RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

GUIDANCE FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

Part H

Electrical Installations

Rules for the Survey and Construction of Steel Ships
Part H
2012 AMENDMENT NO.1
Guidance for the Survey and Construction of Steel Ships
Part H
2012 AMENDMENT NO.1

Rule No.29 / Notice No.43 15th June 2012 Resolved by Technical Committee on 10th February 2012 Approved by Board of Directors on 6th March 2012

RULES

RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

Part H

Electrical Installations

2012 AMENDMENT NO.1

Rule No.29 15th June 2012
Resolved by Technical Committee on 10th February 2012
Approved by Board of Directors on 6th March 2012

Rule No.29 15th June 2012 AMENDMENT TO THE RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

"Rules for the survey and construction of steel ships" has been partly amended as follows:

Part H ELECTRICAL INSTALLATIONS

Chapter 2 ELECTRICAL INSTALLATIONS AND SYSTEM DESIGN

2.5 Switchboards, Section Boards and Distribution Boards

Paragraph 2.5.4 has been amended as follows.

2.5.4 Busbars

1 Busbars are to be of copper-having a conductivity of 97% or more or of copper-surrounded aluminum alloy.

(-2 to -5 are omitted)

2.9 Cables

2.9.9 Current Rating of Cables

Table H2.13 and Table H2.14 have been amended as follows.

Table H2.13 Current Ratings of Cables (for continuous service) (Based on ambient temperatures of 45 $^{\circ}C$)

	Current rating in amperes											
	PVC insulation			PVC insulation			EP rubber insulation and			Silicon rubber insulation		
Nominal	(general purpose)			(heat resisting)			Cross-linked polyethylene			and Mineral insulation		
sectional-		(60°C)		(75°C)				Insulation	!	(95°€)		
area of								(85°C)				
conductor (mm²)	1	2	3	1	2	3	1	2	3	1	2	3
(mm)	eore	cores	cores	eore	cores	cores	eore	cores	cores	eore	cores	cores
1	8	7	6	13	++	9	16	14	11	20	17	14
1.5	12	10	8	17	14	12	20	17	14	24	20	17
2.5	17	14	12	24	20	17	28	24	20	32	27	22
4	22	19	15	32	27	22	38	32	27	42	36	29
6	29	25	20	41	35	29	48	41	34	55	47	39
10	40	34	28	57	48	40	67	57	47	75	64	53
16	54	46	38	76	65	53	90	77	63	100	85	70
25	71	60	50	100	85	70	120	102	84	135	115	95
35	87	74	61	125	106	88	145	123	102	165	140	116
50	105	89	74	150	128	105	180	153	126	200	170	140
70	135	115	95	190	162	133	225	191	158	255	217	179
95	165	140	116	230	196	161	275	234	193	310	264	217
120	190	162	133	270	230	189	320	272	224	360	306	252
150	220	187	154	310	264	217	365	310	256	410	349	287
185	250	213	175	350	298	245	415	353	291	470	400	329
240	290	247	203	415	353	291	490	417	343	-	-	-
300	335	285	235	475	404	333	560	476	392	-	-	-

	Current rating in amperes											
Nominal sectional area of conductor	PVC insulation (general purpose) (70°C)			PVC insulation (heat resisting) (75°C)			EP rubber insulation and Cross-linked polyethylene Insulation (90 °C)			Silicon rubber insulation and Mineral insulation (95 °C)		
$\frac{\text{conductor}}{(mm^2)}$	1 core	2 cores	3 cores	1 core	2 cores	3 cores	1 core	2 cores	3 cores	1 core	2 cores	3 cores
<u>1.5</u>	12	<u>13</u>	11	17	14	12	23	20	16	<u>26</u>	22	18
2.5	17	18	15	24	20	17	30	26	21	32	<u>27</u>	22
4	22	25	20	32	27	22	40	34	28	43	<u>37</u>	30
<u>6</u>	<u>29</u>	31	26	41	<u>35</u>	<u>29</u>	<u>52</u>	44	<u>36</u>	<u>55</u>	<u>47</u>	<u>39</u>
<u>10</u>	<u>51</u>	<u>43</u>	<u>36</u>	<u>57</u>	<u>48</u>	<u>40</u>	<u>72</u>	<u>61</u>	<u>50</u>	<u>76</u>	<u>65</u>	<u>53</u>
<u>16</u>	<u>68</u>	<u>58</u>	<u>48</u>	<u>76</u>	<u>65</u>	<u>53</u>	<u>96</u>	<u>82</u>	<u>67</u>	<u>102</u>	<u>87</u>	<u>71</u>
<u>25</u>	<u>90</u>	<u>77</u>	<u>63</u>	<u>100</u>	<u>85</u>	<u>70</u>	<u>127</u>	<u>108</u>	<u>89</u>	<u>135</u>	<u>115</u>	<u>95</u>
<u>35</u>	<u>111</u>	<u>94</u>	<u>78</u>	<u>125</u>	<u>106</u>	<u>88</u>	<u>157</u>	<u>133</u>	<u>110</u>	<u>166</u>	<u>141</u>	<u>116</u>
<u>50</u>	<u>138</u>	<u>117</u>	<u>97</u>	<u>150</u>	<u>128</u>	<u>105</u>	<u>196</u>	<u>167</u>	<u>137</u>	<u>208</u>	<u>177</u>	<u>146</u>
<u>70</u>	<u>171</u>	<u>145</u>	<u>120</u>	<u>190</u>	<u>162</u>	<u>133</u>	<u>242</u>	<u>206</u>	<u>169</u>	<u>256</u>	<u>218</u>	<u>179</u>
<u>95</u>	<u>207</u>	<u>176</u>	<u>145</u>	<u>230</u>	<u>196</u>	<u>161</u>	<u>293</u>	<u>249</u>	<u>205</u>	<u>310</u>	<u>264</u>	<u>217</u>
<u>120</u>	<u>239</u>	<u>203</u>	<u>167</u>	<u>270</u>	<u>230</u>	<u>189</u>	<u>339</u>	<u>288</u>	<u>237</u>	<u>359</u>	<u>305</u>	<u>251</u>
<u>150</u>	<u>275</u>	<u>234</u>	<u>193</u>	310	<u>264</u>	<u>217</u>	<u>389</u>	<u>331</u>	<u>272</u>	<u>412</u>	<u>350</u>	<u>288</u>
<u>185</u>	<u>313</u>	<u>266</u>	<u>219</u>	<u>350</u>	<u>298</u>	<u>245</u>	<u>444</u>	<u>377</u>	<u>311</u>	<u>470</u>	<u>400</u>	<u>329</u>
<u>240</u>	<u>369</u>	<u>314</u>	<u>258</u>	<u>415</u>	<u>353</u>	<u>291</u>	<u>522</u>	<u>444</u>	<u>365</u>	<u>553</u>	<u>470</u>	<u>387</u>
<u>300</u>	<u>424</u>	<u>360</u>	<u>297</u>	<u>475</u>	<u>404</u>	<u>333</u>	<u>601</u>	<u>511</u>	<u>421</u>	<u>636</u>	<u>541</u>	<u>445</u>

Note: The values in this table are not applied to cables which do not satisfy the maximum rated conductor temperature of the concerned insulation.

Table H2.14 Correction Factor for Various Ambient Temperatures

Maximum rated conductor		Correction factor										
temperature of insulation	40°€	45 °€	50°€	55 °C	60°€	65 °C	70°€	75°€	80°€	85°€		
60°C	1.15	1.00	0.82	=	=	=	=	=	=	=		
75°€	1.08	1.00	0.91	0.82	0.71	0.58	=	=	=	=		
80°€	1.07	1.00	0.93	0.85	0.76	0.65	0.53	_	_	-		
85 °C	1.06	1.00	0.94	0.87	0.79	0.71	0.61	0.50	_	-		
95°€	1.05	1.00	0.95	0.89	0.84	0.77	0.71	0.63	0.55	0.45		

Maximum rated conductor		Correction factor									
temperature of insulation	<u>40</u> ° <i>C</i>	<u>45</u> °C	<u>50</u> °C	<u>55</u> °C	<u>60</u> °C	<u>65</u> °C	<u>70</u> °C	<u>75</u> °C	<u>80</u> ° <i>C</i>	<u>85</u> ° <i>C</i>	
<u>70</u> °C	1.10	1.00	0.89	0.77	0.63	<u>=</u>	_	<u> </u>	_	_	
<u>75</u> °C	1.08	<u>1.00</u>	0.91	0.82	<u>0.71</u>	0.58	=	=	=	=	
<u>90</u> ° <i>C</i>	1.05	1.00	0.94	0.88	0.82	0.74	0.67	0.58	0.47	=	
<u>95</u> ° <i>C</i>	<u>1.05</u>	<u>1.00</u>	0.95	0.89	0.84	0.77	<u>0.71</u>	0.63	<u>0.55</u>	<u>0.45</u>	

2.13 Lighting Fittings

Paragraph 2.13.2 has been amended as follows.

2.13.2 Construction

- 1 Ratings of lampholders are to be in accordance with *IEC Publication* 60092 or other standards that are deemed appropriate by the Society.
- **2** Lampholders are to be constructed of non-hydroscopic and flame-retardant or incombustible materials.
- 3 Large lampholders are to be provided with means for locking lamps into their holders.
- 4 Enclosures are to be composed of metal, glass or synthetic resins having sufficient mechanical, thermal and chemical resistant properties; furthermore, they are to have a suitable degree of protection depending on their location. Synthetic resin enclosures which support current-carrying parts are to be flame retardant.
- 5 Terminal boxes and leading-in parts of cables are to be of construction suitable for maritime applications. Consideration is to be given so that the insulation of cables does not deteriorate at an early stage due to any temperature rises of terminals and other parts.
- 6 The internal wiring of lighting fittings is to use wiring which takes into account the effects of ultraviolet rays and heat in order to prevent the early-stage degradation of the cable insulation cover.
- **<u>76</u>** Lighting fittings installed in engine rooms or similar other spaces which are exposed to risks of mechanical damage are to be provided with suitable grilled metallic guards to protect their lamps and glass globes against such damage.

2.17 High Voltage Electrical Installations

2.17.6 Testing

Sub-paragraph -3 has been amended.

- **3** The following high voltage tests on high voltage electrical equipment and cables are to be carried out at the place of manufacturer, etc.:
- ((1) to (3) are omitted)
- (4) Test voltages for high voltage cables of the following values.

Rated voltages above 500V and 1,000V or below: 3,500V

Rated voltages above 1,000V and 3,600V or below: 6,500V

Rated voltages above 3,600V and 7,200V or below: $\frac{11,000}{12,500}V$ Rated voltages above 7,200V and 12,000V or below: $\frac{15,000}{2}21,000V$

Rated voltages above 12,000*V*: 22,00030,500*V*

EFFECTIVE DATE AND APPLICATION

1. The effective date of the amendments is 15 June 2012.

GUIDANCE FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

Part H

Electrical Installations

2012 AMENDMENT NO.1

Notice No.43 15th June 2012

Resolved by Technical Committee on 10th February 2012

Notice No.43 15th June 2012

AMENDMENT TO THE GUIDANCE FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

"Guidance for the survey and construction of steel ships" has been partly amended as follows:

Part H ELECTRICAL INSTALLATIONS

H2 ELECTRICAL INSTALLATIONS AND SYSTEM DESIGN

H2.2 System Design - General

Paragraph H2.2.7 has been added as follows.

H2.2.7 Lighting Circuits

For lighting circuits which satisfy the following conditions, the wording "not exceed 80% of the ratings of protective devices" in **2.2.7-2**, **Part H of the Rules** can be interpreted to mean "not exceed the ratings of protective devices".

- (1) Such circuits are not used in accommodation areas
- (2) Electrical apparatus with unspecified load currents (such as receptacles, etc.) are not connected.
- (3) The ratings or appropriate settings of protection devices are decided based upon maximum load currents of connected lighting points

H2.9 Cables

Paragraph H2.9.6 has been amended as follows.

H2.9.6 Voltage Drop

1 Voltage drop calculations are to be carried out by using the following formulae as standards:

(1) In the case of d.c. circuits

$$Voltage\ drop\ (\%) = \frac{R_{20} \times K \times 2L \times I \times 100}{V}$$

(2) In the case of *a.c.* circuits

Single phase a.c. circuits
$$Voltage\ drop\ (\%) = \left(\frac{R_{20} \times K \times 2L \times I \times 100}{V}\right) \times \delta$$
Three phase a.c. circuits $Voltage\ drop\ (\%) = \left(\frac{R_{20} \times K \times 2L \times I \times 100}{V}\right) \times \frac{1.73}{2} \times \delta$

L: length of cable for single passage (m)

I: maximum load current (A)

V: circuit voltage (V)

 R_{20} : d.c. resistance at $20^{\circ}C$ (Ω/m)

K: temperature factor at the maximum allowable temperature of conductor $\frac{60}{70}$ °C: $\frac{1.16}{1.20}$

75 $^{\circ}$ C : 1.22

 $\frac{8090}{8595}$ $\stackrel{\circ}{C}$: $\frac{1.24}{1.28}$

 δ : factor of voltage drop (See Table H2.9.6-1)

2 (omitted)

Table H2.9.6-1 Factor (δ) of a.c. Voltage Drops in Rubber Insulated Cables

Nominal sectional area of	1 140	Power factor (%)										
conductor (mm ²)	100	95	90	85	80	75	70	Inductance (<i>mH/km</i>)				
1.5	1.00	0.95	0.90	0.85	0.81	0.76	0.71	0.370				
2.5	1.00	0.95	0.91	0.86	0.81	0.76	0.71	0.341				
4	1.00	0.96	0.91	0.86	0.81	0.76	0.71	0.317				
6	1.00	0.96	0.91	0.8 <u>6</u> 7	0.82	0.77	0.72	0.299				
10	1.00	0.96	0.92	0.87	0.83	0.78	0.73	0.279				
16	1.00	0.97	0.93	0.89	0.84	0. <u>79</u> 80	0.75	0.263				
25	1.00	0.98	0.95	0.9 <u>0</u> 1	0.86	0.82	0.7 <u>7</u> 8	0.259				
35	1.00	0.99	0.96	0.9 <u>2</u> 3	0.8 <u>8</u> 9	0.84	0.80	0.250				
50	1.00	1.01	0.98	0.95	0.9 <u>1</u> 2	0.8 <u>7</u> 8	0.8 <u>3</u> 4	0.248				
70	1.00	1.0 <u>3</u> 4	1.02	<u>0.99</u> 1.00	0.9 <u>6</u> 7	0.93	0. <u>8</u> 9 0	0.24 <u>0</u> 8				
95	1.0 <u>0</u> 1	1.07	1.0 <u>6</u> 7	1.0 <u>4</u> 5	1.0 <u>2</u> 3	<u>0.99</u> 1.00	0.9 <u>6</u> 7	0.240				
120	1.01	1.10	1.11	1.10	1.08	1.06	1.03	0.235				
150	1.01	1.1 <u>3</u> 4	1.1 <u>5</u> 6	1.1 <u>5</u> 6	1.1 <u>4</u> 5	1.1 <u>2</u> 3	1.1 <u>0</u> 1	0.235				
185	1.02	1.1 <u>8</u> 9	1.2 <u>1</u> 3	1.2 <u>3</u> 4	1.2 <u>3</u> 4	1.2 <u>2</u> 3	1.2 <u>0</u> 2	0.234				
240	1.04	1.2 <u>6</u> 7	1.3 <u>2</u> 3	1.3 <u>5</u> 6	1.3 <u>6</u> 8	1.3 <u>7</u> 8	1.3 <u>6</u> 8	0.23 <u>0</u> 2				
300	1.0 <u>5</u> 6	1.3 <u>5</u> 6	1.4 <u>3</u> 5	1. <u>48</u> 50	1.5 <u>1</u> 3	1.5 <u>3</u> 5	1.5 <u>3</u> 6	0.2 <u>29</u> 31				

EFFECTIVE DATE AND APPLICATION

1. The effective date of the amendments is 15 June 2012.