RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

Welding

Part M

RULES

2019 AMENDMENT NO.1

Rule No.3914 June 2019Resolved by Technical Committee on 30 January 2019

An asterisk (*) after the title of a requirement indicates that there is also relevant information in the corresponding Guidance. Rule No.39 14 June 2019 AMENDMENT TO THE RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

"Rules for the survey and construction of steel ships" has been partly amended as follows:

Part M WELDING

Amendment 1-1

Chapter 4 WELDING PROCEDURE AND RELATED SPECIFICATIONS

4.1 General

Paragraph 4.1.4 has been amended as follows.

4.1.4 Range of Approval*

1 (Omitted)

2 The scope of approval of the welding procedure and related specifications of steel pipes are to be in accordance with the following (1) through (7) on the condition that the other welding conditions are the same.

- (1) Kind of weld joint
 - The kind of weld joint is to be in accordance with in **Table M4.1**.
- (2) Thickness
 - The range of the thickness is to be in accordance with in Table M4.2.
- (3) Outside diameter
 - (a) The range of the outside diameter is to be in accordance with in **Table M4.4**.
 - (b) In cases where plates are used as the test assembly in accordance with **4.2.3-4**, the lowest limit of the range is to be not less than 300 *mm*, notwithstanding (a).
- (4) Leg length of fillet welding
 - The range of the leg length of fillet welding is to be in accordance with in Table M4.3.
- (5) Kind of base metal
 - (a) The kinds of steel tubes for boilers and heat exchangers, steel pipes for pressure piping, headers and steel pipes for low temperature service are to be as specified in **Table M4.5**.
 - (b) Other than for the pipes specified in (a), the welding procedures are considered applicable only for grades which are the same as the grade of the test assembly.
- (6) Kind of welding consumable

The welding consumable is to be selected according to grade (including all suffixes) not brand, except for the large heat inputs specified in **Note (5) of Table M4.2**.

- (7) Welding position
 - (a) The welding position is to be in accordance with **Table M5.11**. The welding position of <u>T-joints with full penetration is to be the same as the welding position for fillet weld joints.</u>
 - (b) Approval tests are to be performed each welding position. However, to qualify a range of positions, test assemblies are to be welded for highest heat input position and lowest heat input position and all applicable tests are to be made on those assemblies. The above excludes welding in the tube position for welding downwards which will always require

separate tests and only are acceptable for that position.

 $\frac{23}{23}$ The restriction of welding procedure condition (e.g. heat input welding and preheating) in actual work is to be deemed appropriate by the Society.

34 Where deemed necessary by the Society for welding procedure, restrictions on the heat treatment of base metals, carbon equivalent or cold cracking susceptibility and the locations of application of the welding procedure may be imposed.

45 The range of approval of materials other than rolled steels for hull and, high strength rolled steels for offshore structures <u>and steel pipes</u> is to be as deemed appropriate by the Society.

Table M4.1 has been amended as follows.

Type of weld joint for test assembly			Range of approval												
			А	В	<u>C</u>	€ D	₽ <u>E</u>	E F	₽ G	<u>H</u>	G I	Ħ IJ	І <u>К</u>	₽ L	
		With backing	Α	0			0		\bigcirc			\bigcirc		0	0
	One	Without backing	В	\bigcirc	\bigcirc	\bigcirc	0	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
Butt Welded joints	side	Gas backing ⁽¹⁾	C	\bigcirc		\bigcirc	0		0		\bigcirc	\bigcirc		0	\bigcirc
	Both side	With gouging	<u>ED</u>				0					\bigcirc		0	\bigcirc
		Without gouging	<u>₽</u> <u></u>				0	0				0	0	0	0
	0	With backing	EF						0			\bigcirc		0	\bigcirc
m··· / ··	One	Without backing	FG						0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1-joints with	side	Gas backing ⁽¹⁾	H						\bigcirc		\bigcirc	\bigcirc		\bigcirc	\bigcirc
nenetration	D - 41-	With gouging	GI									\bigcirc		\bigcirc	\bigcirc
penetration	Both side	Without gouging	<u>HJ</u>									0	0	0	0
T-joints with partial penetration $\frac{\mathbf{I}\mathbf{K}}{\mathbf{K}}$															
Fil	let weld	joints	JL												

Table M4.1Range of Approval for Type of Weld Joint

Note:

(1) C and H apply to welding procedures and related specifications for pipes.

Table M4.2 has been amended as follows.

Table M4.2	Approved Range of Thickness $^{(1)}$

	Approved range of thickness $(mm)^{(9)}$						
Thickness of test		Fillet welding					
assemblies $t (mm)^{(2), (3), (4)}$	Multi-run technique	Single-run technique or Two-run	Large heat input welding process ⁽⁵⁾				
		technique	process				
$t \leq 100$	0.5t to $2t^{(6), (7)}$ (100 max)	0.7 <i>t</i> to 1.1 <i>t</i> ^{(6), (7)} (100 max)	0.7 <i>t</i> to <i>t</i>	0.5t to $2t^{(6), (7)}$ (100 max)			

Notes:

Welding procedure used by dissimilar process (combination welding) is to be correspondingly applied to Table M4.2. In this case, thickness or throat thickness of each welding method is to be *t*.

(2) For unequal plate thickness <u>or pipe wall thickness</u> of butt welds the lesser thickness is ruling dimension.

(3) For fillet welds, the range of approval shall be applied to the web thickness and flange thickness of test piece.

(4) For T-joints with full penetration and T-joints with partial penetration, *t* is the thickness of test assembly on the open edge side and the requirements are correspondingly applied to the requirements of butt welding.

(5) Large heat input welding means the welding with a welding heat input of not less than 50 kJ/cm.

(6) For the vertical-down welding and tube positions for welding downwards, the test piece thickness t is always taken

as the upper limit of the range of application.

- (7) For test assembly thickness not more than 12 mm, the specified minimum content is not applicable.
- (8) For the kinds of test assemblies specified in Table M4.1012, even though the test specimen has passed the hardness test specified in 4.2.9, 4.3.6 and 4.4.6, the upper limit of the thickness range of approval is to be restricted to the thickness of the test assembly when three or more of the hardness values in the heat affected zone are less than 25*HV* lower than the values specified in Table M4.1012.
- (9) For steel pipes for low temperature service, the upper limit is to be a maximum of 25 *mm* unless another value is considered appropriate by the Society.

Notes of Table M4.3 has been amended as follows.

Table M4.3	Applicable	Leg Length	of Fillet Welding

Approved range of leg length (mm)					
Single-run technique	Multi-run technique				
$0.75 f$ to $1.5 f^{(1)(2)}$	$0.5f$ to $2f^{(1)(2)}$				

Notes:

(1) f: leg length of test piece

(2) Where welding in vertical downward position <u>or tube</u> <u>position for welding downwards</u> is applied, the approved range of thickness is to be f.

Table M4.4 and Table M4.5 have been added as follows.

Table M4.4 Range of Approval Related to Outside Diameter of a Pipes

Outside diameter D of test	Range of approval related to		
assembly (mm) ⁽¹⁾	outside diameter (mm)		
$\underline{D} \leq 25$	<u>0.5 <i>D</i> to 2 <i>D</i></u>		
$\underline{D} > 25$	<u>0.5 <i>D</i> or more⁽²⁾</u>		

Notes:

(1) For non-circular sections, *D* is the dimension of the smaller side.

(2) Lower limit of "0.5 D" is not to be less than 25 mm.

Table M4.5	Range of A	oproval Related	to Kind of Pi	pe

Kind and grade of test	assembly	Approval range of grade		
Steel tubes for boilers and	<u>KSTB33</u>	<u>KSTB33</u>		
heat exchangers	<u>KSTB35</u>	<u>KSTB33, KSTB35</u>		
	<u>KSTB42</u>	<u>KSTB33⁽²⁾, KSTB35⁽²⁾, KSTB42</u> <u>KSTPG38, KSTS38, KSTPT38</u> <u>KSTPG42, KSTS42, KSTPT42</u> <u>KBH-1</u>		
	<u>KSTB12</u>	<u>KSTB12</u> <u>KSTPA12</u> <u>KBH-3</u>		
	<u>KSTB22</u> <u>KSTB23</u>	<u>KSTB22, KSTB23</u> <u>KSTPA22, KSTPA23</u> <u>KBH-4, KBH-5</u>		
	<u>KSTB24</u>	<u>KSTB24</u> <u>KSTPA24</u> <u>KBH-6</u>		
Steel pipes for pressure piping	<u>KSTPG38</u> <u>KSTS38</u> <u>KSTPT38</u> KSTPG42	<u>KSTB33, KSTB35</u> <u>KSTPG38, KSTS38, KSTPT38</u> KSTB33 ⁽²⁾ , KSTB35 ⁽²⁾		

$\frac{kST542}{kSTP142} = \frac{kSTPG38, KST538, KSTP738}{KSTP742} \\ KSTPG42, KST542, KSTP742} \\ KSTPG38(3), KSTS38(3), KSTP738(3)} \\ KSTP42 + KSTP42 + KSTP42 \\ KSTP42 + KSTP42 + KSTP142 \\ KSTP142 + KSTP12 + KSTP142 \\ KSTP12 + KSTP12 + KSTP12 \\ KSTP12 + KSTP12 + KSTP12 \\ KSTP22 + KSTP22 + KSTP22 + KSTP23 \\ KSTP23 + KSTP24 + KSTP24 \\ KSTP24 + KSTP24 \\ KSTP24 + KSTP24 \\ KSTP24 + KSTP24 \\ KSTP24 + KSTP33 + KSTP35 \\ KBH-1 + KBH-5 \\ KSTP33 + KSTP33 + KSTP38 \\ KBH-1 + KBH-1 \\ KSTB33 + KSTP33 + KSTP38 \\ KBH-2 + KSTP33 + KSTP38 \\ KBH-1 + KBH-1 \\ KSTB33 + KSTP33 + KSTP38 \\ KBH-2 + KSTP38 + KSTP38 \\ KBH-3 + KSTP32 + KSTP38 \\ KBH-4 + KSTP32 + KSTP38 \\ KBH-3 + KSTP32 + KSTP38 \\ KBH-4 + KSTP32 + KSTP32 + KSTP38 \\ KBH-4 + KSTP32 + KSTP32 + KSTP38 \\ KBH-5 + KBH-4 + KSTP32 + KSTP38 \\ KBH-6 + KSTP32 + KSTP33 \\ KBH-6 + KSTP32 + KSTP33 \\ KBH-6 + KSTP32 + KSTP33 \\ KBH-6 + KBH-5 + KBH-5 \\ KBH-6 + KSTP32 + KSTP33 \\ KBH-6 + KBH-5 + KBH-6 + KBH-5 \\ KBH-6 + KSTP32 + KIP4 + K$						
$\frac{kSTPT42}{kBH-1} = \frac{kSTPG42, KSTS42, KSTPT42}{kBH-1} \\ KSTPG38^{(2)}, KSTS38^{(2)}, KSTPT38^{(2)}} \\ KSTP49 = \frac{KSTPG42, KSTS42, KSTPT42}{KSTP42} \\ KSTP12 = \frac{KSTP42}{KSTP42} \\ KSTP12 = \frac{KSTB12}{KSTP12} \\ KSTP12 = \frac{KSTP12}{KSTP12} \\ KSTP22 = \frac{KSTP22}{KSTP22} \\ KBH-3 = \frac{KSTP22}{KSTP22} \\ KSTP22 = \frac{KSTP22}{KSTP22} \\ KBH-4 = \frac{KSTP22}{KSTP22} \\ KSTP22 = \frac{KSTP22}{KSTP22} \\ KBH-4 = \frac{KSTP22}{KSTP22} \\ KBH-5 = \frac{KSTP22}{KBH-3} \\ KBH-5 = \frac{KBH-3}{KBH-3} \\ KBH-4 = \frac{KSTP22}{KSTP22} \\ KSTP2 = \frac{KSTP22}{KSTP22} \\ KSTP2 = \frac{KSTP2}{KSTP2} \\ KSTP2 = \frac{KSTP2}{KSTP2} \\ KSTP2 = \frac{KSTP2}{KSTP2} \\ KSTP2 = \frac{KSTP2}{KSTP2} \\ KS$		<u>KSTS42</u>	<u>KSTPG38, KSTS38, KSTPT38</u>			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>KSTPT42</u>	KSTPG42, KSTS42, KSTPT42			
$\frac{kSTPG38^{(2)}, KSTS38^{(2)}, KSTPT38^{(2)}}{KSTPG42, KSTS42, KSTPT42}$ $\frac{KSTP419}{KSTP49} \frac{KSTS42, KSTP742}{KSTP42} \frac{KSTP42}{KSTP42} \frac{KSTP42}{KBH-1^{(2)}, KBH-2} \frac{KSTP42}{KBH-3} \frac{KSTP42}{KBH-3} \frac{KSTP422}{KSTP422} \frac{KSTP422}{KSTP423} \frac{KSTP422}{KSTP423} \frac{KSTP422}{KSTP424} \frac{KSTP42}{KBH-4} \frac{KSTP42}{KBH-4} \frac{KSTP424}{KBH-6} \frac{KSTP424}{KBH-6} \frac{KSTP33^{(2)}, KSTP35^{(2)}}{KBH-2} \frac{KBH-1}{KBH-1} \frac{KSTP33^{(2)}, KSTP35^{(2)}}{KBH-2} \frac{KBH-2}{KBH-3} \frac{KSTP32}{KSTP422} \frac{KSTP32}{KSTP422} \frac{KSTP33^{(2)}, KSTP35^{(2)}}{KBH-2} \frac{KBH-3}{KSTP32} \frac{KSTP32}{KBH-2} \frac{KSTP32}{KSTP422} \frac{KSTP32}{KSTP422} \frac{KSTP32}{KSTP32} \frac{KBH-4}{KSTP32} \frac{KSTP32}{KSTP32} \frac{KBH-4}{KSTP32} \frac{KSTP32}{KBH-2} \frac{KSTP32}{KBH-2} \frac{KSTP32}{KBH-2} \frac{KSTP32}{KBH-2} \frac{KSTP32}{KBH-3} \frac{KBH-3}{KSTP32} \frac{KBH-4}{KSTP32} \frac{KSTP32}{KBH-3} \frac{KBH-3}{KSTP32} \frac{KBH-4}{KSTP32} \frac{KSTP32}{KBH-5} \frac{KBH-4}{KSTP32} \frac{KBH-4}{KSTP3} \frac{KBH-4}{K$			<u>KBH-1</u>			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			<u>KSTPG38⁽²⁾, KSTS38⁽²⁾, KSTPT38⁽²⁾</u>			
$\frac{kSTP149}{KBH-1^{(2)}, KBH-2} \\ KBH-1^{(2)}, KBH-2} \\ KSTP12 \\ KSTP12 \\ KSTP12 \\ KSTP12 \\ KSTP12 \\ KSTP22 \\ KSTP33 \\ KSTP35 \\ KBH-1 \\ KSTP33 \\ KSTP35 \\ K$		<u>KSTS49</u>	KSTPG42, KSTS42, KSTPT42			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		KSTPT49	<u>KSTS49, KSTPT49</u>			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			<u>KBH-1⁽²⁾, KBH-2</u>			
$ \frac{kSTPA12}{KBH-3} = \frac{KSTPA12}{KSTPA22}, KSTPA23} \\ \frac{KSTPA22}{KSTPA23} = \frac{KSTPA22}{KSTPA23}, KSTPA23} \\ \frac{KSTPA23}{KSTPA24} = \frac{KSTB24}{KSTPA24} \\ \frac{KSTPA24}{KSTPA24} \\ \frac{KSTPA24}{KBH-6} \\ \hline Headers = \frac{KBH-1}{KBH-1} + \frac{KSTB33}{KSTB35}, KSTB35} \\ \frac{KBH-2}{KBH-2} + \frac{KSTB33^{(2)}}{KSTB33^{(2)}}, KSTB35^{(2)}} \\ \frac{KBH-2}{KBH-3} + \frac{KSTB33}{KSTPA38} \\ \frac{KSTPA3}{KSTPA38} + \frac{KSTB35}{KBH-3} \\ \frac{KBH-3}{KSTPA38} + \frac{KSTB32}{KBH-3} \\ \frac{KBH-3}{KBH-3} + \frac{KSTB24}{KSTPA22}, KSTB23} \\ \frac{KBH-4}{KBH-5} + \frac{KSTB24}{KBH-3} \\ \frac{KBH-4}{KBH-6} + \frac{KSTB24}{KBH-4} \\ \frac{KSTB24}{KBH-6} + \frac{KSTB24}{KBH-6} \\ \frac{KBH-4}{KBH-6} + \frac{KSTPA22}{KBH-6} \\ \frac{KBH-6}{KBH-6} + \frac{KSTPA24}{KBH-6} \\ \frac{KBH-6}{KBH-6} + \frac{KLPA}{KLPA} \\ \frac{KLPA}{KLPA} + \frac{KLPA}{KLPA} \\ \frac{KLP2}{KLP2} + \frac{KLP2}{KLP2} \\ \frac{KLP2}{KLP2} + \frac{KLP3}{KLP3} + \frac{KLP3}{KLP3} \\ \frac{KLP3}{KLP3} + \frac{KLP3}{KLP3$			<u>KSTB12</u>			
$\frac{KBH-3}{KSTPA22} + \frac{KBH-3}{KSTPA23} + \frac{KSTB22, KSTB23}{KSTPA23} + \frac{KSTB22}{KSTPA23} + \frac{KSTB22}{KSTPA23} + \frac{KSTB23}{KBH-4} + \frac{KBH-5}{KSTB24} + \frac{KSTB24}{KSTPA24} + \frac{KSTB24}{KBH-6} + \frac{KBH-6}{KBH-6} + \frac{KSTB33, KSTB35}{KBH-1} + \frac{KSTB33^{(2)}, KSTB35^{(2)}}{KSTB32^{(2)}, KSTB35^{(2)}} + \frac{KBH-1}{KSTB33^{(2)}, KSTB35^{(2)}} + \frac{KBH-1}{KSTB33^{(2)}, KSTB35^{(2)}} + \frac{KBH-1}{KSTB32^{(2)}, KSTB35^{(2)}} + \frac{KBH-2}{KBH-3} + \frac{KSTB35^{(2)}}{KBH-3} + \frac{KSTB35^{(2)}}{KBH-3} + \frac{KSTB32}{KBH-3} + \frac{KSTB32}{KBH-3} + \frac{KSTB12}{KBH-3} + \frac{KSTB22}{KBH-3} + \frac{KSTB22}{KBH-4} + \frac{KSTB22}{KBH-5} + \frac{KBH-4}{KBH-5} + \frac{KSTB24}{KBH-6} + \frac{KSTB24}{KBH-6} + \frac{KSTB24}{KBH-6} + \frac{KDP4^{(2)}, KLPB}{KLP4} + \frac{KLP4}{KLP4} + \frac{KLP4^{(2)}, KLP2}{KLP2} + \frac{KLP2}{KLP2} + \frac{KLP2}{KLP2} + \frac{KLP2}{KLP2} + \frac{KLP2}{KLP3} + \frac{KLP3}{KLP3} + \frac{KLP3}{KLP3$		KSTPA12	<u>KSTPA12</u>			
$\frac{\frac{KSTPA22}{KSTPA23}}{KSTPA23} \frac{KSTB22, KSTB23}{KSTPA23} \frac{KSTB22}{KSTPA23} \frac{KSTB22}{KSTPA23} \frac{KSTB23}{KBH-4, KBH-5} \frac{KSTB24}{KBH-6} \frac{KSTB33, KSTB35}{KBH-1} \frac{KSTB33, KSTB35}{KBH-1} \frac{KSTB33}{KSTB35} \frac{KBH-1}{KBH-1} \frac{KBH-1}{KBH-1} \frac{KSTB33}{KSTB35} \frac{KBH-2}{KSTPG38, KSTS38, KSTPT38} \frac{KBH-3}{KBH-3} \frac{KSTB12}{KSTB24} \frac{KSTB22, KSTB23}{KBH-3} \frac{KBH-3}{KBH-3} \frac{KSTB22, KSTB23}{KBH-3} \frac{KBH-3}{KBH-3} \frac{KSTB22, KSTB23}{KBH-3} \frac{KBH-4}{KSTB22, KSTP23} \frac{KBH-4}{KSTB22, KSTP23} \frac{KBH-4}{KBH-5} \frac{KSTB24}{KBH-5} \frac{KSTB24}{KBH-5} \frac{KBH-4}{KSTB24} \frac{KSTB24}{KBH-6} \frac{KSTB24}{KBH-6} \frac{KSTB24}{KBH-6} \frac{KSTB24}{KBH-6} \frac{KSTB24}{KBH-6} \frac{KBH-6}{KSTP24} \frac{KLPA}{KDH-6} \frac{KLPA}{KLPA} \frac{KLPA}{KLPB} \frac{KLPA}{KLPA} \frac{KLPA}{KLPB} \frac{KLPA}{KLP2} \frac{KLP2}{KLP2} \frac{KLP2}{KLP2} \frac{KLP2}{KLP3} \frac{KLP3}{KLP3} KLP3$			<u>KBH-3</u>			
$\frac{\frac{kSTPA22}{KSTPA23} \frac{KSTPA22, KSTPA23}{KBH-4, KBH-5}}{\frac{KSTPA24}{KSTPA24} \frac{KSTPA24}{KSTPA24}}{\frac{KBH-6}{KBH-6}}$ Headers $\frac{KBH-1}{KBH-1} \frac{KSTB33, KSTB35}{KBH-1, KBH-1}}{\frac{KSTB33^{(2)}, KSTB35^{(2)}}{KBH-2} \frac{KSTPG38, KSTS38, KSTPT38}{KBH-1, KBH-2}}{\frac{KBH-3}{KBH-3} \frac{KSTPA22}{KSTPA23} \frac{KBH-1}{KBH-3}}{\frac{KBH-3}{KBH-3} \frac{KSTPA22}{KSTPA22} \frac{KBH-4}{KBH-5}}{\frac{KBH-4}{KBH-5} \frac{KSTB22}{KBH-4, KBH-5}}{\frac{KBH-6}{KSTPA22} \frac{KSTPA22}{KSTPA24} \frac{KSTPA22}{KBH-6} \frac{KSTPA22}{KBH-6} \frac{KSTPA22}{KBH-6} \frac{KSTPA22}{KBH-6} \frac{KSTPA22}{KBH-6} \frac{KBH-6}{KBH-6} \frac{KBH-6}{KBH-6} \frac{KBH-6}{KBH-6} \frac{KLPA}{KLPA} \frac{KLPA}{KLPA} \frac{KLPA}{KLPA} \frac{KLPA}{KLPA} \frac{KLPA}{KLPB} \frac{KLPA^{(2)}, KLPB}{KLPA^{(2)}, KLPB} \frac{KLP2}{KLP2} \frac{KLP2}{KLP2} \frac{KLP2}{KLP2} \frac{KLP3}{KLP3} \frac$		KEEDA OO	<u>KSTB22, KSTB23</u>			
$ \frac{KSIPA23}{KBH-4, KBH-5} \\ \frac{KSIPA24}{KSTPA24} \\ \frac{KSTB24}{KSTPA24} \\ \frac{KSTPA24}{KBH-6} \\ \hline \\ Headers \\ Headers \\ \hline \\ \\ \\ \hline \\ \\ Headers \\ \hline \\ \\ \\ \hline \\ \\ Headers \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		KSTPA22	<u>KSTPA22, KSTPA23</u>			
$ \frac{KSTPA24}{KSTPA24} = \frac{KSTB24}{KSTPA24} \\ \frac{KSTPA24}{KSTPA24} \\ \frac{KSTPA24}{KBH-6} \\ \frac{KBH-1}{KBH-1} \\ \frac{KBH-1}{KBH-1} \\ \frac{KBH-2}{KSTP33}^{(2)}, KSTB35^{(2)}} \\ \frac{KBH-2}{KBH-2} \\ \frac{KSTB33^{(2)}, KSTB35^{(2)}}{KSTP38} \\ \frac{KBH-1}{KBH-2} \\ \frac{KBH-3}{KBH-1} \\ \frac{KSTB12}{KBH-3} \\ \frac{KBH-3}{KSTP412} \\ \frac{KBH-3}{KBH-3} \\ \frac{KBH-4}{KSTP422}, KSTB23} \\ \frac{KBH-4}{KBH-5} \\ \frac{KBH-4}{KBH-5} \\ \frac{KBH-4}{KBH-5} \\ \frac{KBH-4}{KBH-6} \\ \frac{KSTB24}{KBH-6} \\ \frac{KBH-6}{KSTP424} \\ \frac{KBH-6}{KBH-6} \\ \frac{KLP4}{KBH-6} \\ \frac{KLP4}{KB+6} \\ \frac{KLP4}{KB$		<u>KSTPA23</u>	<u>KBH-4, KBH-5</u>			
$\frac{KSTPA24}{KBH-6}$ $\frac{KSTPA24}{KBH-6}$ $\frac{KSTB33} \cdot KSTB35}{KBH-1} \cdot KSTB33^{(2)} \cdot KSTB35^{(2)}} \cdot KSTB33^{(2)} \cdot KSTB33^{($			<u>KSTB24</u>			
Headers $\overline{KBH-1}$ $\overline{KBH-6}$ Headers $\overline{KBH-1}$ $\overline{KSTB33}$, $\overline{KSTB35}^{(2)}$ $\overline{KBH-1}$ $\overline{KSTB33}^{(2)}$, $\overline{KSTB35}^{(2)}$ $\overline{KBH-2}$ $\overline{KSTB33}^{(2)}$, $\overline{KSTB33}$, $\overline{KSTD33}$ $\overline{KBH-2}$ $\overline{KSTPG38}$, $\overline{KSTB33}$, $\overline{KSTD33}$ $\overline{KBH-2}$ $\overline{KSTPG38}$, $\overline{KSTB33}$, $\overline{KSTD33}$ $\overline{KBH-2}$ $\overline{KSTPG38}$, $\overline{KSTB33}$ $\overline{KBH-2}$ $\overline{KSTPG38}$, $\overline{KSTB33}$, $\overline{KSTD33}$ $\overline{KBH-3}$ $\overline{KSTB12}$ $\overline{KBH-3}$ $\overline{KSTB12}$ $\overline{KBH-3}$ $\overline{KSTB22}$, $\overline{KSTB23}$ $\overline{KBH-5}$ $\overline{KBH-4}$ $\overline{KBH-5}$ $\overline{KBH-4}$ $\overline{KBH-5}$ $\overline{KBH-4}$ $\overline{KBH-5}$ $\overline{KBH-4}$ $\overline{KBH-6}$ $\overline{KSTP22}$ $\overline{Steel pipes for low}$ \overline{KLPA} temperature service ⁽¹⁾ \overline{KLPA} \overline{KLPA} \overline{KLPA} $\overline{KLP2}$ $\overline{KLP2}$ $\overline{KLP2}$ $\overline{KLP2}$ $\overline{KLP2}$ $\overline{KLP2}$ $\overline{KLP3}$ $\overline{KLP2}$ $\overline{KLP3}$ $\overline{KLP3}$		KSTPA24	KSTPA24			
$ \frac{Headers}{KBH-1} = \frac{KSTB33, KSTB35}{KBH-1} \\ KBH-1} \\ KBH-1} \\ KSTB33^{(2)}, KSTB35^{(2)}} \\ KSTB33^{(2)}, KSTB35^{(2)}} \\ KSTB33^{(2)}, KSTB35^{(2)}} \\ KSTB33^{(2)}, KSTB35^{(2)}} \\ KBH-2} \\ KBH-2} \\ KBH-2} \\ KBH-1, KBH-2} \\ KSTB12} \\ KBH-1, KBH-2} \\ KBH-3} \\ KBH-3} \\ KSTB12} \\ KBH-3} \\ KBH-4} \\ KSTB22, KSTB23} \\ KBH-3} \\ KBH-3} \\ KBH-4} \\ KSTB22, KSTB23} \\ KBH-3} \\ KBH-4} \\ KSTB22, KSTB23} \\ KBH-3} \\ KBH-4} \\ KBH-6} \\ KSTB24} \\ KBH-6} \\ KBH-6$			<u>KBH-6</u>			
$ \frac{\underline{KBH-1}}{\underline{KBH-2}} \qquad \underbrace{\underline{KBH-1}}{\underline{KSTB33}^{(2)}, \underline{KSTB35}^{(2)}} \\ \underline{KBH-2} \qquad \underbrace{\underline{KSTB33}^{(2)}, \underline{KSTB35}^{(2)}} \\ \underline{KBH-2} \qquad \underbrace{\underline{KSTB33}, \underline{KSTP338}} \\ \underline{KBH-2} \qquad \underbrace{\underline{KBH-2}} \\ \underline{KBH-2} \qquad \underbrace{\underline{KBH-2}} \\ \underline{KBH-3} \qquad \underbrace{\underline{KBH-2}} \\ \underline{KBH-3} \qquad \underbrace{\underline{KBH-3}} \\ \underline{KBH-4} \qquad \underbrace{\underline{KSTB22}, \underline{KSTB23}} \\ \underline{KBH-5} \qquad \underbrace{\underline{KBH-3}} \\ \underline{KBH-5} \qquad \underbrace{\underline{KBH-3}} \\ \underline{KBH-6} \qquad \underbrace{\underline{KSTB22}, \underline{KSTB23}} \\ \underline{KBH-6} \qquad \underbrace{\underline{KSTB24}} \\ \underline{KBH-6} \qquad \underbrace{\underline{KBH-6}} \\ \underline{KBH-6} \qquad \underbrace{\underline{KBH-6}} \\ \underline{KBH-6} \qquad \underbrace{\underline{KBH-6}} \\ \underline{KBH-6} \qquad \underbrace{\underline{KDP4} \qquad \underbrace{KLP4} \\ \underbrace{\underline{KLP4} \qquad \underbrace{KLP4} \\ \underbrace{KLP6} \qquad \underbrace{KLP4}^{(2)}, \underline{KLP6} \\ \underline{KLP2} \qquad \underbrace{KLP2} \\ \underline{KLP2} \qquad \underbrace{KLP3} \qquad \underbrace{KLP3} \\ \underline{KLP3} \\ \underline{KLP3} \qquad$	Headers		<u>KSTB33, KSTB35</u>			
$\frac{KBH-2}{KBH-2} = \frac{KSTB33^{(2)}, KSTB35^{(2)}}{KSTPG38, KSTS38, KSTPT38} \\ \frac{KBH-2}{KSTPG38, KSTS38, KSTPT38} \\ \frac{KBH-1, KBH-2}{KBH-1, KBH-2} \\ \frac{KBH-3}{KBH-3} \\ \frac{KBH-3}{KBH-3} \\ \frac{KBH-4}{KSTPA12}, KSTPA12} \\ \frac{KBH-4}{KBH-5} \\ \frac{KBH-4}{KSTPA22, KSTPA23} \\ \frac{KBH-4}{KBH-5} \\ \frac{KBH-4}{KBH-5} \\ \frac{KBH-4}{KSTPA22, KSTPA23} \\ \frac{KBH-6}{KSTPA24} \\ \frac{KBH-6}{KSTPA24} \\ \frac{KBH-6}{KBH-6} \\ \frac{KLPA}{KLPA} \\ \frac{KLPA}{KLPA} \\ \frac{KLPA}{KLPA} \\ \frac{KLPA}{KLPA^{(2)}, KLPB^{(2)}, KLPC} \\ \frac{KLP2}{KLP2} \\ \frac{KLP3}{KLP3} \\ \frac{KLP3}$		<u>KBH-1</u>	<u>KBH-1</u>			
$\frac{KBH-2}{KLP2} = \frac{KSTPG38, KSTS38, KSTPT38}{KBH-1, KBH-2}$ $\frac{KBH-3}{KSTB12}$ $\frac{KBH-3}{KBH-3} = \frac{KSTB22}{KBH-3}$ $\frac{KBH-4}{KBH-5} = \frac{KSTB22, KSTB23}{KBH-4, KBH-5}$ $\frac{KBH-4}{KBH-6} = \frac{KSTB24}{KBH-6}$ $\frac{KEH-4}{KBH-6} = \frac{KSTB24}{KBH-6}$ $\frac{KLPA}{KLPA} = \frac{KLPA}{KLPA}$ $\frac{KLPA}{KLPB} = \frac{KLPA}{KLPA^{(2)}, KLPB^{(2)}, KLPC}$ $\frac{KLP2}{KLP2} = \frac{KLP2}{KLP2}$			KSTB33 ⁽²⁾ , KSTB35 ⁽²⁾			
$ \begin{array}{ c c c c c c c } \hline & \underline{KBH-1, KBH-2} \\ \hline & \underline{KBH-3} \\ \hline & \underline{KSTB12} \\ \underline{KBH-3} \\ \hline & \underline{KSTP312} \\ \underline{KBH-3} \\ \hline & \underline{KSTB22, KSTB23} \\ \underline{KBH-5} \\ \underline{KBH-5} \\ \hline & \underline{KSTP32, KSTP33} \\ \underline{KBH-4, KBH-5} \\ \hline & \underline{KBH-5} \\ \hline & \underline{KBH-6} \\ \hline & \underline{KSTB24} \\ \underline{KBH-6} \\ \hline & \underline{KBH-6} \\ \hline & \underline{KLP4} \\ \hline & \underline{KLP4} \\ \hline & \underline{KLP4} \\ \underline{KLP4} \\ \underline{KLP4} \\ \underline{KLP4} \\ \underline{KLP2} \\ \underline{KLP2} \\ \underline{KLP2} \\ \underline{KLP3} $		KBH-2	KSTPG38, KSTS38, KSTPT38			
$\frac{KBH-3}{KBH-3} = \frac{KSTB12}{KSTPA12}$ $\frac{KBH-4}{KBH-4} = \frac{KSTB22, KSTB23}{KSTPA22, KSTPA23}$ $\frac{KBH-4}{KBH-5} = \frac{KSTB24}{KBH-4, KBH-5}$ $\frac{KBH-6}{KSTPA24}$ $\frac{KBH-6}{KBH-6} = \frac{KSTB24}{KBH-6}$ $\frac{KLPA}{KLPA} = \frac{KLPA}{KLPA}$ $\frac{KLPA}{KLPA} = \frac{KLPA}{KLPA}$ $\frac{KLPA}{KLP2} = \frac{KLP2}{KLP3}$			<u>KBH-1, KBH-2</u>			
$\frac{KBH-3}{KBH-4} \\ \frac{KBH-4}{KBH-5} \\ \frac{KSTB22, KSTB23}{KBH-4, KSTPA22, KSTPA23} \\ \frac{KBH-5}{KBH-5} \\ \frac{KBH-6}{KBH-6} \\ \frac{KSTB24}{KBH-6} \\ \frac{KSTB24}{KBH-6} \\ \frac{KSTB24}{KBH-6} \\ \frac{KEH-6}{KBH-6} \\ \frac{KLPA}{KLPA} \\ \frac{KLPA}{KLPA} \\ \frac{KLPA}{KLPA} \\ \frac{KLPA}{KLPA} \\ \frac{KLPA}{KLPB} \\ \frac{KLPA}{KLP2} \\ \frac{KLP2}{KLP2} \\ \frac{KLP3}{KLP3} \\ \frac{KLP9}{KLP9} \\ \frac{KLP9}{KLP9} \\ \frac{KLP9}{KLP9} \\ \frac{KLP9}{KLP9} \\ \frac{KLP1}{KLP9} \\ \frac{KLP1}{KLP1} \\ \frac{KLP2}{KLP1} \\ \frac{KLP2}{KLP1} \\ \frac{KLP1}{KLP1} \\ \frac{KLP1}{KLP1$			<u>KSTB12</u>			
$\frac{KBH-3}{KBH-4}$ $\frac{KSH-2}{KBH-5}$ $\frac{KSTB22, KSTB23}{KSTPA22, KSTPA23}$ $\frac{KBH-5}{KBH-4, KBH-5}$ $\frac{KSTB24}{KBH-6}$ $\frac{KSTB24}{KBH-6}$ $\frac{KBH-6}{KBH-6}$ $\frac{KLPA}{KLPA}$ $\frac{KLPA}{KLPA}$ $\frac{KLPA}{KLPA}$ $\frac{KLPA}{KLPA}$ $\frac{KLPA}{KLPA}$ $\frac{KLPA}{KLPA}$ $\frac{KLPB}{KLP2}$ $\frac{KLP2}{KLP3}$ $KLP3$		<u>KBH-3</u>	<u>KSTPA12</u>			
$\frac{KBH-4}{KBH-5} \qquad \frac{KSTB22, KSTB23}{KSTPA22, KSTPA23} \\ \frac{KBH-5}{KBH-5} \qquad \frac{KSTB24}{KBH-4, KBH-5} \\ \frac{KBH-6}{KSTPA24} \\ \frac{KBH-6}{KBH-6} \\ \frac{KLPA}{KLPA} \qquad \frac{KLPA}{KLPA} \\ \frac{KLPB}{KLPB} \qquad \frac{KLPA^{(2)}, KLPB}{KLPA^{(2)}, KLPC} \\ \frac{KLP2}{KLP2} \qquad \frac{KLP2}{KLP2} \\ \frac{KLP3}{KLP9} \qquad KLP9 \\ \end{array}$			<u>KBH-3</u>			
$\frac{\frac{KBH-4}{KBH-5}}{\frac{KSTPA22, KSTPA23}{KBH-4, KBH-5}}$ $\frac{KSH-4, KBH-5}{KBH-4, KBH-5}$ $\frac{KSTB24}{KBH-6}$ $\frac{KSTPA24}{KBH-6}$ $\frac{KLPA}{KLPA}$ $\frac{KLPA}{KLPA}$ $\frac{KLPA}{KLPA^{(2)}, KLPB^{(2)}, KLPC}$ $\frac{KLP2}{KLP2}$ $\frac{KLP2}{KLP3}$ $KLP3$			<u>KSTB22, KSTB23</u>			
$\frac{\underline{KBH-5}}{\underline{KBH-6}} = \underbrace{\underline{KBH-4, KBH-5}}_{\underline{KBH-6}}$ $\frac{\underline{KBH-6}}{\underline{KSTB24}}$ $\underline{KBH-6}$ $\underline{KBH-6}$ $\underline{KLPA} = \underbrace{KLPA}_{\underline{KLPA}}$ $\underline{KLPA} = \underbrace{KLPA}_{\underline{KLPA}^{(2)}, KLPB}$ $\underline{KLP2} = \underbrace{KLP2}_{\underline{KLP2}}$ $\underline{KLP3} = \underbrace{KLP3}_{\underline{KLP3}}$		<u>KBH-4</u>	<u>KSTPA22, KSTPA23</u>			
$\frac{KBH-6}{KBH-6} = \frac{KSTB24}{KSTPA24}$ $\frac{KBH-6}{KBH-6}$ Steel pipes for low $\frac{KLPA}{KLPA} = \frac{KLPA}{KLPA}$ $\frac{KLPB}{KLPC} = \frac{KLPA^{(2)}, KLPB}{KLP2}$ $\frac{KLP2}{KLP2} = \frac{KLP2}{KLP3}$ $KLP9 = KLP9$		<u>KBH-5</u>	<u>KBH-4, KBH-5</u>			
$\frac{KBH-6}{KBH-6} = \frac{KSTPA24}{KBH-6}$ $\frac{Steel pipes for low}{temperature service^{(1)}} = \frac{KLPA}{KLPB} = \frac{KLPA^{(2)}, KLPB}{KLPA^{(2)}, KLPB^{(2)}, KLPC}$ $\frac{KLP2}{KLP2} = \frac{KLP2}{KLP3}$ $KLP9 = KLP9$			KSTB24			
Steel pipes for lowKLPAtemperature service $KLPA$ $KLPB$ $KLPA^{(2)}$, $KLPB$ $KLP2$ $KLP2^{(2)}$, $KLP2^{(2)}$, $KLP2$ $KLP3$ $KLP3$ $KLP9$ $KLP9$		KBH-6	KSTPA24			
Steel pipes for low temperature service ⁽¹⁾ KLPAKLPA $KLPB$ $KLPA^{(2)}$, $KLPB$ $KLPC$ $KLPA^{(2)}$, $KLPB^{(2)}$, $KLPC$ $KLP2$ $KLP2$ $KLP3$ $KLP3$ $KLP9$ $KLP9$			KBH-6			
$kLPB$ $KLPA^{(2)}$, $KLPB$ $KLPC$ $KLPA^{(2)}$, $KLPB^{(2)}$, $KLPC$ $KLP2$ $KLP2$ $KLP3$ $KLP3$ $KLP9$ $KLP9$	Steel pipes for low	KLPA	KLPA			
KLPC KLPA ⁽²⁾ , KLPB ⁽²⁾ , KLPC KLP2 KLP2 KLP3 KLP3 KLP9 KLP9	temperature service ⁽¹⁾	KLPB	KLPA ⁽²⁾ , KLPB			
KLP2 KLP2 KLP3 KLP3 KLP9 KLP9	_	KLPC	KLPA ⁽²⁾ , KLPB ⁽²⁾ , KLPC			
<u>KLP3</u> <u>KLP9</u> KLP9		KLP2	KLP2			
<u>KI PQ</u> <u>KI PQ</u>		KLP3	KLP3			
		KLP9	KLP9			

Notes:

(1) Only when the same kind of heat treatment is used.

(2) For the large heat inputs specified in **Note** (5) of **Table M4.2**, the welding procedures are not considered applicable to these grades.

4.2 Tests for Butt Welded Joints

Paragraph 4.2.1 has been amended as follows.

4.2.1 Application

The requirements in **4.2** apply to the butt welded joints of materials prescribed shown in **Table M4.46** or equivalent materials by a manual, semi-automatic welding or automatic welding method, etc.

Table M4.4 has been renumbered to Table M 4.6.

Table M4.46Kinds of Butt Welded Joint Test and Number of Specimens
(Table and notes are omitted.)

Paragraph 4.2.2 has been amended as follows.

4.2.2 Kinds of Test*

The kinds of butt welded joint test and number of specimens are to be in accordance with the requirements specified given in **Table M4.4**<u>6</u>.

4.2.3 Test Assemblies

1 (Omitted)

2 The dimensions and types of test assembly are to be as indicated in (A), (B), (C), (D), (E) and (F) of Fig. M4.1

(-3 to -7 are omitted.)

Notes of Fig. M4.1 has been amended as follows.

Fig. M4.1 Welding Procedure Qualification Test Assemblies (Unit: *mm*)

(A) Test Assembly for Plates (materials indicated in (**D**), (**E**) and (**F**) are excluded) (Figure is omitted.)

- (B) Test Assembly for Pipes up to 20 *mm* in Thickness (Figure is omitted.)
- (C) Test Assembly for Pipes over 20 *mm* in Thickness (Figure is omitted.)

Notes:

((1) and (2) are omitted.)

(3) Measurement of ferrite content at the weld surface (including weld metal and heat affected zone) is to be carried out in accordance with kind and grade of test assembly specified in **Table M4.4**<u>6</u>.

(4) (Omitted)

(D) Test Assembly for *KL9N53* or *KL9N60* (Figure is omitted.)

(E) Test Assemblies for Aluminium Alloy Plates

(Figure is omitted.)

(F) Test Assemblies for Rolled Stainless Steel Plates

(Figure is omitted.)

Notes:

- ((1) to (3) are omitted.)
- (4) Measurement of ferrite content at the weld surface (including weld metal and heat affected zone) is to be carried out in accordance with kind and grade of test assembly specified in **Table M4.4**<u>6</u>.
- (5) (Omitted)

Paragraph 4.2.5 has been amended as follows.

4.2.5 Tensile Tests*

1 Tensile tests are to be carried out with the *U2A*, *U2B*, *2C* and *2D* shown in **Table M3.1**. However, where other test specimens are used, they are to be approved by the Society. The ultimate tensile strength is not to be less than the minimum ultimate tensile strength specified for the base metal except for those specified in **Table M4.5**<u>7</u>.

2 The number of tensile test specimens taken from each test assembly is to be as shown in Table M4.4 $\underline{6}$.

3 (Omitted)

Table M4.5 has been amended as follows.

Table M4.<u>57</u> Tensile Test Requirements for Butt Welded Joint (Table is omitted.)

((1) to (4) are omitted.)
(5) Notes (13) of Table M4.46.

Paragraph 4.2.6 has been amended as follows.

4.2.6 Bend Tests

1 Bend tests are to be carried out with the face bend and root bend or side bend test specimen shown in *UB*-1, *UB*-2, *B*-3, *B*-4, or *B*-5 of **Table M3.2**, and the test specimens are to be bent by the jig shown in **Table M4.68**. There is to be no crack nor any other defect greater than 3 *mm* in length in any direction on the surface of bent specimen.

2 The number of bend test specimens taken from each test assembly is to be as shown in **Table** M4.46.

Table M4.6 has been amended as follows.

Table M4. <u>€8</u>	Bend Test Requirements for Butt Welded Joint
	(Table is omitted.)

Notes:

- (1) (Omitted)
- (2) See Notes (11) of Table M4.4<u>6</u>.
- (3) See Notes (12) of Table M4.4<u>6</u>.
- (4) See Notes (13) of Table M4.4<u>6</u>.
- (5) (Omitted)

Paragraph 4.2.7 has been amended as follows.

4.2.7 Impact Tests*

1 (Omitted)

2 The number of specimens taken from each test assembly and the position of notch for the specimen are to be as shown in **Table M4.46** and **Fig. M4.2** to **Fig. M4.4**. The longitudinal direction of the notch of the test specimen is to be in the direction of the thickness of test material.

3 The testing temperature and the minimum mean absorbed energy of three specimens are to be as specified in **Table M4.79** to **Table M4.911** and the percent brittle fracture of the specimens is to be measured.

(-4 to -7 are omitted.)

Table M4.7, Table M4.8 and Table M4.9 have been amended as follows.

Table M4.79Impact Test Requirements for Butt Weld Joint(Rolled Steel for Hull, where thickness of test assemblies is not greater than 50 mm)(Table and notes are omitted.)

Table M4.<u>\$10</u>Impact Test Requirements for Butt Welded Joint(Rolled Steels for Lower Temperature Service and Steel Pipes for Low Temperature Service)(Table and notes are omitted.)

Table M4.911Impact Test Requirements for Butt Weld Joints
(High Strength Rolled Steels for Offshore Structures)
(Table and notes are omitted.)

Paragraph 4.2.9 has been amended as follows.

4.2.9 Hardness Test

1 Vickers hardness is to be measured at the position shown in **Fig. M4.5**. The kinds of specimens for Vickers hardness are to be in accordance with the requirements specified given in **Table M4.1012**.

2 The number of specimens for hardness test is to be in accordance with the requirements specified given in Table M4.46.

Table M4.10 has been renumbered to Table M 4.12.

Table M4.1012Requirements of Hardness Test(Table is omitted.)

4.2.11 Measurement of ferrite content at weld surface

Sub-paragraph -1 has been amended as follows.

1 Measurement of ferrite content at weld surface (including weld metal and heat affected zone) is to be carried out in accordance with kind and grade of test assembly specified in **Table M4.46**.

4.3 Tests for Fillet Weld Joints

Paragraph 4.3.1 has been amended as follows.

4.3.1 Application*

The requirements in **4.3** apply to the fillet weld joints of materials prescribed in shown in **Table M4.46** or equivalent materials welded by a manual, semi-automatic or automatic welding method, etc.

4.3.3 Test Assemblies and Welding*

1 (Omitted)

2 The dimensions and type of test assembly are to be as indicated in **Fig. M4.6**.

(-3 to -6 are omitted.)

Notes of Fig. M4.6 has been amended as follows.

Fig. M4.6Test Assembly for Fillet Weld Joints (Unit: mm)
(Figure is omitted.)

Notes:

- (1) (Omitted)
- (2) Measurement of ferrite content at the weld surface (including weld metal and heat affected zone) is to be carried out in accordance with kind and grade of test assembly specified in **Table M4.4**<u>6</u>.
- (3) (Omitted)

Paragraph 4.3.6 has been amended as follows.

4.3.6 Hardness Test

1 Vickers hardness is to be measured at the position shown in **Fig. M4.7**. The kinds of specimens for Vickers hardness are to be in accordance with the requirements specified given in **Table M4.1012**.

2 The number of specimens for hardness test are to be in accordance with the requirements specified given in **Table M4.46**.

4.3.9 Measurement of Ferrite Content at Weld Surface

Sub-paragraph -1 has been amended as follows.

1 Measurement of ferrite content at the weld surface (including weld metal and heat affected zone) is to be carried out in accordance with kind and grade of test assembly specified in Table M4.46.

4.4 Tests for T-joints with Full Penetration

Paragraph 4.4.1 has been amended as follows.

4.4.1 Application

The requirements in **4.4** apply to the T-joints with full penetration of materials prescribed in **Table M4.46** or equivalent materials welded by a manual, semi-automatic or automatic welding method, etc.

4.4.3 Test Assemblies

1 (Omitted)

2 The dimensions and type of test assembly are to be as indicated in **Fig. M4.8**.

(-3 and -4 are omitted.)

Notes of Fig. M4.8 has been amended as follows.

Fig. M4.8 Test Assembly for T-joints with Full Penetration (Figure is omitted.)

Notes:

- (1) (Omitted)
- (2) Measurement of ferrite content at the weld surface (including weld metal and heat affected zone) is to be carried out in accordance with kind and grade of test assembly specified in **Table M4.46**.
- (3) (Omitted)

Paragraph 4.4.6 has been amended as follows.

4.4.6 Hardness Test

1 Vickers hardness is to be measured at the position shown in **Fig. M4.9**. The kinds of specimens for Vickers hardness are to be in accordance with the requirements specified given in **Table M4.1012**.

2 The number of specimens for hardness tests is to be in accordance with the requirements specified in **Table M4.4**<u>6</u>.

4.4.8 Measurement of Ferrite Content at Weld Surface

Sub-paragraph -1 has been amended as follows.

1 Measurement of ferrite content at the weld surface (including weld metal and heat affected zone) is to be carried out in accordance with kind and grade of test assembly specified in Table M4.46.

2 (Omitted)

4.5 Tests for T-joints with Partial Penetration

Paragraph 4.5.1 has been amended as follows.

4.5.1 Application

The requirements in **4.5** apply to the T-joints with partial penetration of materials prescribed in **Table M4.46** or equivalent materials welded by a manual, semi-automatic or automatic welding method, etc.

4.5.3 Test Assemblies and Welding

1 (Omitted)

2 The dimensions and type of test assemblies are to be as indicated in **Fig. M4.10**. (-3 and -4 are omitted.)

Notes of Fig. M4.10 has been amended as follows.

Fig. M4.10 Test Assemblies for T-joints with Partial Penetration (Unit: *mm*) (Figure is omitted.)

Notes:

((1) to (3) are omitted.)

- (4) Measurement of ferrite content at the weld surface (including weld metal and heat affected zone) is to be carried out in accordance with kind and grade of test assembly specified in **Table M4.4**<u>6</u>.
- (5) (Omitted)

Paragraph 4.5.6 has been amended as follows.

4.5.6 Hardness Test

1 Vickers hardness is to be measured at the position shown in **Fig. M4.11**. The kinds of specimens for Vickers hardness are to be in accordance with the requirements specified given in **Table M4.1012**.

2 The number of specimens for hardness test is to be in accordance with the requirements specified given in **Table M4.4**<u>6</u>.

4.5.9 Measurement of Ferrite Content at Weld Surface

Sub-paragraph -1 has been amended as follows.

1 Measurement of ferrite content at the weld surface (including weld metal and heat affected zone) is to be carried out in accordance with kind and grade of test assembly specified in **Table** M4.4<u>6</u>.

EFFECTIVE DATE AND APPLICATION (Amendment 1-1)

- **1.** The effective date of the amendments is 14 June 2019.
- 2. Notwithstanding the amendments to the Rules, the current requirements apply to welding procedures for which the application for approval is submitted to the Society before the effective date.

Amendment 1-2

Chapter 2 WELDING WORKS

2.4 Welding Process

2.4.1 Selection of Welding Consumables*

Sub-paragraph -1(3) has been added as follows.

1 The welding consumables used for rolled steels for hulls, rolled steels for low temperature service and high strength rolled steels for offshore structures are to be selected in accordance with the requirements provided below.

- (1) The selection of welding consumables is to be in accordance with the requirements provided in **Table M2.1**. The selection for steels not specified in **Table M2.1** is to be as deemed appropriate by the Society.
- (2) For the requirement specified in preceding (1), welded joints of different grades of steel may be used as the followings.
 - (a) Welding consumables for lower grade of steel may be used for welded joints of different grades of steel of the same specified strength.
 - (b) Welding consumables required for the steel of lower specified strength may be used for welded joints of different specified strength, provided that the adequate measures to prevent cracks are taken.
 - (c) Low hydrogen electrodes are to be used for the welding of the high tensile steels or for the welding of the high tensile steel and mild steel. Where the high tensile steels with thermo-mechanical control process are used as base metal, non-low hydrogen electrodes may be used as the welding consumables provided that it is deemed to be appropriate by the Society.
- (3) For the welding consumables used for high strength rolled steels for offshore structures, welding consumables different from those given in **Table M2.1** may be selected where deemed appropriate by the Society.

Table M2.1 has been amended as follows.

Table M2.1 Selection of weiding Consumables (Rolled Steel Plate)						
Kind and grade of st	teel to be welded	Grade of applicable welding consumables ^{(1) (4)}				
	KA	1, 2, 3, 51, 52, 53, 54, 52Y40, 53Y40, 54Y40, <u>55Y40,</u> L1, L2, L3				
	KB,KD	2, 3, 52, 53, 54, 52Y40, 53Y40, 54Y40, <u>55Y40,</u> L1, L2, L3				
	KE	3, 53, 54, 53Y40, 54Y40, <u>55Y40, L1, L2, L3</u>				
	KA32, KA36	51, 52, 53, 54, 52Y40, 53Y40, 54Y40, <u>55Y40, L2⁽²⁾, L3, 2Y42, 3Y42, 4Y42, 5Y42</u>				
Rolled Steel for Hull	KD32, KD36	52, 53, 54, 52Y40, 53Y40, 54Y40, 55Y40, L2 ⁽²⁾ , L3, 2Y42, 3Y42, 4Y42, 5Y42				
	KE32, KE36	53, 54, 53Y40, 54Y40, 55Y40, L2 ⁽²⁾ , L3, 2Y42, 3Y42, 4Y42, 5Y42				
	KF32, KF36	54, 54Y40, 55Y40, L2 ⁽²⁾ , L3, 4Y42, 5Y42				
	KA40, KD40	52740, 53740, 54740, 55740, 3742, 4742, 5742, 2746, 3746, 4746, 574				
	- 7 -	63Y47				
	KE40	53Y40, 54Y40, <u>55Y40,</u> 3Y42, 4Y42, 5Y42, 3Y46, 4Y46, 5Y46, 63Y47				
	KF40	54Y40, <u>55Y40,</u> 4Y42, 5Y42, 4Y46, 5Y46				
	KE47	63Y47				
	KL24A	<i>L</i> 1, <i>L</i> 2, <i>L</i> 3, 54, 54 <i>Y</i> 40, 55 <i>Y</i> 40				
Rolled Steel for Low	KL24B, KL27, KL33	$L2, L3, 55Y40, 5Y42^{(3)}$				
Temperature Service	KL37	L3. 55Y40. 5Y42				
· · · · · · · · · · · · · · · · · · ·	KL9N53, KL9N60	L91. L92				
	KA420	2842 3842 4842 5842 2846 3846 4846 5846 2850 3850 4850 5850				
	KD420	3742 4742 5742 3746 4746 5746 3750 4750 5750				
	KF420	4742 5742 4746 5746 4750 5750				
	KE420	5742 5746 5750				
	KA460	2846 3846 4846 5846 2850 3850 4850 5850				
	KD460	2140, 5140, 4140, 5140, 2150, 5150, 4150, 5150				
	KE460	<i>AVA6 5VA6 AV5</i> 0 5 <i>V</i> 50				
	KE460	5746 5750				
	K4500					
	KA500	2750, 3750, 4750, 5750, 2755, 3755, 4755, 5755				
	KD500	5150, 4150, 5150, 5155, 4155, 5155				
	KE500	4750, 5750, 4755, 5755				
	KF500					
	KA550	2Y55, 3Y55, 4Y55, 5Y55, 2Y62, 3Y62, 4Y62, 5Y62				
High strength	KD550	3Y55, 4Y55, 5Y55, 3Y62, 4Y62, 5Y62				
rolled steels for	KE550	4Y55, 5Y55, 4Y62, 5Y62				
offshore structures	KF550	5Y55, 5Y62				
	KA620	2Y62, 3Y62, 4Y62, 5Y62, 2Y69, 3Y69, 4Y69, 5Y69				
	KD620	3Y62, 4Y62, 5Y62, 3Y69, 4Y69, 5Y69				
	KE620	4Y62, 5Y62, 4Y69, 5Y69				
	KF620	5Y62, 5Y69				
	KA690	2Y69, 3Y69, 4Y69, 5Y69				
	KD690	3Y69, 4Y69, 5Y69				
	KE690	4Y69, 5Y69				
	KF690	5Y69				
	<u>KA890</u>	<u>2Y89, 3Y89, 4Y89, 2Y96, 3Y96, 4Y96</u>				
	<u>KD890</u>	<u>3Y89, 4Y89, 3Y96, 4Y96</u>				
	<u>KE890</u>	<u>4Y89, 4Y96</u>				
	<u>KA960</u>	<u>2Y96, 3Y96, 4Y96</u>				
	<u>KD960</u>	<u>3Y96, 4Y96</u>				
	KE960	4Y96				

 Table M2.1
 Selection of Welding Consumables (Rolled Steel Plate)

(Notes are omitted.)

Chapter 4 WELDING PROCEDURE AND RELATED SPECIFICATIONS

4.1 General

4.1.4 Range of Approval*

Table M4.2 has been amended as follows.

7	Table M4.2Approved Range of Thickness (1), (8)							
		Approved range of thickness (mm)						
Thickness of test		Butt welding ⁽⁴⁾		Fillet welding				
assemblies <i>t</i> (<i>mm</i>) ^{(2), (3), (4)}	Multi-run technique	Single-run technique or Two-run technique ⁽⁹⁾	Large heat input welding process ⁽⁵⁾					
<i>t</i> ≤100	$0.5t \text{ to } 2t^{(6), (7)} $ (100 max)	$\begin{array}{c} 0.7t \text{ to } 1.1t^{(6),(7)} \\ (100 \text{ max}) \end{array}$	0.7 <i>t</i> to <i>t</i>	$0.5t \text{ to } 2t^{(6),(7)} $ (100 max)				

Notes:

(1) Welding procedure used by dissimilar process (combination welding) is to be correspondingly applied to **Table M4.2**. In this case, thickness or throat thickness of each welding method is to be *t*.

(2) For unequal plate thickness of butt welds the lesser thickness is ruling dimension.

(3) For fillet welds, the range of approval shall be applied to the web thickness and flange thickness of test piece.

(4) For T-joints with full penetration and T-joints with partial penetration, *t* is the thickness of test assembly on the open edge side and the requirements are correspondingly applied to the requirements of butt welding.

(5) Large heat input welding means the welding with a welding heat input of not less than 50 kJ/cm.

(6) For the vertical-down welding, the test piece thickness *t* is always taken as the upper limit of the range of application.

(7) For test assembly thickness not more than 12 mm, the specified minimum content is not applicable.

(8) For the kinds of test assemblies specified in **Table M4.10**, even though the test specimen has passed the hardness test specified in **4.2.9**, **4.3.6** and **4.4.6**, the upper limit of the thickness range of approval is to be restricted to the thickness of the test assembly when three or more of the hardness values in the heat affected zone are less than 25*HV* lower than the values specified in **Table M4.10**.

(9) Two-run technique refers to a welding process involving a single pass on both sides.

4.2 Tests for Butt Welded Joints

4.2.5 Tensile Tests*

Sub-paragraph -4 has been added as follows.

4 Notwithstanding -1 above, the ultimate tensile strength of the welded joints of steels where welding consumables different from those given in **Table M2.1** are selected in accordance with **2.4.1-1(3)** is not to be less than the minimum ultimate tensile strength of the selected welding consumable.

Chapter 6 WELDING CONSUMABLES

6.2 Electrodes for Manual Arc Welding for Mild and High Tensile Steels and Steels for Low Temperature Service

6.2.2 Grades and Marks of Electrode

Table M6.1 has been amended as follows.

	Iuol	0.10.1	Oludeb alla	ivital K5	
For mild steel	Fe	For high tensile steel			emperature service
KMW1	<i>KMW</i> 52 ,	KMW52Y40	KMW63Y47	KMWL1 ,	KMWL91
KMW2	<i>KMW</i> 53 ,	KMW53Y40		KMWL2 ,	KMWL92
KMW3	KMW54 ,	KMW54Y40		KMWL3	
		<u>KMW55Y40</u>			

Table M6.1 Grades and Marks

6.2.4 General Provisions for Tests*

Table M6.4 has been amended as follows.

Table M6.4	Grades of Steel Used for Test Assembly
Grade of electrode	Grade of steel used for test assembly ^{(1) (2)}
KMW1	KA
KMW2	KA, KB or KD
KMW3	KA, KB, KD or KE
<i>KMW</i> 52	KA32, KA36, KD32 or KD36
<i>KMW</i> 53	KA32, KA36, KD32, KD36, KE32 or KE36
<i>KMW</i> 54	KA32, KA36, KD32, KD36, KE32, KE36, KF32 or KF36
<i>KMW</i> 52 <i>Y</i> 40	KA40 or KD40
<i>KMW</i> 53 <i>Y</i> 40	KA40, KD40 or KE40
<i>KMW</i> 54 <i>Y</i> 40 <u>, <i>KMW</i>55<i>Y</i>40</u>	KA40, KD40, KE40 or KF40
KMW63Y47	<i>KE</i> 47
KMWL1	KE or KL24A
KMWL2	KE, KL24A, KL24B, KL27 or KL33
KMWL3	KL27, KL33 or KL37
KMWL91	<i>KL9N53</i> or <i>KL9N6</i> 0
KMWL92	<i>KL9N53</i> or <i>KL9N60</i>

Notes:

⁽¹⁾Notwithstanding the requirements in this Table, mild or high tensile steels may be used for deposited metal test assembly. In this case, appropriate buttering is to be carried out for *KMWL*91 and *KMWL*92.

⁽²⁾ The tensile strength of high tensile steels *KA32*, *KD32*, *KE32* and *KF32* used in the butt weld test assemblies are to be greater than $490 N/mm^2$.

6.2.6 **Deposited Metal Tensile Test**

Table M6.5 has been amended as follows.

Table M6.5	Tensile Test Requirements for Deposited Metal
------------	---

Grade of electrode	Tensile Strength (N/mm^2)	Yield point (N/mm ²)	Elongation (%)
KMW1			
KMW2	400~560	305 min.	
KMW3			
<i>KMW</i> 52			
<i>KMW</i> 53	490~660	375 min.	22 min
<i>KMW</i> 54			22 min.
KMW52Y40			
KMW53Y40	510 - 600	400 min	
KMW54Y40	510,~090	400 min.	
<u>KMW55Y40</u>			
KMW63Y47	570~720	460 min.	19 min.
KMWL1	400~560	305 min.	22 min.
KMWL2	440~610	345 min.	
KMWL3	490~660	375 min.	21 min.
KMWL91	590 min.	375 ⁽¹⁾ min.	25 min.
KMWL92	660 min.	410 ⁽¹⁾ min.	

Note:

(1) 0.2% proof stress

6.2.7 **Deposited Metal Impact Test**

Table M6.6 has been amended as follows.

Table M6.6	Impact Test Requirements	for Deposited Metal
Grade of electrode	Testing temperature (°C)	Minimum mean absorbed
		energy (J)
KMW1	20	
KMW2	0	
KMW3	-20	
KMW52	0	
KMW53	-20	47
KMW54	-40	47
<i>KMW</i> 52 <i>Y</i> 40	0	
KMW53Y40	-20	
<i>KMW</i> 54 <i>Y</i> 40	-40	
<u>KMW55Y40</u>	<u>-60</u>	
KMW63Y47	-20	53
KMWL1	-40	
KMWL2	-60	34
KMWL3	-60	
KMWL91	-196	27
KMWL92	-196	

6.2.8 Butt Weld Tensile Test

Table M6.7 has been amended as follows.

Table NO. / Telishe Test Kequ	itements for built werd
Grade of electrode	Tensile Strength (<i>N/mm</i> ²)
KMW1, KMW2, KMW3	400 min.
KMW52, KMW53, KMW54	490 min.
KMW52Y40, KMW53Y40, KMW54Y40 <u>, KMW55Y40</u>	510 min.
<i>KMW</i> 63 <i>Y</i> 47	570 min.
KMWL1	400 min.
KMWL2	440 min.
KMWL3	490 min.
KMWL91	630 min.
KMWL92	670 min.

Table M6.7Tensile Test Requirements for Butt Weld

6.2.10 Butt Weld Impact Test

Table M6.8 has been amended as follows.

TableM0.8 Impact lest Requirements for Butt weid					
		Minimum mean al	bsorbed energy (J)		
	T i i i i i i i i i i i i i i i i i i i	Flat, Horizontal,	Vertical upward,		
Grade of electrode	Testing temperature (C)	Overhead	Vertical downward		
KMW1	20				
KMW2	0				
KMW3	-20		34		
<i>KM</i> W52	0				
<i>KM</i> W53	-20	47			
KMW54	-40	47			
<i>KMW</i> 52 <i>Y</i> 40	0				
<i>KMW</i> 53 <i>Y</i> 40	-20		20		
<i>KMW</i> 54 <i>Y</i> 40	-40		39		
<u>KMW55Y40</u>	-60				
<i>KMW</i> 63 <i>Y</i> 47	-20	5	3		
KMWL1	-40				
KMWL2	-60				
KMWL3	-60	27	27		
KMWL91	-196				
KMWL92	-196				

TableM6.8Impact Test Requirements for Butt Weld

6.3 Automatic Welding Consumables for Mild Steels, High Tensile Steels and Steels for Low Temperature Service

6.3.2 Grades and Marks of Automatic Welding Consumables

Table M6.12 has been amended as follows.

For mild steel	For high tensile steel		For steel for low to	emperature service		
KAW1	<i>KAW</i> 51 ,	KAW52Y40	KAW63Y47	KAWL1 ,	KAWL91	
KAW2	KAW52 ,	KAW53Y40		KAWL2 ,	KAWL92	
KAW3	KAW53 ,	KAW54Y40			KAWL3	
	<i>KAW</i> 54 ,	KAW55Y40				

Table M6.12Grades and Marks

6.3.4 General Provisions for Tests

Table M6.15 has been amended as follows.

Table M6.15Kind of Test of Automatic Welding Consumables

Welding	Kind	s of test ⁽⁸⁾	Grade of welding		Test assembly	у	Kind and number of test
process			consumable	Number	Dimension	Thickness (mm) ⁽³⁾⁽⁹⁾	specimens taken from test assembly
Multi-run technique	Deposit	ed metal test	KAW1, KAWL1 KAW2, KAWL2 KAW3, KAWL3 KAW51, KAWL91 KAW52, KAWL92	1	Fig. M6.7	20	Tensile test specimen : 2 Impact test specimen : 3
	Butt	weld test	KAW53, KAW54, KAW52Y40 KAW53Y40 KAW54Y40 <u>KAW55Y40</u> KAW63Y47	1 ⁽⁴⁾	Fig. M6.8	20~25	Tensile test specimen : $2^{(4)}$ Face bend test specimen : $2^{(4)(6)}$ Root bend test specimen : $2^{(4)(6)}$ Impact test specimen : 3
			KAW1, KAW51	1		12~15	Tensile test specimen : 2
		Submerged arc welding	KAW2, KAW52Y40 KAW3, KAW53Y40 KAW52, KAW54Y40	1		$20 \sim 25$ $20 \sim 25$	Specimen : 1 ⁽⁵⁾ Face bend test specimen : 1 Root bend test specimen : 1
		6	KAW53, <u>KAW55Y40</u> KAW54, KAW63Y47	1		30~35	Impact test specimen : 3
	Butt	Gas	KAW1, KAW2	1	Fig. M6.9	$12 \sim 15^{(1)}$	Tensile test specimen : 2
Two-run technique	Weld test	shielded arc and	KAW3 KAW51, KAW52			20 ⁽²⁾	Longitudinal tensile test specimen : $1^{(5)}$
		self-	KAW53, KAW54	1		$20\sim 25^{(1)}$	Face bend test specimen : 1
		shielded arc welding	KAW52Y40 KAW53Y40 KAW54Y40 <u>KAW55Y40</u> KAW63Y47			30~35 ⁽²⁾	Root bend test specimen : 1 Impact test specimen : 3
	5			1		12~15	Tensile test specimen : 2
	Вι	itt weld test	KAWL1, KAWL2 KAWL3, KAWL91 KAWL92	1		20~25	Face bend test specimen : 1 Root bend test specimen : 1 Impact test specimen : 3
Multi-run and two-run technique	i-run d Deposited KAW1 run metal test KAW3 KAW51 KAW52		KAW1, KAWL1 KAW2, KAWL2 KAW3, KAWL3 KAW51, KAWL91 KAW52, KAWL92				
	Butt weld KAW test KAW KAW		KAW53 KAW54 KAW52Y40 KAW53Y40 KAW54Y40 <u>KAW55Y40</u> KAW63Y47				(7)

(Notes are omitted.)

Table M6.16 has been amended as follows.

Table Mo.16	Grades of Steel Used for Test Assembly
Grade of welding consumable	Grade of steel used for test assembly ⁽¹⁾⁽²⁾
KAW1	KA
KAW2	KA, KB or KD
KAW3	KA, KB, KD or KE
KAW51	KA32 or KA36
KAW52	KA32, KA36, KD32 or KD36
KAW53	KA32, KA36, KD32, KD36, KE32 or KE36
KAW54	KA32, KA36, KD32, KD36, KE32, KE36, KF32 or KF36
KAW52Y40	<i>KA</i> 40 or <i>KD</i> 40
KAW53Y40	KA40, KD40 or KE40
KAW54Y40 <u>, KAW55Y40</u>	KA40, KD40, KE40 or KF40
KAW63Y47	<i>KE</i> 47
KAWL1	KE or KL24A
KAWL2	KE, KL24A, KL24B, KL27 or KL33
KAWL3	KL27, KL33 or KL37
KAWL91	KL9N53 or KL9N60
KAWL92	<i>KL9N</i> 53 or <i>KL</i> 9 <i>N</i> 60

Table M6.16Grades of Steel Used for Test Assembly

Notes:

(1)Notwithstanding the requirements in this Table, mild or high tensile steels may be used for deposited metal test assembly. In this case, appropriate buttering is to be carried out for *KAWL*91 and *KAWL*92.

(2) The tensile strength of high tensile steels *KA32*, *KD32*, *KE32* and *KF32* used in the butt weld test assemblies is to be greater than $490 N/mm^2$.

6.3.6 Deposited Metal Tensile Test with Multi-run Technique

Table M6.17 has been amended as follows.

Table M6.17	Iensile lest Requi	rements for De	posited Metal
Grade of welding consumable	Tensile strength (<i>N/mm</i> ²)	Yield point (<i>N/mm</i> ²)	Elongation (%)
KAW1			
KAW2	$400 \sim 560$	305 min.	
KAW3			
<i>KAW</i> 51			
KAW52	490~660	375 min.	
KAW53			22 min.
KAW54			
KAW52Y40			
KAW53Y40	510~600	400 min	
KAW54Y40	510 - 090	400 mm.	
<u>KAW55Y40</u>			
KAW63Y47	570~720	460 min.	19 min.
KAWL1	$400 \sim 560$	305 min.	
KAWL2	440~610	345 min.	
KAWL3	490~660	375 min.	21 min.
KAWL91	590 min.	375 ⁽¹⁾ min.	25 min.
KAWL92	660 min.	410 ⁽¹⁾ min.	

 Table M6.17
 Tensile Test Requirements for Deposited Metal

Note:

(1) 0.2% proof stress

6.3.7 Deposited Metal Impact Test with Multi-run Technique

Table M6.18	Impact Test Requirements	for Deposited Metal
Grade of Welding consumable	Testing temperature (°C)	Minimum mean absorbed energy (J)
KAW1	20	
KAW2	0	
KAW3	-20	
KAW51	20	34
KAW52	0	
KAW53	-20	
KAW54	-40	
KAW52Y40	0	
KAW53Y40	-20	20
KAW54Y40	-40	- 39
<u>KAW55Y40</u>	<u>-60</u>	
KAW63Y47	-20	53
KAWL1	-40	
KAWL2	-60	
KAWL3	-60	27
KAWL91	-196	
KAWL92	-196	

Table M6.18 has been amended as follows.

6.3.8 Butt Weld Tensile Test with Multi-run Technique

Table M6.19 has been amended as follows.

	Table M6.19	Tensile Test	Requirements	for Butt Wel
--	-------------	--------------	--------------	--------------

Grade of welding consumable	Tensile Strength (<i>N/mm</i> ²)
KAW1, KAW2, KAW3	400 min.
KAW51, KAW52, KAW53, KAW54	490 min.
KAW52Y40, KAW53Y40, KAW54Y40, KAW55Y40	510 min.
KAW63Y47	570 min.
KAWL1	400 min.
KAWL2	440 min.
KAWL3	490 min.
KAWL91	630 min.
KAWL92	670 min.

6.3.15 Annual Inspections

Table M6.20 has been amended as follows.

	Table W10.20 Kind of Test for Annual Inspection						
Grade of	Welding	Kinds of test		Test assembly		ly	Kind and number of test specimens
welding consumable	process			Number	Dimension	Thickness ⁽²⁾ (<i>mm</i>)	taken from test assembly
	Multi-run technique	Deposi	ted metal test	1	Fig. M6.7	20	Tensile test specimen : 1 Impact test specimen : 3
KAW1 KAW2 KAW3 KAW51 KAW52	Two-run technique	Butt weld test	Submerged arc welding	1	Fig. M6.9	20	Tensile test specimen : 1 Longitudinal tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1 Impact test specimen : 3
KAW53 KAW54 KAW52Y40 KAW53Y40 KAW54Y40			Gas shielded arc and shield arc welding	1		20~25	Tensile test specimen : 1 Longitudinal tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1 Impact test specimen : 3
<u>KAW55Y40</u> KAW63Y47		Deposite	d metal test	1	Fig. M6.7	20	Tensile test specimen : 1 Impact test specimen : 3
KAWL1 KAWL2 KAWL3 KAWL91	Multi-run and two-run technique	Butt ⁽¹⁾ weld test	Submerged arc welding	1	Fig. M6.9	20	Tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1 Impact test specimen : 3
KAWL92			Gas shielded arc and shield arc welding	1		20~25	Tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1 Impact test specimen : 3

Table M6.20Kind of Test for Annual Inspection

Notes:

(1)Butt weld test for multi-run and two-run technique is to be carried out by two-run technique.

(2) Thicknesses of *KE*47 steel used as test specimens may be reduced to the thicknesses in the table by machining before welding.

6.4 Semi-automatic Welding Consumables for Mild Steels, High Tensile Steels and Steels for Low Temperature Service

6.4.2 Grades and Marks of Semi-automatic Welding Consumables

Table M6.21 has been amended as follows.

Table Wi0.21 Oraces and Warks					
For mild steel	For high tensile			For s	teel for low
For mild steel	steel temperature service				rature service
KSW1	KSW51 ,	KSW52Y40	KSW63Y47	KSWL1 ,	KSWL91
KSW2	KSW52 ,	KSW53Y40		KSWL2 ,	KSWL92
KSW3	KSW53 ,	KSW54Y40		KSWL3	
	KSW54 ,	<u>KSW55Y40</u>			

Table M6.21 Grades and Marks

6.4.4 General Provisions for Tests

Table M6.23 has been amended as follows.

Grade of welding consumable	Grade of steel used for test assembly ⁽¹⁾⁽²⁾
KSW1	KA
KSW2	KA, KB or KD
KSW3	KA, KB, KD or KE
KSW51	KA32 or KA36
KSW52	KA32, KA36, KD32 or KD36
KSW53	KA32, KA36, KD32, KD36, KE32 or KE36
KSW54	KA32, KA36, KD32, KD36, KE32, KE36, KF32 or KF36
<i>KSW</i> 52 <i>Y</i> 40	<i>KA</i> 40 or <i>KD</i> 40
KSW53Y40	KA40, KD40 or KE40
<i>KSW</i> 54 <i>Y</i> 40 <u>, <i>KSW</i>54<i>Y</i>40</u>	KA40, KD40, KE40 or KF40
KSW63Y47	KE47
KSWL1	KE or KL24A
KSWL2	KE, KL24A, KL24B, KL27 or KL33
KSWL3	<i>KL</i> 27, <i>KL</i> 33 or <i>KL</i> 37
KSWL91	<i>KL9N</i> 53 or <i>KL9N</i> 60
KSWL92	<i>KL</i> 9 <i>N</i> 53 or <i>KL</i> 9 <i>N</i> 60

Table M6.23Grades of Steel Used for Test Assembly

Notes:

(1) Notwithstanding the requirements in this Table, mild or high tensile steels may be used for deposited metal test assembly. In this case, appropriate buttering is to be carried out for *KSWL*91 and *KSWL*92.

(2) The tensile strength of high tensile steels KA32, KD32, KE32 and KF32 used in the test assemble is to be greater than 490 N/mm².

6.4.6 **Deposited Metal Tensile Test**

Table M6.24 has been amended as follows.

1able 1v10.24	Tensne Test Kequitemen	is for Deposited	Wietal
Grade of welding consumable	Tensile Strength	Yield point	Elongation (%)
	(N/mm^2)	(N/mm^2)	
KSW1			
KSW2	400~560	305 min.	
KSW3			
KSW51			
KSW52	490~660	375 min.	
KSW53			22 min.
KSW54			
<i>KSW</i> 52 <i>Y</i> 40			
<i>KSW</i> 53 <i>Y</i> 40	510~690	400 min	
<i>KSW</i> 54 <i>Y</i> 40	510 - 090	400 mm.	
<u>KSW55Y40</u>			
<i>KSW</i> 63 <i>Y</i> 47	570~720	460 min.	19 min.
KSWL1	400~560	305 min.	22 min.
KSWL2	440~610	345 min.	
KSWL3	490~660	375 min.	21 min.
KSWL91	590 min.	375 ⁽¹⁾ min.	25 min.
KSWL92	660 min.	410 ⁽¹⁾ min.	

Table M6 24 Tensile Test Requirements for Deposited Metal

Note:

(1) 0.2% proof stress

Deposited Metal Impact Test 6.4.7

Table M6.25 has been amended as follows.

Table M6.25	Impact Test Requirements	for Deposited Metal
Grade of welding	Testing temperature	Minimum mean
consumable	(°C)	absorbed energy (J)
KSW1	20	
KSW2	0	
KSW3	-20	
KSW51	20	
KSW52	0	
KSW53	-20	47
KSW54	-40	
KSW52Y40	0	
KSW53Y40	-20	
KSW54Y40	-40	
<u>KSW55Y40</u>	<u>-60</u>	
KSW63Y47	-20	53
KSWL1	-40	
KSWL2	-60	34
KSWL3	-60	
KSWL91	-196	27
KSWL92	-196	

6.4.8 Butt Weld Tensile Test

Table M6.26 has been amended as follows.

	ements for Butt were
Grade of welding consumable	Tensile Strength (N/mm^2)
KSW1, KSW2, KSW3	400 min.
KSW51, KSW52, KSW53, KSW54	490 min.
KSW52Y40, KSW53Y40, KSW54Y40 <u>, KSW55Y40</u>	510 min.
KSW63Y47	570 min.
KSWL1	400 min.
KSWL2	440 min.
KSWL3	490 min.
KSWL91	630 min.
KSWL92	670 min.

Table M6.26Tensile Test Requirements for Butt Weld

6.4.10 Butt Weld Impact Test

Table M6.27 has been amended as follows.

Ial	ne Mo.27 Inipact Test	Requirements for Butt we	elu
		Minimum mean abso	orbed energy (J)
Grade of welding consumable	Testing temperature ($^{\circ}$ C)	Flat, Horizontal, Overhead	Vertical upward, Vertical downward
KSW1	20		
KSW2	0		
KSW3	-20		
KSW51	20		34
KSW52	0		
KSW53	-20	47	
KSW54	-40		
KSW52Y40	0		
KSW53Y40	-20		20
<i>KSW</i> 54 <i>Y</i> 40	-40		59
<u>KSW55Y40</u>	<u>-60</u>		
KSW63Y47	-20	53	
KSWL1	-40		
KSWL2	-60		
KSWL3	-60	27	27
KSWL91	-196		
KSWL92	-196		

Table M6.27Impact Test Requirements for Butt Weld

6.5 Electro-slag and Electro-gas Welding Consumables

6.5.2 Grades and Marks of Welding Consumables

Table M6.29 has been amended as follows.

,	Table M6.29	Grades and Marks	
For mild steel		For high tensile steel	
KEW1	KEW51	KEW52Y40	KEW63Y47
KEW2	KEW52	KEW53Y40	
KEW3	KEW53	KEW54Y40	
	KEW54	<u>KEW55Y40</u>	

6.5.4 General Provisions for Tests

Table M6.31 has been amended as follows.

Table M6	31 Grades of Steel Used for Test Assembly
Grade of welding consumable	Grade of steel used for test assembly ⁽¹⁾
KEW1	KA
KEW2	KA, KB or KD
KEW3	KA, KB, KD or KE
KEW51	KA32 or KA36
KEW52	KA32, KA36, KD32 or KD36
KEW53	KA32, KA36, KD32, KD36, KE32 or KE36
KEW54	KA32, KA36, KD32, KD36, KE32, KE36, KF32 or KF36
KEW52Y40	<i>KA</i> 40 or <i>KD</i> 40
KEW53Y40	KA40, KD40 or KE40
<i>KEW</i> 54 <i>Y</i> 40 <u>, <i>KEW</i>55<i>Y</i>40</u>	KA40, KD40, KE40 or KF40
KEW63Y47	<i>KE</i> 47

Note:

(Omitted)

6.5.6 Tensile Test

Table M6.32 has been amended as follows.

Grade of welding consumable	Tensile Strength (<i>N/mm²</i>)
KEW1	
KEW2	400 min.
KEW3	
KEW51	
KEW52	490 min.
KEW53	
KEW54	
KEW52Y40	
KEW53Y40	510
KEW54Y40	510 min.
<u>KEW55Y40</u>	
KEW63Y47	570 min.

Table M6.32Tensile Test Requirement

Table M6.33 has been amended as follows.

	ment		
Grade of welding consumable	Tensile Strength (N/mm ²)	Yield point (<i>N/mm²</i>)	Elongation (%)
KEW1			
KEW2	$400 \sim 560$	305 min.	
KEW3			
KEW51			
KEW52	490~660	375 min.	
KEW53			22 min.
KEW54			
KEW52Y40			
KEW53Y40	510~600	400	
KEW54Y40	510 ~ 690	400 min.	
<u>KEW55Y40</u>			
KEW63Y47	570~720	460 min.	19 min.

 Table M6.33
 Longitudinal Tensile Test Requirement

6.5.8 Impact Test

Table M6.34 has been amended as follows.

		- 1
Grade of welding consumable	Testing temperature (°C)	Minimum mean absorbed energy (J)
KEW1	20	
KEW2	0	
KEW3	-20	
KEW51	20	34
KEW52	0	
KEW53	-20	
KEW54	-40	
KEW52Y40	0	
KEW53Y40	-20	20
KEW54Y40	-40	39
<u>KEW55Y40</u>	-60	
KEW63Y47	-20	53

Table M6.34Impact Test Requirement

6.6 One Side Automatic Welding Consumables for Mild Steels, High Tensile Steels and Steels for Low Temperature Service

6.6.2 Grades and Marks of Welding Consumables

Table M6.37 has been amended as follows.

14		Timu	o or rest		e i latoinatie	rename consumate
Grade of	Welding	Kinds of		Test assemble	ly	Kind and number of test specimens
welding consumable	process	test ⁽⁵⁾	Number	Dimension	Thickness ⁽¹⁾⁽⁸⁾ (<i>mm</i>)	taken from test assembly
KAW1			1		12~15	Tensile test specimen : 2
KAW2						Longitudinal tensile test specimen : 1
KAW3	One-run					Face bend test specimen : 1
KAW51	technique		1		$20 \sim 25$	Root bend test specimen : 1
KAW52			1		20 23	Impact test specimen : 6 ⁽⁴⁾
KAW53						Macro-etching test specimen : 1
KAW54		Butt	1		$12 \sim 15^{(2)}$	Tensile test specimen : 2
KAW52Y40	Multi-run	weld		Fig. M6.14	$20\sim 25^{(3)}$	Longitudinal tensile test specimen : 1
KAW53Y40	technique	test	1		$20 \sim 25^{(2)}$	Face bend test specimen : 1
KAW54Y40						Root bend test specimen : 1
<u>KAW55Y40</u>					30~35 ⁽³⁾	Impact test specimen : 6 ⁽⁴⁾
KAW63Y47						Macro-etching test specimen : 1
KAWL1	One-run					Tensile test specimen : 2
KAWL2	and		1		$12 \sim 15^{(6)}$	Longitudinal tensile test specimen : 1
KAWL3	Multi-run					Face bend test specimen : 1
KAWL91 KAWL92	technique		1		20~25 ⁽²⁾⁽⁷⁾	Root bend test specimen : 1
					$20 \sim 25^{(3)(7)}$	Impact test specimen : 6 ⁽⁴⁾
					30 ~ 33	Macro-etching test specimen : 1

 Table M6.37
 Kinds of Test for One-side Automatic Welding Consumable

Notes:

- (1) Where thickness is restricted by welding process, thickness of test assemblies may be changed upon approval of the Society. In this case, the maximum thickness of test assemblies restrictions is to be taken as the maximum applicable thickness, and is to be certified.
- (2) Thickness of test assemblies corresponding to single electrodes.
- (3) Thickness of test assemblies corresponding to multiple electrodes.
- (4) Where thickness of test assemblies ranges between $12 \sim 15 \text{ mm}$, the test specimens are to be 1 set of 3 impact test specimens given in Fig. M 6.15(b).
- (5) The hydrogen test may be carried out at the request of the manufacturer.
- (6) Thickness of test assembly for one-run technique.
- (7) Thickness of test assembly for multi-run technique.
- (8) Thicknesses of *KE*47 steel used as test specimens may be reduced to the thicknesses in the table by machining before welding.

6.6.4 General Provisions for Tests

Table M6.38 has been amended as follows.

14010 111010 0	
Grade of welding consumable	Grade of steel used for test assembly ⁽¹⁾
KAW1	KA
KAW2	KA, KB or KD
KAW3	KA, KB, KD or KE
KAW51	KA32 or KA36
KAW52	KA32, KA36, KD32 or KD36
KAW53	KA32, KA36, KD32, KD36, KE32 or KE36
KAW54	KA32, KA36, KD32, KD36, KE32, KE36, KF32 or KF36
KAW52Y40	KA40 or KD40
KAW53Y40	KA40, KD40 or KE40
KAW54Y40 <u>, KAW55Y40</u>	KA40, KD40, KE40 or KF40
KAW63Y47	KE47
KAWL1	KE or KL24A
KAWL2	KE, KL24A, KL24B, KL27 or KL33
KAWL3	<i>KL</i> 27, <i>KL</i> 33 or <i>KL</i> 37
KAWL91	<i>KL</i> 9 <i>N</i> 53 or <i>KL</i> 9 <i>N</i> 60
KAWL92	KL9N53 or KL9N60

Table M6.38Grades of Steel Used for Test Assembly

Note:

(1) The tensile strength of high tensile steels *KA32*, *KD32*, *KE32* and *KF32* used in the test assemble is to be greater than $490 N/mm^2$.

6.6.11 Annual Inspections

Table M6.39 has been amended as follows.

		14010 111010	/ 111	105 01 1050 M		p••••
Grade of	Welding	Kinds of		Test assembly		Kind and number of test
welding consumable	process	test	Number	Dimension	Thickness ⁽³⁾ (<i>mm</i>)	specimens taken from test assembly
KAW1 KAW2 KAW3 KAW51 KAW52	One-run technique		1		20	Tensile test specimen : 1 Longitudinal tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1 Impact test specimen : 3 ⁽¹⁾
KAW53 KAW54 KAW52Y40 KAW53Y40 KAW54Y40 <u>KAW55Y40</u>	Multi-run technique	Butt weld ⁽²⁾ test	1	Fig. M6.14	20~25	Tensile test specimen : 1 Longitudinal tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1 Impact test specimen : 3 ⁽¹⁾
KAW63Y47 KAWL1 KAWL2 KAWL3 KAWL91 KAWL92	One-run and Multi-run technique		1		20~25	Tensile test specimen : 1 Longitudinal tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1 Impact test specimen : 3 ⁽¹⁾

Table M6.39Kinds of Test at Annual Inspection

Notes:

(1) The positions of notch and selection of impact test specimens are to be as given in Fig. M6.15(b).

(2) The butt weld tests for one-run and multi-run technique are to be carried out by one-run technique.

(3) Thicknesses of *KE*47 steel used as test specimens may be reduced to the thicknesses in the table by machining before welding.

6.7 Welding Consumables for Stainless Steel

6.7.4 General Provisions for Tests

Table M6.42 has been amended as follows.

			Tost assembly						
Kir wel consu	nd of lding mables	Kind of test	Welding position	Dia. of electrode or wire ⁽¹⁾ (<i>mm</i>)	No.	Dimension	Thickness (mm)	Kind and number of test specimens taken from test assembly	
	n le	Deposited metal test	Flat	1.2~4.0	1	Fig. M6.16	19~25	Tensile test specimen : 1	
	Multi-ru Butt weld test		Flat	1.2~4.0	1	Fig. M6.18(a)	19	Tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1	
lding	n ue		Flat	1.2~2.4	1		12	Tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1	
ub-merged arc we	nr-own Two- Two- test test	Flat	4.0	1	Fig. M6.18(b)	19	Tensile test specimen : 1 Longitudinal tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1		
les for s	0	Deposited metal test	Flat	1.2~4.0	1	Fig. M6.16	19~25	Tensile test specimen : 1	
Consumabl	n technique	Butt weld test (Multi-run)	Flat	1.2~4.0	1	Fig. M6.18(a)	19	Tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1	
Der ook Der bereinen Butt we	Butt weld	Flat	1.2~2.4	1	Etc. M6 19(h)	12	Tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1		
	Multi-r	test Fig. M6.18(b) (Two-run) Flat 4.0 1	19	Tensile test specimen : 1 Face bend test specimen : 1 Root bend test specimen : 1					

Table M6.42	Kinds of Test of Welding Consumables for Stainless Steel (continued)

Note:

(1) Where approval is granted by the Society, the diameter of electrodes or wires may be changed.

Welding Consumables for High Strength Rolled Steels for Offshore Structures 6.9

6.9.2 Grades and Marks of Welding Consumables

Table M6.58 has been amended as follows.

	Table M0.38 Killu allu Ol	aue					
High Strength Rolled Steels for Offshore Structures							
Electrode for manual arc	Welding consumables for	Welding consumables for					
welding	Semi-automatic welding	automatic welding					
<i>KMW2Y</i> 42	KSW2Y42	KAW2Y42					
<i>KMW2Y</i> 46	<i>KSW</i> 2 <i>Y</i> 46	KAW2Y46					
<i>KMW2Y5</i> 0	<i>KSW2Y5</i> 0	KAW2Y50					
<i>KMW2Y55</i>	KSW2Y55	KAW2Y55					
<i>KMW2Y</i> 62	KSW2Y62	KAW2Y62					
<i>KMW2Y</i> 69	<i>KSW2Y</i> 69	KAW2Y69					
<u>KMW2Y89</u>	<u>KSW2Y89</u>	<u>KAW2Y89</u>					
<u>KMW2Y96</u>	<u>KSW2Y96</u>	<u>KAW2Y96</u>					
<i>KMW</i> 3 <i>Y</i> 42	KSW3Y42	KAW3Y42					
<i>KMW</i> 3 <i>Y</i> 46	KSW3Y46	<i>KAW3Y</i> 46					
<i>KMW</i> 3 <i>Y</i> 50	<i>KSW</i> 3 <i>Y</i> 50	KAW3Y50					
<i>KMW</i> 3 <i>Y</i> 55	KSW3Y55	KAW3Y55					
<i>KMW</i> 3Y62	<i>KSW</i> 3 <i>Y</i> 62	KAW3Y62					
<i>KMW</i> 3 <i>Y</i> 69	<i>KSW</i> 3 <i>Y</i> 69	KAW3Y69					
<u>KMW3Y89</u>	<u>KSW3Y89</u>	<u>KAW3Y89</u>					
<u>KMW3Y96</u>	<u>KSW3Y96</u>	<u>KAW3Y96</u>					
<i>KMW</i> 4 <i>Y</i> 42	KSW4Y42	KAW4W42					
<i>KMW</i> 4 <i>Y</i> 46	KSW4Y46	KAW4Y46					
<i>KMW</i> 4 <i>Y</i> 50	<i>KSW</i> 4 <i>Y</i> 50	KAW4Y50					
<i>KMW</i> 4 <i>Y</i> 55	<i>KSW</i> 4 <i>Y</i> 55	KAW4Y55					
<i>KMW</i> 4 <i>Y</i> 62	<i>KSW</i> 4 <i>Y</i> 62	<i>KAW</i> 4 <i>Y</i> 62					
<i>KMW</i> 4 <i>Y</i> 69	<i>KSW</i> 4 <i>Y</i> 69	KAW4Y69					
<u>KMW4Y89</u>	<u>KSW4Y89</u>	<u>KAW4Y89</u>					
<u>KMW4Y96</u>	<u>KSW4Y96</u>	<u>KAW4Y96</u>					
<i>KMW5Y</i> 42	<i>KSW5Y</i> 42	KAW5Y42					
<i>KMW5Y</i> 46	<i>KSW5Y</i> 46	<i>KAW5Y</i> 46					
<i>KMW5Y5</i> 0	<i>KSW5Y</i> 50	KAW5Y50					
<i>KMW5Y55</i>	KSW5Y55	KAW5Y55					
<i>KMW5Y</i> 62	<i>KSW5Y</i> 62	KAW5Y62					
<i>KMW5Y</i> 69	KSW5Y69	KAW5Y69					

Table M6 58 Kind and Grade

Paragraph 6.9.4 has been amended as follows.

6.9.4 General Provisions for Tests

1 Kinds of test, number, thickness, and dimensions of test assembles, diameters of electrodes or wires used for welding and welding positions, together with kinds and number of test specimens taken from each test assembly for welding consumables are to be in accordance with the requirements specified given in 6.2.4, 6.3.4 or 6.4.4. However, Note(4) of TableM6.2 and Note(3) of Table M6.22 are not to be required. Provisions for automatic welding consumables are to be the requirements specified multi-run technique.

<u>2</u> In addition to the test specified in -1 above, the hydrogen test specified in 6.9.11 is to be carried out during the approval test, notwithstanding Note(6) of TableM6.2, Note(2) of TableM6.3, Note(8) of TableM6.15 and Note(6) of TableM6.22.

 $\frac{23}{23}$ The grades of steels used for tests are to be those given in **Table M6.59** in corresponding to the grades of welding consumables, or those which considered equivalent by the Society.

Table M6.59 has been amended as follows.

1000 100.57	Grades of Steel for Test Assembly
Grades of welding consumables	Grade of steel for test assembly ^{(1) (2)}
$KMW2Y42 \sim \frac{6996}{1000}$	
$KSW2Y42 \sim \frac{6996}{1000}$	KA420~KA 690 960
$KAW2Y42 \sim \frac{6996}{2}$	
$KMW3Y42 \sim \frac{6996}{1000}$	
KSW3Y42 $\sim \frac{6996}{1000}$	<i>KA</i> 420~ <i>KA</i> 690 960 or <i>KD</i> 420~ <i>KD</i> 690 960
$KAW3Y42 \sim \frac{6996}{2}$	
$KMW4Y42 \sim \frac{6996}{1000}$	
$KSW4Y42 \sim \frac{6996}{1000}$	<i>KA</i> 420~ <i>KA</i> 690 960, <i>KD</i> 420~ <i>KD</i> 690 960 or <i>KE</i> 420~ <i>KE</i> 690 960
$KAW4Y42 \sim \frac{6996}{2}$	
$KMW5Y42 \sim 69$	KAADO KAGOO KDADO KDGOO KEADO KEGOO
$KSW5Y42 \sim 69$	$\Lambda A420^{\circ} \wedge \Lambda O90, \Lambda D420^{\circ} \wedge D090, \Lambda E420^{\circ} \wedge L090$
$KAW5Y42 \sim 69$	01 KF420 ⁷ ~ KF 090

Table M6.59Grades of Steel for Test Assembly

Notes:

(1) Notwithstanding the requirements in this table, mild or high tensile steels may be used for deposited metal test assembly. In this case, appropriate buttering is to be carried out.

⁽²⁾ For butt weld test assemblies, a grade of steel having the same strength as the welding consumable is to be used.

6.9.6 Deposited Metal Tensile Test

Table M6.60 has been amended as follows.

		Tensile test		Impa	ct test
Grades of welding consumables	Tensile strength $(N/mm^2)^{(+)}$	Yield point or proof stress (N/mm ²)	Elongation (%)	Test temperature (°C)	Minimum mean absorbed energy(J)
<i>KMW2Y</i> 42, <i>KSW2Y</i> 42, <i>KAW2Y</i> 42				0	
KMW3Y42,KSW3Y42,KAW3Y42	530<u>520</u>~680	420 min.		-20	
KMW4Y42,KSW4Y42,KAW4Y42				-40	
KMW5Y42,KSW5Y42,KAW5Y42			20 min.	-60	47
KMW2Y46,KSW2Y46,KAW2Y46				0	
KMW3Y46,KSW3Y46,KAW3Y46	570<u>540</u>~720	460 min.		-20	
KMW4Y46,KSW4Y46,KAW4Y46				-40	
KMW5Y46,KSW5Y46,KAW5Y46				-60	
KMW2Y50,KSW2Y50,KAW2Y50				0	
KMW3Y50,KSW3Y50,KAW3Y50	610<u>590</u>~770	500 min.		-20	50
KMW4Y50,KSW4Y50,KAW4Y50				-40	
KMW5Y50,KSW5Y50,KAW5Y50				-60	
KMW2Y55,KSW2Y55,KAW2Y55				0	
<i>KMW3Y55,KSW3Y55,KAW3Y55</i>	670<u>640</u>~ <u>830820</u>	550 min.	18 min.	-20	55
KMW4Y55,KSW4Y55,KAW4Y55				-40	
KMW5Y55,KSW5Y55,KAW5Y55				-60	
KMW2Y62,KSW2Y62,KAW2Y62				0	
KMW3Y62,KSW3Y62,KAW3Y62	720 700~890	620 min.		-20	62
<i>KMW4Y62,KSW4Y62,KAW4Y62</i>				-40	
KMW5Y62,KSW5Y62,KAW5Y62				-60	
KMW2Y69,KSW2Y69,KAW2Y69				0	
KMW3Y69,KSW3Y69,KAW3Y69	$770 \sim 940$	690 min.	17 min.	-20	69
KMW4Y69,KSW4Y69,KAW4Y69				-40	
KMW5Y69,KSW5Y69,KAW5Y69				-60	
<u>KMW2Y89,KSW2Y89,KAW2Y89</u>				<u>0</u>	
<u>KMW3Y89,KSW3Y89,KAW3Y89</u>	<u>940~1100</u>	<u>890 min.</u>	<u>14 min.</u>	<u>-20</u>	<u>69</u>
<u>KMW4Y89,KSW4Y89,KAW4Y89</u>				-40	
<u>KMW2Y96,KSW2Y96,KAW2Y96</u>				<u>0</u>	
<u>KMW3Y96,KSW3Y96,KAW3Y96</u>	<u>980~1150</u>	<u>960 min.</u>	<u>13 min.</u>	-20	<u>69</u>
KMW4Y96,KSW4Y96,KAW4Y96				-40	

Table M6.60Test Requirements for Deposited Metal

Note:

(1) Tensile strength specified in the table may be altered where deemed appropriate by the Society.

6.9.8 Butt Weld Tensile Test

Table M6.61 has been amended as follows.

Table M6.61Tensile Strength Requirements for Butt Weld

Grade of welding consumables	Tensile strength (N/mm^2)	
KMW2Y42,KSW2Y42,KAW2Y42		
KMW3Y42,KSW3Y42,KAW3Y42	520520	
KMW4Y42,KSW4Y42,KAW4Y42	330 <u>520</u> min.	
KMW5Y42,KSW5Y42,KAW5Y42		
KMW2Y46,KSW2Y46,KAW2Y46		
KMW3Y46,KSW3Y46,KAW3Y46	570540	
KMW4Y46,KSW4Y46,KAW4Y46	570 540 min.	
KMW5Y46,KSW5Y46,KAW5Y46		
KMW2Y50,KSW2Y50,KAW2Y50		
KMW3Y50,KSW3Y50,KAW3Y50	610500 min	
KMW4Y50,KSW4Y50,KAW4Y50	010<u>590</u> mm.	
KMW5Y50,KSW5Y50,KAW5Y50		
KMW2Y55,KSW2Y55,KAW2Y55		
KMW3Y55,KSW3Y55KAW3Y55	670640 min	
KMW4Y55,KSW4Y55,KAW4Y55	878<u></u>040 mm.	
KMW5Y55,KSW5Y5,KAW5Y55		
KMW2Y62,KSW2Y62,KAW2Y62		
KMW3Y62,KSW3Y62,KAW3Y62	720700 min	
KMW4Y62,KSW4Y62,KAW4Y62	$\frac{720700}{100}$ min.	
KMW5Y62,KSW5Y62,KAW5Y62		
KMW2Y69,KSW2Y69,KAW2Y69		
KMW3Y69,KSW3Y69,KAW3Y69	770 min	
KMW4Y69,KSW4Y69,KAW4Y69	//0 mm.	
KMW5Y69,KSW5Y69,KAW5Y69		
KMW2Y89,KSW2Y89,KAW2Y89		
<u>KMW3Y89,KSW3Y89,KAW3Y89</u>	<u>940 min.</u>	
<u>KMW4Y89,KSW4Y89,KAW4Y89</u>		
<u>KMW2Y96,KSW2Y96,KAW2Y96</u>		
<u>KMW3Y96,KSW3Y96,KAW3Y96</u>	<u>980 min.</u>	
<u>KMW4Y96,KSW4Y96,KAW4Y96</u>		

6.9.9 Butt Weld Bend Test

Table M6.62 has been amended as follows.

	Table M6.62	Butt Weld E	Bend Test for	the Bend Radius
--	-------------	-------------	---------------	-----------------

Grade of welding consumable	Radius of plunger (mm)	
<i>KMW</i> 2 <i>Y</i> 42~50, <i>KSW</i> 2 <i>Y</i> 42~50, <i>KAW</i> 2 <i>Y</i> 42~50	2.0 <i>t</i>	
<i>KMW</i> 3 <i>Y</i> 42~50, <i>KSW</i> 3 <i>Y</i> 42~50, <i>KAW</i> 3 <i>Y</i> 42~50		
<i>KMW</i> 4 <i>Y</i> 42~50, <i>KSW</i> 4 <i>Y</i> 42~50, <i>KAW</i> 4 <i>Y</i> 42~50		
<i>KMW5Y</i> 42~50, <i>KSW5Y</i> 42~50, <i>KAW5Y</i> 42~50		
<i>KMW2Y55~69, KSW2Y55~69, KAW2Y55~69</i>		
<i>KMW3Y55</i> ~69, <i>KSW3Y55</i> ~69, <i>KAW3Y55</i> ~69	2.5 <i>t</i>	
<i>KMW</i> 4 <i>Y</i> 55~69, <i>KSW</i> 4 <i>Y</i> 55~69, <i>KAW</i> 4 <i>Y</i> 55~69		
<i>KMW5Y55</i> ~69, <i>KSW5Y55</i> ~69, <i>KAW5Y55</i> ~69		
<u>KMW2Y89, KSW2Y89, KAW2Y89</u>		
<u>KMW3Y89, KSW3Y89, KAW3Y89</u>	<u>3.0t</u>	
<u>KMW4Y89, KSW4Y89, KAW4Y89</u>		
KMW2Y96, KSW2Y96, KAW2Y96		
KMW3Y96, KSW3Y96, KAW3Y96	<u>3.5t</u>	
<u>KMW4Y96, KSW4Y96, KAW4Y96</u>		

Note:

t : thickness of bend test specimens (*mm*).

6.9.11 Hydrogen Test

Table M6.63 has been amended as follows.

Tabl	le M0.05	e M6.63 Requirements for Hydrogen Contents		
		Requirements for Hydrogen Contents (cm^3/g)		
Grade of welding	Grade of welding	Classering mode d	Management	Gas chromatographic
consumables	Sumixes	Orycernie method	wiercury method	method
$KMW2Y42\sim$ 50		0.05 max.	0.10 max.	0.10 max.
$KMW3Y42\sim$ 50				
$KMW4Y42\sim$ 50				
$KMW5Y42\sim50$				
<i>KSW2Y</i> 42~50				
<i>KSW</i> 3 <i>Y</i> 42~50	1110			
<i>KSW</i> 4 <i>Y</i> 42~50	HIU			
<i>KSW5Y</i> 42~50	-			
<i>KAW2Y</i> 42~50				
$KAW3Y42\sim$ 50				
$KAW4Y42\sim$ 50				
$KAW5Y42\sim$ 50				
<i>KMW2Y55</i> ~69	-	-	0.05 max.	0.05 max.
<i>KMW</i> 3 <i>Y</i> 55~69				
<i>KMW</i> 4 <i>Y</i> 55~69				
<i>KMW5Y55</i> ~69				
<i>KSW2Y55~69</i>				
<i>KSW</i> 3 <i>Y</i> 55~69	115			
<i>KSW</i> 4 <i>Y</i> 55~69	нэ			
<i>KSW5Y55</i> ~69				
<i>KAW2Y55</i> ~69				
<i>KAW3Y55</i> ~69				
<i>KAW</i> 4 <i>Y</i> 55~69				
<i>KAW5Y55</i> ~69				
<u>KMW2Y89, 96</u>				
<u>KMW3Y89, 96</u>				
<u>KMW4Y89, 96</u>				
<u>KSW2Y89, 96</u>				
<u>KSW3Y89, 96</u>	<u>H5</u>	=	<u>0.05 max.</u>	<u>0.05 max.</u>
<u>KSW4Y89, 96</u>				
KAW2Y89, 96				
<u>KAW3Y89, 96</u>				
<u>KAW4Y89, 96</u>				

Table M6.63Requirements for Hydrogen Contents

Paragraph 6.9.15 has been amended as follows.

6.9.15 Annual Inspections

 $\underline{1}$ Annual inspections are to comply with the requirements specified in 6.2.15, 6.3.15 or 6.4.15 according to the grade of the welding consumables. However, in general, annual inspections for automatic welding consumables are to comply with the requirements specified for multi-run technique.

2 A hydrogen test is to be carried out in addition to the test specified in -1 above for the welding consumables whose grade symbols end in Y69, Y89 or Y96.

EFFECTIVE DATE AND APPLICATION (Amendment 1-2)

- **1.** The effective date of the amendments is 1 July 2019.
- 2. Notwithstanding the amendments to the Rules, the current requirements apply to welding consumables for which the application for approval is submitted to the Society before the effective date.

Amendment 1-3

Chapter 3 **TEST SPECIMENS AND MECHANICAL TESTING PROCEDURES**

3.2 **Test Specimens**

3.2.2 **Tensile Test Specimens**

1 Tensile test specimens are to be of size and dimensions given Table M3.1, and the both ends of the test specimen may be machined to such a shape as to fit the holder of the testing machine.

The upper and lower surfaces of weld are to be filed, ground or machined flush with the 2 surface of plate.

3 Reinforcements and back straps are to be machined flush with base metal.

Table M3.1 has been amended as follows.

Table M3.1 Size and Dimension of Tensile Test Specimens (mm)

Notes:

(1)The following designations are used.

d : diameter, a : thickness, W : width, L_0 : gauge length, L_c : parallel part length

R: transition radius, B: breadth of weld, t: thickness of test assembly

t': thickness of hobbed test assembly, D: outside diameter of the pipe.

(2) When the thickness of the test piece is so large that it exceeds the capacity of the testing machine, the test piece may be divided to be tested.

EFFECTIVE DATE AND APPLICATION (Amendment 1-3)

- **1.** The effective date of the amendments is 14 December 2019.
- 2. Notwithstanding the amendments to the Rules, the current requirements apply to welding procedures for which the application for approval is submitted to the Society before the effective date.
- **3.** Notwithstanding the provision of preceding **2.**, the amendments to the Rules may apply to welding procedures for which the application for approval is submitted to the Society before the effective date upon request by the applicant.

GUIDANCE FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

Part M

Welding

2019 AMENDMENT NO.1

Notice No.2614 June 2019Resolved by Technical Committee on 30 January 2019

Notice No.26 14 June 2019 AMENDMENT TO THE GUIDANCE FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

"Guidance for the survey and construction of steel ships" has been partly amended as follows:

Part M WELDING

Amendment 1-1

M4 WELDING PROCEDURE AND RELATED SPECIFICATIONS

M4.1 General

Paragraph M4.1.4 has been amended as follows.

M4.1.4 Range of Approval

1 (Omitted)

2 With respect to the provisions of **4.1.4-1(1)** and **-2(1)**, **Part M of the Rules**, fillet weld joints, T-joints with full penetration and T-joints with partial penetration included in the approval of butt welding are to be in accordance with Table M4.1.4-2 and Table M5.10 the followings.

(1) For plates, Table M4.1.4-2 and Table M5.10, Part M of the Rules

(2) For pipes, Table M4.1.4-3 and Table M5.11, Part M of the Rules

3 The wording "deemed appropriate by the Society" specified in $4.1.4-\underline{3}$, Part M of the Rules means the following (1) to (3).

((1) to (3) are omitted.)

4 For the wording "deemed appropriate by the Society" specified in 4.1.4-4<u>5</u>, Part M of the **Rules**, the approval of welding procedure and related specifications of rolled stainless steel, aluminium alloys and rolled steels for low temperature service are to comply with the requirements specified in the following (1) to (3), provided that the applied welding condition is the same.

(1) Rolled Stainless Steel

For rolled stainless steel, **4.1.4-1** and **-<u>33</u>**, **Part M of the Rules** (excluding the requirements of large heat input welding) is to be applied. However, the kind of base metal is to be the same as test assembly. Where the provisory requirement specified in **3.5.5-1**, **Part K of the Rules** is applied, the steel with the specified minimum proof stress less than that of the tested steels may be included. In addition, the heat input, interpass temperature and post-weld heat treatment for *KSUS329J1*, *KSUS329J3L*, *KSUS329J4L*, *KSUS323L*, *KSUS821L1*, *K329J1TP*, *K329J3LTP* and *K329J4LTP* are to be in accordance with the following (**a**) to (**c**). ((a) to (c) are omitted.)

(2) Aluminium Alloys

The requirements specified in the following (a) thorough (h) are to be applied.

(a) Type of welded joints

Type of welded joints is to be as specified in **Table M4.1.4-<u>34</u>**. Where the welding procedures of butt welded joints are approved, the fillet welded joints corresponding to the welding position are to be included.

(b) Thickness Range of thickness is to be as specified in **Table M4.1.4-45**.

- (c) Throat thickness of fillet welds Throat thickness of fillet welds is to be as specified in Table M4.1.4-56.
- (d) Kind of aluminium alloys Kind of aluminium alloys is to be as specified in Table M4.1.4-<u>67</u>.
 ((e) to (h) are omitted.)
- ((e) to (h) are omitted.)

Rolled Steels for Low Temperature Service 4.1.4-1 and -<u>23</u>, Part M of the Rules are to be applied. However, thickness and the kind of base metal are to be in accordance with the following (a) and (b):

(a) (Omitted)

(3)

(b) Kind of base metal The kind of base metal is, in principle, to be as specified in Table M4.1.4-78.

Title of Table M4.1.4-2 has been amended as follows.

Table M4.1.4-2Correspondence of Fillet, T-joints with Full Penetration and T-joints with Partial
Penetration Welding Positions to Butt Welding Positions for Plates

Table M4.1.4-3 to Table M4.1.4-7 have been renumbered to Table M4.1.4-4 to Table M4.1.4-8, and Table M4.1.4-3 has been added as follows.

Table M4.1.4-3	Correspondence of Fillet and T-joints with Full Penetration Welding Positions to			
Butt Welding Positions for Pipes				

But weiding rositions for ripes			
Butt welding position	Fillet and T-joints with full penetration welding positions		
(welding position during tests)	deemed to be included in butt welding positions		
<u>Flat (PA)</u>	Flat (PA)		
	Horizontal vertical (PB)		
Horizontal (PC)	Horizontal vertical (PB)		
Tube position for welding upwards (PH)	Tube position for welding upwards (PH)		
Tube position for welding downwards (PJ)	Tube position for welding downwards (PJ)		

Table M4.1.4-<u>34</u> Type of Welded Joint (Table is omitted.)

Table M4.1.4-45 Thickness (Table and notes are omitted.)

Table M4.1.4-<u>56</u> Throat Thickness of Fillet Welds (Table is omitted.)

Table M4.1.4-<u>67</u> Kind of Aluminium Alloys (Table and notes are omitted.)

Table M4.1.4-78Range of approval for Rolled Steels for Low Temperature Service(Table and notes are omitted.)

M4.2 Tests for Butt Welded Joints

Paragraph M4.2.3 has been added as follows.

M4.2.3 Test Assemblies

In cases where it is difficult to collect a specified number of test specimens from a single test assembly due to tube diameter, the test specimens may be collected from the minimum number of required test assemblies.

M4.2.7 Impact Tests

Sub-paragraph -1 has been amended as follows.

1 With respect to **Table4.79** Notes (1), Part M of the Rules, the wording "impact test requirements deemed appropriate by the Society" refers to the followings. ((1) and (2) are omitted.)

EFFECTIVE DATE AND APPLICATION (Amendment 1-1)

- **1.** The effective date of the amendments is 14 June 2019.
- 2. Notwithstanding the amendments to the Guidance, the current requirements apply to welding procedures for which the application for approval is submitted to the Society before the effective date.

Amendment 1-2

M2 WELDING WORKS

M2.4 Welding Process

Paragraph M2.4.1 has been amended as follows.

M2.4.1 Selection of Welding Consumables

1 With respect to the provisions of 2.4.1, Part M of the Rules, semi-automatic welding consumables may be used in automatic welding work.

2 "It is deemed to be appropriate by the Society" specified in 2.4.1(2)(c), Part M of the Rules is, in principle, to be as provided below:

- (1) The steel materials are to be in accordance with the followings:
 - (a) The steel materials are to be *KA32*, *KD32*, *KA36* or *KD36* of *TMCP* not exceeding 25 *mm* in thickness.
 - (b) The carbon equivalent (C_{eq}) of steel materials is to be calculated in accordance with Note (3) of Table M2.4.3-1 and to be not more than 0.36%.
- (2) The welding method is to be one pass horizontal fillet welding either by manual welding or gravity welding, and to have been approved by the Society in accordance with the requirements in **M4.3.1**.
- (3) Approval is to have been obtained <u>formfrom</u> the Society for electrodes as being the non-low hydrogen electrodes for high tensile steel in accordance with the requirements in **M6.2.1**.
- (4) Notwithstanding the requirement in preceding (3), low hydrogen electrodes are to be used for repair welding.

<u>3</u> "Welding consumables different from those given in **Table M2.1** may be selected" specified in **2.4.1-1(3)**, **Part M of the Rules**, means cases where the standard value for the strength of the welding metal is lower than the standard value for the strength of base metal.

<u>34</u> Backing flux used for submerged arc one side automatic welding is not included in the backing specified in **2.4.1-2**, **Part M of the Rules**

45 The wording "measures deemed appropriate by the Society" stipulated in **Note** (4) of **Table M2.1**, **Part M of the Rules** means applying corrosion protection in accordance with **25.2.3**(1), **Part C of the Rules** or **22.4.3**(1), **Part CS of the Rules** to welded parts.

M5 WELDERS AND THEIR QUALIFICATION TESTS

M5.2 Qualifications

M5.2.2 Range of Qualification

Sub-paragraph -2(2) has been amended as follows.

2 The wording "in cases where deemed appropriately by the Society" in **5.2.2-6**, **Part M of the Rules** refers to in the following (1) and (2), in addition to **Table M5.2.2-1**:

- (1) Welders who are qualified for welding positions of *PA*, *PE* and *PF/PG* for the butt welding of plates may perform the butt welding of tubes whose fixed outside diameters exceed 300 mm as *PH/PJ* in case where the essential variables relating to welding process, type of welded joint, base metal, and detail of welded joint are the same or are included in the acquired qualifications for the overlapping range of qualification for base metal thickness involved in each qualification.
- (2) Welders who are qualified for welding positions of <u>PAPB</u>, <u>PEPD</u> and *PF/PG* for the fillet welding of plates may perform out the fillet welding for tubes fixed as *PH/PJ* in cases where the essential variables relating to welding process, type of welded joint, base metal, and detail of welded joint are the same or are included in the acquired qualifications, for the overlapping range of qualification for base metal thickness involved in each qualification.

EFFECTIVE DATE AND APPLICATION (Amendment 1-2)

- **1.** The effective date of the amendments is 1 July 2019.
- 2. Notwithstanding the amendments to the Guidance, the current requirements apply to welding consumables for which the application for approval is submitted to the Society before the effective date.