	UR S35, Section5, 2.2.7
An5.2.1.1 and An5.2.2.1 respectively, are to be taken as follows:	

Amended	Remarks
For FE analysis, the reference shear stresses as defined in An4.2.4.	
• For prescriptive assessment of the plate panel capacity, the shear stresses calculated according to the relevant requirements, at load	
calculation points of the considered elementary plate panel, as defined in item (a) of An3.1.2.1.	
· For prescriptive assessment of the overall stiffened panel capacity, the shear stresses calculated according to the relevant	
requirements, at the following load calculation point:	
• At the middle of the full span, ℓ , of the considered stiffener.	
At the intersection point between the stiffener and its attached plating.	
• For grillage beam analysis, $\tau = 0$ in the plate attached to the PSM web.	
An5.2.3 Stiffeners	UR S35, Section5, 2.3.1
An5.2.3.1 Buckling Modes	
The following buckling modes are to be checked:	
Stiffener induced failure (SI)	
Associated plate induced failure (PI)	
An5.2.3.2 Web Thickness of Flat Bar	UR S35, Section5, 2.3.2
For accounting the decrease of the stiffness due to local lateral deformation, the effective web thickness (<i>mm</i>) of flat bar stiffener is to	
be used in An5.2.1 and An5.2.3.4 for the calculation of the net sectional area, A_s , the net section modulus, Z, and the moment of inertia, I, of	
he stiffener and is taken as:	
$t_{w_red} = t_w \left(1 - \frac{2\pi^2}{3} \left(\frac{h_w}{s} \right)^2 \left(1 - \frac{b_{eff1}}{s} \right) \right)$	

Amended	Remarks
	UR S35, Section5, 2.3.3
An5.2.3.3 Idealisation of Bulb Profile	
Bulb profiles are to be considered as equivalent angle profiles. The net dimensions (mm) of the equivalent built-up section are to be	
obtained from the following formulae.	
$h_w = h'_w - \frac{h'_w}{9.2} + 2$	
$b_f = \alpha \left(t'_w + \frac{h'_w}{6.7} - 2 \right)$	
$t_f = \frac{h'_w}{9.2} - 2$	
$t_w = t'_w$	
Where:	
h'_{w} , t'_{w} : Net height and thickness (<i>mm</i>) of a bulb section as shown in Fig. An10.	
α : Coefficient equal to:	
$\alpha = 1.1 + \frac{(120 - h'_w)^2}{3000} \text{for } h'_w \le 120$	
$\alpha = 1.0 \text{ for } h'_w > 120$	

Amended-Original Require	ements Comparison ⁷	Table (Buckling	Strength Assessments of Shi	p Structural Elements)
i mara a singman i coolan		I wore (Derenning		

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

Amended -Original Requirements Comparison Table (Buckning Strength Assessments of Ship Structur Amended	Remarks
• For FE analysis, σ_x is the FE corrected stress as defined in An5.2.3.6 in the attached plating in the direction of the	
stiffener axis.	
• For prescriptive assessment, σ_x is the axial stress calculated according to An3.2.2.1 at load calculation point of the stiffener,	
as defined in An3.1.2.1.	
• For grillage beam analysis, σ_x is the stress acting along the x-axis of the attached buckling panel.	
σ_Y : Specified minimum yield stress (<i>N/mm²</i>) of the material	
$\underline{\sigma_Y} = \underline{\sigma_{Y_S}}$ for stiffener induced failure (SI).	
$\frac{\sigma_Y = \sigma_{Y,P} \text{ for plate induced failure (PI).}}{(N_V - 2)! (1 - 1)! (2)!}$	
$\frac{\sigma_b: \text{Bending stress} (N/mm^2) \text{ in the stiffener}}{M_0 + M_1 + M_2}$	
$\sigma_b = \frac{M_0 + M_1 + M_2}{1000Z}$	
Z : Net section modulus (cm^3) of stiffener including effective width of plating according to An5.2.3.5, to be taken as:	
• The section modulus calculated at the top of stiffener flange for stiffener induced failure (SI).	
The section modulus calculated at the attached plating for plate induced failure (<i>PI</i>).	
M2: Bending moment (Nmm) due to eccentricity of sniped stiffeners, to be taken as	
$M_2 = 0$ for continuous stiffeners	
$M_2 = C_{snip} w_{na} \gamma \sigma_x (A_p + A_s)$ for stiffeners sniped at one or both ends.	
<u><i>C</i></u> _{snip} : Coefficient to account for the end effect of the stiffener sniped at one or both ends, to be taken as	
$\underline{C_{snip}} = -1.2$ for stiffener induced failure (SI)	
$\underline{C_{snip}} = 1.2$ for plate induced failure (<i>PI</i>).	
<u>M₁: Bending moment (Nmm) due to the lateral load P:</u>	
$M_1 = C_i \frac{ P s ^2}{24 \times 10^3}$ for continuous stiffener	
$\frac{M_1 = C_i \frac{ P sl^2}{24 \times 10^3}}{M_1 = C_i \frac{ P sl^2}{8 \times 10^3}} \text{for sniped stiffener}}$	
$M_1 = C_i \frac{ P sl^2}{14.2 \times 10^3}$ for stiffener sniped at one end and continuous at the other end	
<u>P: Lateral load (kN/m^2)</u>	
• For FE analysis, <i>P</i> is the average pressure as defined in An4.2.5.2 in the attached plating.	
• For prescriptive assessment, P is the pressure calculated at load calculation point of the stiffener, as defined in An3.1.2.1.	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

Amended Amended	Remarks
<u><i>C_i</i>: Pressure coefficient:</u>	
$\underline{C_i = C_{SL}}$ for stiffener induced failure (SI).	
$\underline{C_i = C_{PI}}$ for plate induced failure (PI).	
C _{PI} : Plate induced failure pressure coefficient:	
$C_{PI} = 1$ if the lateral pressure is applied on the side opposite to the stiffener.	
$C_{PI} = -1$ if the lateral pressure is applied on the same side as the stiffener.	
<u><i>C</i>_{SI}: Stiffener induced failure pressure coefficient:</u>	
$\underline{C_{SI}} = -1$ if the lateral pressure is applied on the side opposite to the stiffener.	
$\underline{C_{SI}} = 1$ if the lateral pressure is applied on the same side as the stiffener.	
<u>M_0: Bending moment (Nmm) due to the lateral deformation w of stiffener:</u>	
$M_0 = F_E C_{sl} \frac{\gamma}{\gamma_{GEB} - \gamma} w_0 \text{ with precondition } \gamma_{GEB} - \gamma > 0$	
γ_{GEB} : Stress multiplier factor of global elastic buckling capacity as defined in An5.2.1.	
F_E : Ideal elastic buckling force (N) of the stiffener	
$F_E = \left(\frac{\pi}{\ell}\right)^2 EI \cdot 10^4$	
<i>I</i> : Moment of inertia (<i>cm</i> ⁴) of the stiffener including effective width of attached plating according to An5.2.3.5. <i>I</i> is to comply	
with the following requirement:	
$I \ge \frac{st_p^3}{12 \cdot 10^4}$	
t_p : Net thickness of plate (<i>mm</i>) to be taken as	
1 I	
• For prescriptive requirements: the mean thickness of the two attached plating panels,	
• For FE analysis: the thickness of the considered <i>EPP</i> on one side of the stiffener.	
C_{sl} : Deformation reduction factor to account for global slenderness, to be taken as:	
$C_{sl} = 1 - \frac{1}{12} \lambda_G^4 \text{ for } \lambda_G \le 1.56$	
$\overline{C_{sl}} = 3 / \lambda_G^4$ for $\lambda_G > 1.56$	
λ_G : The reference degree of global slenderness of the stiffened panel, to be taken as	
$\lambda_G = \sqrt{\frac{\gamma_{\sigma Y}}{\gamma_{GEB}}}$	
$\sqrt{\gamma_{GEB}}$	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

Amended Original Requirements Comparison Fable (Dacking Strength Assessments of Ship Strated)	Remarks
$\gamma_{\rm rr} = \frac{\min\left(\sigma_{\rm Y}{\rm P},\sigma_{\rm Y}{\rm S}\right)}{\min\left(\sigma_{\rm Y}{\rm P},\sigma_{\rm Y}{\rm S}\right)}$	
$\gamma_{\sigma Y} = \frac{\min\left(\sigma_{Y_{-}P}, \sigma_{Y_{-}S}\right)}{\sqrt{\sigma_{x,av}^2 + \sigma_y^2 - \sigma_{x,av}\sigma_y + 3\tau^2}}$	
$\sigma_{x,av}$: Average stress for both plate and stiffener as defined in An5.2.1.2.	
σ_y : Applied transverse stress (<i>N/mm²</i>) to the plate panel as defined in An5.2.1.1.	
τ : Applied shear stress (N/mm ²) to the plate panel as defined in An5.2.1.1.	
w_0 : Assumed imperfection (mm) to be taken as:	
$\underline{w_0} = \ell/1000$	
σ_w : Stress due to torsional deformation (N/mm ²) to be taken as:	
• For stiffener induced failure (SI)	
\cdot For $\sigma_a > 0$	
$\sigma_w = E y_w e_f \Phi_0 \left(\frac{m_{tor}\pi}{l_{tor}}\right)^2 \left(\frac{1}{1 - \frac{\gamma \sigma_a}{\sigma_{ET}}} - 1\right) \text{ with precondition } \sigma_{ET} - \gamma \sigma_a > 0$	
\cdot For $\sigma_a \leq 0$	
$\sigma_w = 0$	
• For plate induced failure (PI)	
$\sigma_w = 0$	
y_w : Distance (mm) from centroid of stiffener cross section to the free edge of stiffener flange, to be taken as:	
$y_w = \frac{t_w}{2} \text{for flat bar}$	
$y_w = b_f - \frac{h_w t_w^2 + t_f b_f^2}{2A}$ for angle and bulb profiles	
$\frac{y_w = b_{f-out} + 0.5t_w - \frac{h_w t_w^2 + t_f (b_f^2 - 2b_f d_f)}{2A_s}}{\frac{1}{2A_s}} \text{ for L2 profile}$	
$y_w = \frac{b_f}{2}$ for T profile.	
Φ_0 : Coefficient taken as:	
$\Phi_0 = \frac{l_{tor}}{m_{tor}h_w} 10^{-4}$	
σ_{ET} : Reference stress (N/mm ²) for torsional buckling to be taken as:	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

Amended-Original Requirements Com	parison Table (Buckling	g Strength Assessments of Shi	p Structural Elements)

Amended	Remarks
$\sigma_{ET} = \frac{E}{I_p} \left[\left(\frac{m_{tor} \pi}{\ell_{tor}} \right)^2 I_{\omega} \cdot 10^2 + \frac{1}{2(1+\nu)} I_T + \left(\frac{\ell_{tor}}{m_{tor} \pi} \right)^2 \varepsilon \cdot 10^{-4} \right]$	
I_p : Net polar moment of inertia (cm ⁴) of the stiffener about point C as shown in Fig. An2, as defined in Table An7.	
I_T : Net St. Venant's moment of inertia (cm ⁴) of the stiffener as defined in Table An7.	
I_{ω} : Net sectorial moment of inertia (<i>cm</i> ⁶) of the stiffener about point C as shown in Fig. An2, as defined in Table An7.	
ℓ_{tor} : Stiffener span, distance equal to spacing between primary supporting members, i.e. $\ell_{tor} = \ell$. When the stiffener is supported	
by tripping brackets, ℓ_{tor} should be taken as the maximum spacing between the adjacent primary supporting members and	
fitted tripping brackets.	
m_{tor} : Number of half waves, taken as a positive integer so as to give smallest reference stress for torsional buckling.	
ε : Degree of fixation (<i>mm</i> ²) to be taken as:	
$\varepsilon = \left(\frac{3b}{t_p^3} + \frac{2h_w}{t_w^3}\right)^{-1}$ for bulb, angle, L2 and T profiles;	
$\varepsilon = \left(\frac{t_p^3}{3b}\right)$ for flat bars.	
A_{w} : Net web area (mm^2)	
A_f : Net flange area (mm^2)	

		Amended	Remarks
Table An7 Moments of Inertia			UR S35, Section5, Table 5
Ē	Flat bars ⁽¹⁾	Bulb, angle, L2 and T profiles	
<u>I</u> _P	$\frac{h_w^3 t_w}{3 \times 10^4}$	$\left(\frac{A_w(e_f - 0.5t_f)^2}{3} + A_f e_f^2\right) 10^{-4}$	
$\underline{I}_{\underline{T}} \qquad \qquad \frac{h_w t_w^3}{3 \times 10^4}$	$\left(1-0.63\frac{t_w}{h_w}\right)$	$\frac{\left(e_f - 0.5t_f\right)t_w^3}{3 \times 10^4} \left(1 - 0.63\frac{t_w}{e_f - 0.5t_f}\right) + \frac{b_f t_f^3}{3 \times 10^4} \left(1 - 0.63\frac{t_f}{b_f}\right)$	
<u>L</u>	$\frac{h_w^3 t_w^3}{36 \times 10^6}$	$\frac{For \text{ bulb, angle and L2 profiles}^{(2)}}{\frac{A_f^3 + A_w^3}{36 \times 10^6} + \frac{e_f^2}{10^6} \left(\frac{A_f b_f^2 + A_w t_w^2}{3} - \frac{\left(A_f (b_f - 2d_f) + A_w t_w\right)^2}{4(A_f + A_w)} - A_f d_f (b_f - d_f) \right)}{\frac{For \text{ T profiles.}}}$ $\frac{b_f^3 t_f e_f^2}{12 \times 10^6}$	
	t web thickness (<i>mm</i>). two results the thickness the thickness (<i>mm</i>). two results and angular the thickness (<i>mm</i>) and angular the thickness (<i>mm</i>). The thickness (<i>mm</i>) and the thickness (<i>mm</i>)	ed as defined in An5.2.3.2 is not to be used in this table. gle profiles.	
An5.2.3.5 Effective Width of Attached Plating The effective width of attached plating of stiffeners $b_{eff}(mm)$ is to be taken as: \cdot For $\sigma_x > 0$: \cdot For FE analysis, $b_{eff} = \min(C_x b, \chi_s s)$ \cdot For prescriptive assessment, $b_{eff} = \min(\frac{C_{x1}b_1 + C_{x2}b_2}{2}, \chi_s s)$ \cdot For $\sigma_x < 0$: \cdot For $\sigma_x < 0$: \cdot $b_{eff} = \chi_s s$			UR S35, Section5, 2.3.5
<u>• b</u>	$\gamma_{eff} = \chi_s S$	57/71	

Amended Amended	Remarks
Where:	
χ_s : Effective width coefficient to be taken as:	
$\chi_s = \frac{1.12}{1.75} \le 1.0 \text{ for } \frac{\ell_{eff}}{1.75} \ge 1$	
$\chi_{s} = \frac{1.12}{1 + \frac{1.75}{\left(\frac{\ell_{eff}}{s}\right)^{1.6}}} \le 1.0 \underline{\text{ for } \frac{\ell_{eff}}{s} \ge 1}$	
$\frac{\left(\frac{e_{ff}}{s}\right)}{\chi_s = 0.407 \frac{\ell_{eff}}{s} \text{ for } \frac{\ell_{eff}}{s} < 1}$	
ℓ_{eff} : Effective length (<i>mm</i>) of the stiffener taken as:	
$\ell_{eff} = \frac{\ell}{\sqrt{3}}$ for stiffener fixed at both ends.	
$\overline{\ell_{eff}} = 0.75\ell$ for stiffener simply supported at one end and fixed at the other.	
$\overline{\ell_{eff}} = \ell$ for stiffener simply supported at both ends.	
	UR S35, Section5, 2.3.6
An5.2.3.6 FE Corrected Stresses for Stiffener Capacity	
When the reference stresses σ_x and σ_y obtained by FE analysis according to An4.2.4 are both compressive, σ_x is to be corrected	
according to the following formulae:	
\cdot If $\sigma_x < \nu \sigma_y$	
$\sigma_{xcor} = 0$	
\cdot If $\sigma_x \ge \nu \sigma_y$	
$\underline{\sigma_{xcor} = \sigma_x - \nu \sigma_y}$	
An5.2.4 Primary Supporting Members	UR S35, Section5, 2.4.1
Ans.2.4 Trinary Supporting Weinbers	
An5.2.4.1 Web Plate in Way of Openings	
The web plate of primary supporting members with openings is to be assessed for buckling based on the combined axial compressive	
and shear stresses.	
The web plate adjacent to the opening on both sides is to be considered as individual unstiffened plate panels as shown in Table An8.	
The interaction formulae of An5.2.2.1 are to be used with:	
$\cdot \sigma_x = \sigma_{av}$	
$\cdot \sigma_y = 0$	

Amended Amended	Remarks
 τ = τ_{av} <u>Where:</u> σ_{av}: Weighted average compressive stress (N/mm²) in the area of web plate being considered, i.e. P1, P2, or P3 as shown in Table <u>An8</u>. For the application of Table An8, the weighted average shear stress is to be taken as: <u>• Opening modelled in primary supporting members:</u> τ_{av}: Weighted average shear stress (N/mm²) in the area of web plate being considered, i.e. P1, P2, or P3 as shown in Table <u>An8</u>. <u>• Opening not modelled in primary supporting members:</u> τ_{av}: Weighted average shear stress (N/mm²) given in Table An8. 	
<u>An5.2.4.2</u> <u>Reduction Factors of Web Plate in Way of Openings</u> <u>The reduction factors, C_x or C_y in combination with, C_τ of the plate panel(s) of the web adjacent to the opening is to be taken as shown in Table An8.</u>	UR S35, Section5, 2.4.2

Amended-Original Requirements Con	Amended			Remarks
Table An8 Reduction Factors				UR S35, Section5, Table 6
Configuration ⁽¹⁾	<u>Cx, Cv</u>	<u>Opening modelled in PSM</u>	Opening not modelled in PSM	
(a) Without edge reinforcements: ⁽²⁾ $ \begin{array}{c} \hline & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	Separate reduction factors are to be applied to areas P1 and P2 using case 3 or case 6 in Table An5, with edge stress ratio: $\psi = 1.0$ Separate reduction factors are to be applied for areas P1 and P2 using Cx for case 1 or Cy for case 2 in Table An5 with stress ratio: $\psi = 1.0$	Separate reduction factors are to be applied to areas P1 and P2 using case 18 or case 19 in Table An5	PSM When case 17 of Table An5 is applicable: A common reduction factor is to be applied to areas P1 and P2 using case 17 in Table An5 with: $\mathcal{I}_{av} = \mathcal{I}_{av}$ (web) When case 17 of Table An5 is not applicable: Separate reduction factors are to be applied to areas P1 and P2 using case 18 or case 19 in Table An5 with: $\mathcal{I}_{av} = \mathcal{I}_{av}$ (web) $h/(h-h_0)$ Separate reduction factors are to be applied to areas P1 and P2 using case 18 or case 19 in Table An5 with: $\mathcal{I}_{av} = \mathcal{I}_{av}$ (web) $h/(h-h_0)$ Separate reduction factors are to be applied to areas P1 and P2 using case 15 in Table An5 with: $\mathcal{I}_{av} = \mathcal{I}_{av}$ (web) $h/(h-h_0)$	
(<u>c) Example of hole in web:</u>		Panels P1 and P2 are to be evaluate (a). Panel P3 is to be evaluate		

Amended Amended	Remarks
Where: h: Height (m) of the web of the primary supporting member in way of the opening. h: Height (m) of the web of the primary supporting member in way of the opening. h: Height (m) of the opening measured in the depth of the web. xa. (web): Weighted average shear stress (V/mm²) over the web height / of the primary supporting member. Note (1): Web panels to be considered for buckling in way of openings are shown shaded and numbered P1, P2, etc. Note (2): For a PSM web panel with opening and without edge reinforcements as shown in configuration (a), the applicable buckling assessment method depends on its specific boundary conditions. If one of the long edges along the face plate or along the attached plating is not subject to "inline support", i.e. the edge is free to pull in, Method B should be applied. In other cases, typically such as when the short plate edge is attached to the plate flanges, Method A is applicable.	
An5.2.4.3 The equivalent plate panel of web plate of primary supporting members crossed by perpendicular stiffeners is to be idealised as shown in Fig. An11.	UR S35, Section5, 2.4.3

Amended-Original Requirements Comparison Table (Buckning Strength Assessments of Ship Structure Amended	Remarks
	UR S35, Section5, Figure 3
Equivalent plate paner	
The correction of panel breadth is applicable also for other slot configurations provided that the web or collar plate is attached to at least one	
side of the passing stiffener.	
An5.2.5 Stiffened Panels with U-type Stiffeners	UR S35, Section5, 2.5.1
Ans.2.5 Sunched I and s with 0-type Sunchers	
An5.2.5.1 Local Plate Buckling	
For stiffened panels with U-type stiffeners, local plate buckling is to be checked for each of the plate panels $EPP b_1$, b_2 , b_f and h_w (see	
Fig. An3) separately as follows:	
• The attached plate panels EPP b_1 and b_2 are to be assessed using SP-A model, where in the calculation of buckling factors K_x	
as defined in case 1 of Table An5, the correction factor Flong for U-type stiffeners as defined in Table An4 is to be used; and in	
the calculation of K_y as defined in case 2 of Table An5, the F_{tran} for U-type stiffeners as defined in An5.2.2.5 is to be used.	
• The face plate and web plate panels <i>EPP</i> b_f and h_w are to be assessed using UP-B model with $F_{long} = 1$ and $F_{tran} = 1$.	
	UR S35, Section5, 2.5.2
An5.2.5.2 Overall Stiffened Panel Buckling and Stiffener Buckling	
For a stiffened panel with U-type stiffeners, the overall buckling capacity and ultimate capacity of the stiffeners are to be checked with	
warping stress $\sigma_w = 0$, and with bending moment of inertia including effective width of attached plating being calculated based on the	
following assumptions:	
• The two web panels of a U-type stiffener are to be taken as perpendicular to the attached plate with thickness equal to t_w and	
height equal to the distance between the attached plate and the face plate of the stiffener.	

Amended-Original Requirements Comparison Table (Buckning Strength Assessments of Ship Structure Amended	Remarks
	itemarks
• Effective width of the attached plating, b_{eff} , taken as the sum of the b_{eff} calculated for the $EPP b_1$ and b_2 respectively according to	
SP-A model.	
• Effective width of the attached plating of a stiffener without shear lag effect, b_{eff1} , taken as the sum of the b_{eff1} calculated for the	
<u>EPP b_1 and b_2 respectively.</u>	
	UR S35, Section5, 3.1.1
An5.3 Buckling Capacity of Column Structures	
An5.3.1 Column Buckling of Corrugations	
An5.3.1.1 Buckling Utilisation Factor	
The column buckling utilisation factor, η , for axially compressed corrugations is to be taken as:	
$\underline{\eta_{column}} = \frac{\sigma_{av}}{\sigma_{cr}}$	
Where:	
$\overline{\sigma_{av}}$: Average axial compressive stress (<i>N/mm²</i>) in the member	
σ_{cr} :Minimum critical buckling stress (N/mm ²) taken as:	
$\sigma_{cr} = \sigma_E \text{ for } \sigma_E \leq 0.5 \sigma_{YS}$	
$\underline{\sigma_{cr}} = \left(1 - \frac{\sigma_{Y_{-S}}}{4\sigma_{E}}\right)\sigma_{Y_{-S}} \frac{\text{for } \sigma_{E}}{1 - \sigma_{E}} > 0.5\sigma_{Y_{-S}}$	
$\underline{-\sigma_{cr} - (1 - \frac{1}{4\sigma_E})\sigma_{Y_S}} = \underline{-\sigma_E > 0.5\sigma_{Y_S}}$	
σ_F : Elastic column compressive buckling stress (<i>N/mm²</i>) according to An5.3.1.2.	
σ_{YS} :Specified minimum yield stress (N/mm ²) of the considered member. For built-up members, the lowest specified minimum yield	
stress is to be used.	
	UR S35, Section5, 3.1.2
An5.3.1.2 Elastic Column Buckling Stress	
The elastic compressive column buckling stress, σ_E (N/mm ²) of members subject to axial compression is to be taken as:	
$\sigma = \sigma^2 E f$ I 10 ⁻⁴	
$\sigma_E = \pi^2 E f_{end} \frac{I}{A \ell_{pill}^2} 10^{-4}$	
$\frac{\text{Where:}}{\text{UNAt moment of inertia } (an^{4}) \text{ shout the weakest axis of the areas section}$	
<u><i>I</i>: Net moment of inertia (cm^4) about the weakest axis of the cross section</u> <u>A: Net cross sectional cross (cm²) of the moments</u>	
<u>A: Net cross-sectional area (cm^2) of the member</u>	
ℓ_{pill} : Unsupported length (m) of the member	

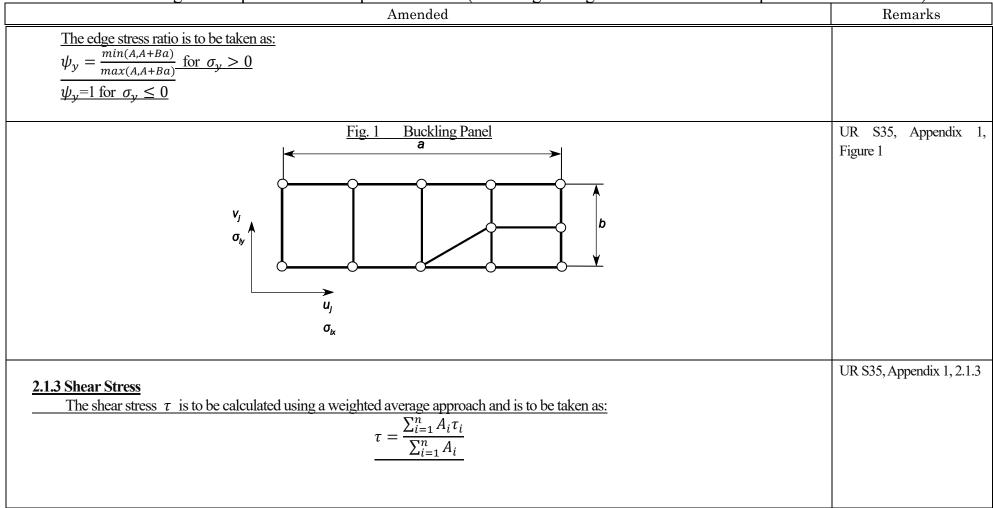
Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

Amended-Original Requirement	s Comparison Table	Buckling Strength Assessments of Shi	p Structural Elements)

Amended			Remarks
fend: End constraint factor, co	orresponding to simply supported ends is to be applied except for fixed end support to	be used in way	
of stool with width excee	eding 2 times the depth of the corrugation, taken as:		
$\cdot f_{end} = 1.0$ where be	oth ends are simply supported.		
$\cdot f_{end} = 2.0$ where or	ne end is simply supported and the other end is fixed.		
$f_{end} = 4.0$ where bo	oth ends are fixed.		

Amended	Remarks
Appendix 14.6 STRESS BASED REFERENCE STRESSES	UR S35, Appendix 1, Symbols
Symbols	
<u>a: Length (mm) of the longer side of the plate panel as defined in An5</u> b: Length (mm) of the shorter side of the plate panel as defined in An5	
A_i : Area (mm^2) of the <i>i</i> -th plate element of the buckling panel	
n: Number of plate elements in the buckling panel	
σ_{xi} : Actual stress (<i>N/mm²</i>) at the centroid of the <i>i</i> -th plate element in <i>x</i> direction, applied along the shorter edge of the buckling panel	
σ_{yi} : Actual stress (<i>N/mm²</i>) at the centroid of the <i>i</i> -th plate element in <i>y</i> direction, applied along the longer edge of the buckling panel ψ : Edge stress ratio as defined in An5	
τ_i : Actual membrane shear stress (N/mm^2) at the centroid of the <i>i</i> -th plate element of the buckling panel	
1 Stress Based Method	UR S35, Appendix 1, 1.1.1
1.1 Introduction	
<u>1.1.1</u>	
This section provides a method to determine stress distribution along edges of the considered buckling panel by second-order	
polynomial curve, by linear distribution using least square method and by weighted average approach. This method is called Stress based Method.	
The reference stress is the stress components at centre of plate element transferred into the local system of the considered buckling panel.	
	UR S35, Appendix 1, 1.1.2
<u>1.1.2</u> Definition A regular panel is a plate panel of rectangular shape. An irregular panel is plate panel which is not regular, as detailed in An4.2.3.1.	

F


Amended	Remarks
1.2 Stress Application	UR S35, Appendix 1, 1.2.1
1.2.1 Regular Panel	
The reference stresses are to be taken as defined in 2.1 for a regular panel when the following conditions are satisfied:	
• At least, one plate element centre is located in each third part of the long edge a of a regular panel and	
• This element centre is located at a distance in the panel local x direction not less than $a/4$ to at least one of the element centres in	
the adjacent third part of the panel.	
Otherwise, the reference stresses are to be taken as defined in 2.2 for an irregular panel.	
	UR S35, Appendix 1, 1.2.2
<u>1.2.2 Irregular Panel and Curved Panel</u>	
The reference stresses of an irregular panel or of a curved panel are to be taken as defined in 2.2.	
2 Reference Stresses	UR S35, Appendix 1, 2.1.1
2.1 Regular Panel	
2.1.1 Longitudinal Stress	
The longitudinal stress σ_x applied on the shorter edge of the buckling panel is to be calculated as follows:	
• For plate buckling assessment, the distribution of $\sigma_x(x)$ is assumed as second order polynomial curve as:	
$\underline{\sigma_x(x) = Cx^2 + Dx + E}$	
The best fitting curve $\sigma_x(x)$ is to be obtained by minimising the square error Π considering the area of each element as a weighting	
factor.	
$\underline{\Pi} = \sum_{i=1}^{n} A_i [\sigma_{xi} - (Cx^2 + Dx + E)]^2$	
The unknown coefficients C, D and E must yield zero first derivatives, $\partial \Pi$ with respect to C, D and E, respectively.	

Amended	Remarks
$\left(\frac{\partial\Pi}{\partial C} = 2\sum_{i=1}^{n} A_i x_i^2 [\sigma_{ix} - (Cx_i^2 + Dx_i + E)] = 0\right)$	
$\begin{cases} \frac{\partial \Pi}{\partial D} = 2\sum_{i=1}^{n} A_i x_i [\sigma_{ix} - (Cx_i^2 + Dx_i + E)] = 0 \end{cases}$	
$\frac{\partial \Pi}{\partial E} = 2\sum_{i=1}^{n} A_i [\sigma_{ix} - (Cx_i^2 + Dx_i + E)] = 0$	
The unknown coefficients C, D and E can be obtained by solving the 3 above equations.	
$\sigma_{x1} = \frac{1}{b} \int_0^b \sigma_x(x) dx = \frac{b^2}{3} C + \frac{b}{2} D + E$	
$\overline{\sigma_{x2}} = \frac{1}{b} \int_{a-b}^{a} \sigma_x(x) dx = \left(a^2 - ab + \frac{b^2}{3}\right) C + \left(a - \frac{b}{2}\right) D + E$	
$\underline{\text{If}} - \frac{D}{2C} < \frac{b}{2}$ or $-\frac{D}{2C} > a - \frac{b}{2}$, σ_{x3} is to be ignored. Otherwise, σ_{x3} is taken as:	
$\frac{\text{If } -\frac{D}{2C} < \frac{b}{2}}{\sigma_{x3}} = \frac{1}{b} \int_{x_{min}}^{x_{max}} \sigma_x(x) dx = \frac{b^2}{12}C - \frac{D^2}{4C} + E$	
Where:	
$\frac{x_{min} = -\frac{b}{2} - \frac{b}{2C}}{b - D}$	
$\frac{2}{b}$	
$x_{max} = \frac{2}{2} - \frac{2}{2C}$	
The longitudinal stress is to be taken as:	
$\sigma_x = \max(\sigma_{x1}; \sigma_{x2}; \sigma_{x3})$	
The edge stress ratio is to be taken as:	
$\psi_x = 1$	
• For overall stiffened panel buckling and stiffener buckling assessments, the longitudinal stress σ_x applied on the shorter edge of the	
attached plate is to be taken as:	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

Amended Amended	Remarks
$\sigma_x = \frac{\sum_{i=1}^n A_i \sigma_{xi}}{\sum_{i=1}^n A_i}$	
$\frac{\sigma_x - \sum_{i=1}^n A_i}{\sum_{i=1}^n A_i}$	
The edge stress ratio ψ_x for the stress σ_x is equal to 1.0.	
	UR S35, Appendix 1, 2.1.2
2.1.2 Transverse Stress	
The transverse stress σ_y applied along the longer edges of the buckling panel is to be calculated by extrapolation of the transverse stresses of all elements up to the shorter edges of the considered buckling panel.	
<u>The distribution of $\sigma_y(x)$ is assumed as straight line. Therefore:</u>	
$\frac{\sigma_y(x) = A + Bx}{\sigma_y(x) = A + Bx}$	
The best fitting curve $\sigma_y(x)$ is to be obtained by the least square method minimising the square error Π considering area of each element	
as a weighting factor.	
$\Pi = \sum_{i=1}^{n} A_i \left[\sigma_{yi} - (A + Bx_i) \right]^2$	
The unknown coefficients A and B must yield zero first partial derivatives, $\partial \Pi$ with respect to A and B, respectively.	
$\frac{\partial \Pi}{\partial A} = 2 \sum_{i=1}^{n} A_i [\sigma_{yi} - (A + Bx_i)] = 0$	
$\frac{\partial \Pi}{\partial A} = 2 \sum_{i=1}^{n} A_i [\sigma_{yi} - (A + Bx_i)] = 0$ $\frac{\partial \Pi}{\partial B} = 2 \sum_{i=1}^{n} A_i x_i [\sigma_{yi} - (A + Bx_i)] = 0$	
The unknown coefficients A and B are obtained by solving the 2 above equations and are given as follow:	
$A = \frac{\left(\sum_{i=1}^{n} A_{i} \sigma_{yi}\right) \left(\sum_{i=1}^{n} A_{i} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} A_{i} x_{i}\right) \left(\sum_{i=1}^{n} A_{i} x_{i} \sigma_{yi}\right)}{\left(\sum_{i=1}^{n} A_{i}\right) \left(\sum_{i=1}^{n} A_{i} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} A_{i} x_{i}\right)^{2}}$	
$B = \frac{(\sum_{i=1}^{n} A_i)(\sum_{i=1}^{n} A_i x_i \sigma_{yi}) - (\sum_{i=1}^{n} A_i x_i)(\sum_{i=1}^{n} A_i \sigma_{yi})}{(\sum_{i=1}^{n} A_i)(\sum_{i=1}^{n} A_i x_i^2) - (\sum_{i=1}^{n} A_i x_i)^2}$	
The transverse stress is to be taken as:	
$\overline{\sigma_y} = \max(A, A + Ba)$	

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

Amended-Original Requirements Comparison Table (Buckling Strength Assessments of Ship Structural Elements)

UR S35, Appendix 1, 2.2.1 UR S35, Appendix 1, 2.2.1 <t< th=""><th>Amended Amended</th><th>Remarks</th></t<>	Amended Amended	Remarks
 The effective date of the amendments is 1 July 2024. Notwithstanding the amendments to the Rules, the current requirements apply to ships for which the date of contract for construction* is before the effective date. For ships subject to Part C of the Rules for the Survey and Construction of Steel Ships and prior to its comprehensive revision by Rule No.62 on 1 July 2022, and which the date of contract for construction* is on and after the effective date, this amendment is applied. "contract for construction" is defined in the latest version of IACS Procedural Requirement (PR) No.29. IACS PR No.29 (Rev.0, July 2009) The date of "contract for construction" of a vessel is the date on the classification society by the party applying for the assignment of class to a newbuilding. The date of "contract for construction" of a vessel, including specified optional vessels for which the option is ultimately exercised, is the date on which the contract to build the series is signed between 	$\frac{2.2.1 \text{Reference Stresses}}{\text{The longitudinal, transverse and shear stresses are to be calculated using a weighted average approach. They are to be taken as:} \frac{\sigma_x = \frac{\sum_{i=1}^n A_i \sigma_{xi}}{\sum_{i=1}^n A_i}}{\sigma_y = \frac{\sum_{i=1}^n A_i \sigma_{yi}}{\sum_{i=1}^n A_i}}{\frac{\sigma_y = \frac{\sum_{i=1}^n A_i \sigma_{yi}}{\sum_{i=1}^n A_i}}{\sum_{i=1}^n A_i}}}$ $\frac{The edge stress ratios are to be taken as}{\psi_x = 1}$	UR S35, Appendix 1, 2.2.1
 Notwithstanding the amendments to the Rules, the current requirements apply to ships for which the date of contract for construction* is before the effective date. For ships subject to Part C of the Rules for the Survey and Construction of Steel Ships and prior to its comprehensive revision by Rule No.62 on 1 July 2022, and which the date of contract for construction* is on and after the effective date, this amendment is applied. * "contract for construction" is defined in the latest version of IACS Procedural Requirement (PR) No.29. IACS PR No.29 (Rev.0, July 2009) The date of "contract for construction" of a vessel is the date on which the contract to be declared to the classification society by the party applying for the asignment of class to a newbuilding. The date of "contract for construction" of a series of vessels, including specified optional vessels for which the contract to build the series is signed between 	EFFECTIVE DATE AND APPLICATION	
 is before the effective date. 3. For ships subject to Part C of the Rules for the Survey and Construction of Steel Ships and prior to its comprehensive revision by Rule No.62 on 1 July 2022, and which the date of contract for construction* is on and after the effective date, this amendment is applied. * "contract for construction" is defined in the latest version of IACS Procedural Requirement (PR) No.29. IACS PR No.29 (Rev.0, July 2009) 1. The date of "contract for construction" of a vessel is the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. This date and the construction numbers (i.e. hull numbers) of all the vessels included in the classification society by the party applying for the assignment of class to a newbuilding. 2. The date of "contract for construction" of a series of vessels, including specified optional vessels for which the option is ultimately exercised, is the date on which the contract to build the vessels is signed between 	1. The effective date of the amendments is 1 July 2024.	
 Rule No.62 on 1 July 2022, and which the date of contract for construction* is on and after the effective date, this amendment is applied. * "contract for construction" is defined in the latest version of IACS Procedural Requirement (PR) No.29. IACS PR No.29 (Rev.0, July 2009) The date of "contract for construction" of a vessel is the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. This date and the construction numbers (i.e. hull numbers) of all the vessels included in the contract to be declared to the classification society by the party applying for the assignment of class to a newbuilding. The date of "contract for construction" of a series of vessels, including specified optional vessels for which the option is ultimately exercised, is the date on which the contract to build the series is signed between 		tion*
 The date of "contract for construction" of a vessel is the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. This date and the construction numbers (i.e. hull numbers) of all the vessels included in the contract are to be declared to the classification society by the party applying for the assignment of class to a newbuilding. The date of "contract for construction" of a series of vessels, including specified optional vessels for which the option is ultimately exercised, is the date on which the contract to build the series is signed between 	Rule No.62 on 1 July 2022, and which the date of contract for construction* is on and after the effective date, this amendme applied.	
numbers) of all the vessels included in the contract are to be declared to the classification society by the party applying for the assignment of class to a newbuilding. 2. The date of "contract for construction" of a series of vessels, including specified optional vessels for which the option is ultimately exercised, is the date on which the contract to build the series is signed between	IACS PR No.29 (Rev.0, July 2009)	
	numbers) of all the vessels included in the contract are to be declared to the classification society by the party applying for the assignment of class to a newbuilding. 2. The date of "contract for construction" of a series of vessels, including specified optional vessels for which the option is ultimately exercised, is the date on which the contract to build the series is signed by	

 For the purpose of this Procedural Requirement, vessels built under a single contract for construction are considered a "series of vessels" if they are built to the same approved plans for classification purposes. However, vessels within a series may have design alterations from the original design provided: such alterations do not affect matters related to classification, or If the alterations are subject to classification requirements, these alterations are to comply with the classification requirements in effect on the date on which the alterations are contracted between the prospective owner and the shipbuilder or, in the absence of the alteration contract, comply with the classification requirements in effect on the date on which the alterations are submitted to the Society for approval. The optional vessels will be considered part of the same series of vessels if the option is exercised not later than 1 year after the contract to build the series was signed. If a contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction" for such vessels is the date on which the amendment to the contract, is signed between the prospective owner and the shipbuilder. The amendment to the contract is to be considered as a "new contract" to which 1. and 2. above apply. If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessel, is the date on which revised contract or new contract is signed between the Owner or Owners, and the shipbuilder. 		Amended	Remarks
 such alterations do not affect matters related to classification, or If the alterations are subject to classification requirements, these alterations are to comply with the classification requirements in effect on the date on which the alterations are contracted between the prospective owner and the shipbuilder or, in the absence of the alteration contract, comply with the classification requirements in effect on the date on which the alterations are submitted to the Society for approval. The optional vessels will be considered part of the same series of vessels if the option is exercised not later than 1 year after the contract to build the series was signed. If a contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction" for such vessels is the date on which the amendment to the contract, is signed between the prospective owner and the shipbuilder. The amendment to the contract is to be considered as a "new contract" to which 1. and 2. above apply. If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessel, or vessels, is the date on which revised contract or new contract is signed between the 			
 (2) If the alterations are subject to classification requirements, these alterations are to comply with the classification requirements in effect on the date on which the alterations are contracted between the prospective owner and the shipbuilder or, in the absence of the alteration contract, comply with the classification requirements in effect on the date on which the alterations are submitted to the Society for approval. The optional vessels will be considered part of the same series of vessels if the option is exercised not later than 1 year after the contract to build the series was signed. If a contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction" for such vessels is the date on which the amendment to the contract, is signed between the prospective owner and the shipbuilder. The amendment to the contract is to be considered as a "new contract" to which 1. and 2. above apply. If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessel, or vessels, is the date on which revised contract or new contract is signed between the 			
 prospective owner and the shipbuilder or, in the absence of the alteration contract, comply with the classification requirements in effect on the date on which the alterations are submitted to the Society for approval. The optional vessels will be considered part of the same series of vessels if the option is exercised not later than 1 year after the contract to build the series was signed. If a contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction" for such vessels is the date on which the amendment to the contract, is signed between the prospective owner and the shipbuilder. The amendment to the contract is to be considered as a "new contract" to which 1. and 2. above apply. If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessel, or vessels, is the date on which revised contract or new contract is signed between the 			
 approval. The optional vessels will be considered part of the same series of vessels if the option is exercised not later than 1 year after the contract to build the series was signed. If a contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction" for such vessels is the date on which the amendment to the contract, is signed between the prospective owner and the shipbuilder. The amendment to the contract is to be considered as a "new contract" to which 1. and 2. above apply. If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessel, or vessels, is the date on which revised contract or new contract is signed between the 			
 The optional vessels will be considered part of the same series of vessels if the option is exercised not later than 1 year after the contract to build the series was signed. If a contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction" for such vessels is the date on which the amendment to the contract, is signed between the prospective owner and the shipbuilder. The amendment to the contract is to be considered as a "new contract" to which 1. and 2. above apply. If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessel, or vessels, is the date on which revised contract or new contract is signed between the 			
 If a contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction" for such vessels is the date on which the amendment to the contract, is signed between the prospective owner and the shipbuilder. The amendment to the contract is to be considered as a "new contract" to which 1. and 2. above apply. If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessel, or vessels, is the date on which revised contract or new contract is signed between the 			
	3.	If a contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction" for such vessels is the date on which the amendment to the contract, is signed	
Owners, and the sinpodiate.	4.	If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessel, or vessels, is the date on which revised contract or new contract is signed between the Owner, or Owners, and the shipbuilder.	
Note: This Procedural Requirement analises from 1 July 2000	111151	recuria requirement applies non 1 July 2009.	
This Procedural Requirement applies from 1 July 2009.			