RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

Part CSR-T

Common Structural Rules for Double Hull Oil Tankers

Rules for the Survey and Construction of Steel ShipsPart CSR-T2012AMENDMENT NO.1

Rule No.2915th June 2012Resolved by Technical Committee on 10th February 2012Approved by Board of Directors on 6th March 2012

Rule No.29 15th June 2012 AMENDMENT TO THE RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

"Rules for the survey and construction of steel ships" has been partly amended as follows:

Part CSR-T Common Structural Rules for Double Hull Oil Tankers

Amendment 1-1

Section 4 BASIC INFORMATION

3. Structure Design Details

3.2 Termination of Local Support Members

3.2.5 Sniped ends

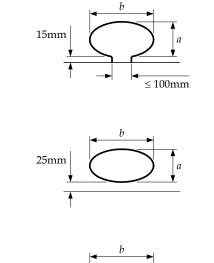
Paragraph 3.2.5.1 has been amended as follows.

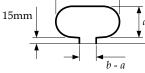
3.2.5.1 Stiffeners with sniped ends may be used where dynamic loads are small and where the incidence of vibration is considered to be small, i.e. structure not in the stern area and structure not in the vicinity of engines or generators, provided the net thickness of plating supported by the stiffener, t_{p-net} , is not less than:

$$t_{p-net} = c_1 \sqrt{\left(1000l - \frac{s}{2}\right) \frac{sPk}{10^6}}$$
 (mm)

Where:

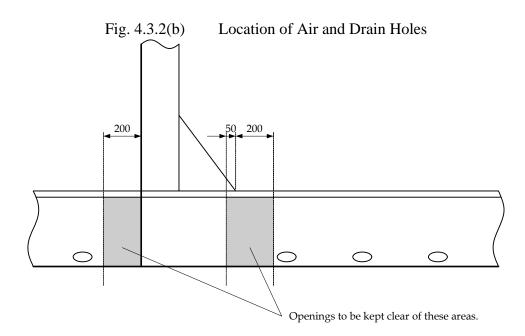
l : stiffener span, in *m*


- *s* : stiffener spacing, in *mm*, as defined in **2.2**
- P: design pressure for the stiffener for the design load set being considered, in kN/m^2 . The design load sets and method to derive the design pressure are to be taken in accordance with the following criteria, which define the acceptance criteria set to be used
 - (a) Table 8.2.5 in the cargo tank region
 - (b) **Section 8/3.9.2.2** in the area forward of the forward cargo tank, and in the aft end
 - (c) Section 8/4.8.1.2 in the machinery space
 - (d) Section 8/6.2.4.1 and 6.2.5.3 as applicable for the particular structure under consideration
- *k* : higher strength steel factor, as defined in **Section 6/1.1.4**
- c_1 : coefficient for the design load set being considered, to be taken as
 - =1.2 for acceptance criteria set AC1 and sloshing design laod
 - =1.1 for acceptance criteria set AC2


3.2.6 Air and drain holes and scallops

Paragraph 3.2.6.1 has been amended as follows.

3.2.6.1 Air_{$\overline{7}$} and drain holes_{$\overline{7}$} and scallops and block fabrication butts are to be kept at least 200mm clear of the toes of end brackets, end connections and other areas of high stress concentration measured along the length of the stiffener toward the mid-span and 50mm measured along the length in the opposite direction. See **Fig. 4.3.2(b)**. Openings that have been fitted with closing plates, such as scallops, may be permitted in way of block fabrication butts. In areas where the shear stress is less than 60 percent of the allowable limit, alternative arrangements may be accepted. Openings are to be well-rounded. **Fig. 4.3.2(a)** shows some examples of air and drain holes and scallops. In general, the ratio of a/b, as defined in **Fig. 4.3.2(a)**, is to be between 0.5 and 1.0. In fatigue sensitive areas further consideration may be required with respect to the details and arrangements of openings and scallops.



Note

The details shown in this figure are for guidance and illustration only.

3.4 Intersections of Continuous Local Support Members and Primary Support Members

3.4.1 General

Paragraph 3.4.1.4 has been amended as follows.

3.4.1.4 When, in the following locations, the calculated direct stress, σ_w , in the primary support member web stiffener according to **3.4.3.5** exceeds 80% of the permissible values a soft heel is to be provided in way of the heel of primary support member web stiffeners:

- (a) connection to shell envelope longitudinals below the scantling draught, T_{sc}
- (b) connection to inner bottom longitudinals.

A soft heel is not required at the intersection with watertight bulkheads <u>and primary support</u> <u>members</u>, where a back bracket is fitted or where the primary support member web is welded to the stiffener face plate. The soft heel is to have a keyhole, similar to that shown in **Fig. 4.3.6(c)**.

Section 6 MATERIALS AND WELDING

1. Steel Grades

1.2 Application of Steel Materials

1.2.3 Operation in areas with low air temperature

Paragraph 1.2.3.1 has been amended as follows.

1.2.3.1 For ships intended to operate for long periods in areas with a lowest daily mean air temperature lowest mean daily average temperature below -10 degrees C (i.e. regular service during winter to Arctic or Antarctic waters) the materials in exposed structures will be specially considered.

Table 6.1.3 has been amended as follows.

Structural member category	Material Cl	ass or Grade
	Within 0.4 <i>L_{CSR-T}</i> Amidships	Outside 0.4 <i>L</i> _{CSR-T}
Secondary Longitudinal bulkhead strakes, other than those belonging to primary category Deck plating exposed to weather other than that belonging to primary or special category Side plating	Class I	Grade A ⁽⁸⁾ /AH
Primary Bottom plating including keel plate Strength deck plating, excluding that belonging to the special category ⁽¹⁰⁾⁽¹¹⁾ Continuous longitudinal members above strength deck, excluding longitudinal hatch coamings Uppermost strake in longitudinal bulkheads ⁽¹⁰⁾⁽¹¹⁾ Vertical strake (hatch side girder) and upper sloped strake in top wing tank	Class II	Grade $A^{(8)}$ /AH
Special Sheer strake at strength deck ⁽¹⁾⁽²⁾⁽³⁾⁽¹⁰⁾⁽¹¹⁾ Stringer plate in strength deck ⁽¹⁾⁽²⁾⁽³⁾⁽¹⁰⁾⁽¹¹⁾ Deck strake at longitudinal bulkhead, <u>excluding deck plating in way</u> <u>of inner hull longitudinal bulkhead</u> ⁽²⁾⁽⁴⁾⁽¹⁰⁾⁽¹¹⁾ Strength deck plating at outboard corners of cargo hatch openings ⁽¹¹⁾ Bilge strake ⁽²⁾⁽⁶⁾ Continuous longitudinal hatch coamings ⁽¹¹⁾	Class III	Class II (Class I outside 0.6 <i>L_{CSR-T}</i> amidships)
Other Categories Plating for stern frames, rudder horns and shaft brackets Longitudinal strength members of strength deck plating for ships with single strength deck ⁽¹¹⁾	Grade <i>B</i> / <i>AH</i>	Class II –
Strength members not referred to in above categories ⁽⁹⁾	Grade A ⁽⁸⁾ /AH	Grade A ⁽⁸⁾ /AH

Table 6.1.3	Material C	lace or (Grade of	Structural	Members
1 able 0.1.5	Material	lass of v	Jiade of	Suuciulai	Members

Notes

- 1. Not to be less than E/EH within $0.4L_{CSR-T}$ amidships in vessels with length, L_{CSR-T} , exceeding 250m.
- 2. Single strakes required to be of material class III or E/EH are, within $0.4L_{CSR-T}$ amidships, to have breadths not less than $800 + 5L_{CSR-T}$ mm, but need not be greater than 1800mm.
- 3. A radius gunwale plate may be considered to meet the requirements for both the stringer plate and the sheer strake, provided it extends generally 600mm inboard and vertically.
- 4. For tankers having a breadth, *B*, exceeding 70*m*, the centreline strake and the strakes in way of the longitudinal bulkheads port and starboard, are to be class III.
- 5. (Void)
- 6. To be not lower than D/DH within $0.6L_{CSR-T}$ amidships of vessels with length, L_{CSR-T} , exceeding 250m.
- 7. (Void)
- Grade *B/AH* to be used for plate thickness more than 40mm. For engine foundation heavy plates, Grade *B/AH* to be used for plate thickness more than 30mm. However, engine foundation heavy plates outside 0.6L_{CSR-T} amidships may be of Grade *A/AH*.
- 9. The material class used for reinforcement and the quality of material (i.e. whether normal or higher strength steel) used for welded attachments, such as spill protection bars and bilge keel, is to be similar to that of the hull envelope plating in way. Where attachments are made to round gunwale plates, special consideration will be given to the required grade of steel, taking account of the intended structural arrangements and attachment details.
- 10. The material class for deck plating, sheer strake and upper strake of longitudinal bulkhead within $0.4L_{CSR-T}$ amidships is also to be applied at structural breaks of the superstructure, irrespective of position.
- 11. To be not lower than B/AH within $0.4L_{CSR-T}$ amidships for ships with single strength deck.

2. Corrosion Protection Including Coatings

2.1 Hull Protection

2.1.1 General

Paragraph 2.1.1.2 has been amended as follows.

2.1.1.2 For ships contracted for construction on or after <u>8 December 2006</u>, the date of IMO adoption of the amended *SOLAS Regulation II-1/3-2*, by which an *IMO "Performance standard for protective coatings for ballast tanks and void spaces"* will be made mandatory, the coatings of internal spaces subject to the amended *SOLAS Regulation* are to satisfy the requirements of the IMO performance standard. For ships contracted for construction on or after 1 July 2012, the IMO performance standard is to be applied as interpreted by *IACS UI SC 223* and *IACS UI SC 227*. In applying *IACS UI SC 223*, "Administration" is to be read to be the "Classification Society".

3. Corrosion Additions

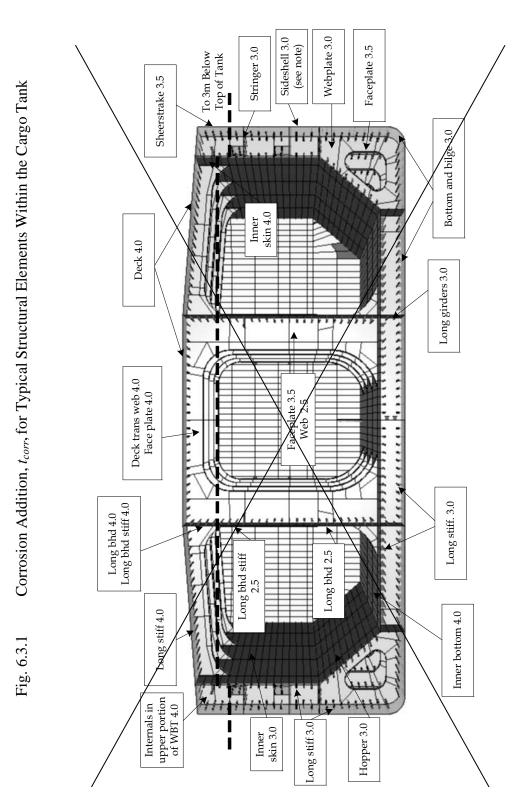
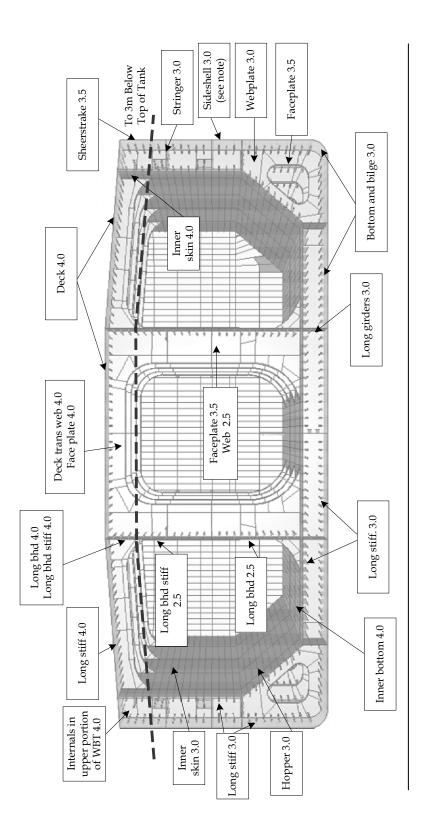



Fig. 6.3.1 has been amended as follows.

Note 1. Corrosion additions are given for a standard configuration and without heated cargo 2. 0.5*mm* to be added for side plating in the quay contact region defined in **Section 8/Fig. 8.2.2** <u>3. The distance 3*m* below top of tank is to be measure parallel to the deck</u>

4. Fabrication

4.1 General

4.1.2 Fabrication standard

Paragraph 4.1.2.3 has been amended as follows.

4.1.2.3 The fabrication standard is to include information, to establish the range and the tolerance limits, for the items specified as follows:

- (a) Cutting edge
 - the slope of the cut edge and the roughness of the cut edges
- (b) Flanged longitudinals and brackets and built-up sections
 - the breadth of flange and depth of web, angle between flange and web, and straightness in plane of flange or at the top of face plate
- (c) Pillars
 - the straightness between decks, and cylindrical structure diameter
- (d) Brackets and small stiffeners
 - the distortion at the free edge line of tripping brackets and small stiffeners
- (e) Sub-assembly stiffeners
 - · details of snipe end of secondary face plates and stiffeners
- (f) Plate assembly
 - for flat and curved blocks the dimensions (length and breadth), distortion and squareness, and the deviation of interior members from the plate
- (g) Cubic assembly
 - in addition to the criteria for plate assembly, twisting deviation between upper and lower plates, for flat and curved cubic blocks
- (h) Special assembly
 - the distance between upper and lower gudgeons, distance between aft edge of propeller boss and aft peak bulkhead, twist of stern frame assembly, deviation of rudder from shaft centreline, twist of rudder plate, and flatness, breadth and length of top plate of main engine bed. The final Where boring out of the propeller boss and stern frame, skeg or solepiece is carried out at a late stage of construction, it is to be carried out after completing the major part of the welding of the aft part of the ship. Where block boring is used, the shaft alignment is to be carried out using a method and sequence submitted to and recognized by the Classification Society., and tThe fit-up and alignment of the rudder, pintles and axles, are to be carried out after completing the major part of the welding of the aft part of the ship. The contacts between the conical surfaces of pintles, rudder stocks and rudder axles are to be checked before the final mounting.
- (i) Butt joints in plating
 - alignment of butt joint in plating
- (j) Cruciform joints
 - ·alignment measured on the median line and measured on the heel line of cruciform joints
- (k) Alignment of interior members
 - alignments of flange of T longitudinals, alignment of panel stiffeners, gaps in T joints and lap joints, and distance between scallop and cut outs for continuous stiffeners in

assembly and in erection joints

- (l) Keel and bottom sighting
 - deflections for whole length of the ship, and for the distance between two adjacent bulkheads, cocking-up of fore body and of aft body, and rise of floor amidships
- (m) Dimensions
 - dimensions of length between perpendiculars, moulded breadth and depth at midship, and length between aft edge of propeller boss and main engine
- (n) Fairness of plating between frames
 - deflections between frames of shell, tank top, bulkhead, upper deck, superstructure deck, deck house deck and wall plating
- (o) Fairness of plating in way of frames
 - deflections of shell, tank top, bulkhead, strength deck plating and other structures measured in way of frames

Section 7 LOADS

6. Combination of Loads

Design Load Combination 6.2

6.2.1 General

Table 7.6.1 has been amended as follows.

	Table 7.6.1	Design Load	Combinations	
Design Load Combination		S	S + D	А
	M _{v-total}	M _{sw-harb}	$M_{sw-sea} + M_{wv}$	-
	M _{h-total}	-	M_h	-
	\mathcal{Q}	$Q_{sw-harb}$	$Q_{sw-sea} + Q_{wv}$	-
р	Weather Deck	-	$P_{wdk-dyn}$	-
P_{ex}	Hull envelope	P_{hys}	$P_{hys} + P_{wv-dyn}$	-
P _{in}	Ballast tanks (BWE with sequential filling method)	the greater of a) $P_{in-test}$ b) $P_{in-air} + P_{drop}$	$P_{in-tk}+P_{in-dyn}$	P _{in-flood}
	Ballast tanks (BWE with flow-through method)	the greater of a) $P_{in-test}$ b) $P_{in-air} + P_{drop}$	$P_{in-air} + P_{drop} + P_{in-dyn}$	P _{in-flood}
	Cargo tanks including cargo tanks designed for filling with water ballast	the greater of a) $P_{in-test}$ b) $P_{in-tk} + P_{valve}$	P _{in-tk} +P _{in-dyn} P _{in-tk} +P _{valve} -25+P _{in-dyn}	-
	Other tanks with liquid filling	the greater of a) $P_{in-test}$ b) P_{in-air}	$P_{in-tk}+P_{in-dyn}$	P _{in-flood}
	Watertight boundaries	-	-	P _{in-flood}
D	Internal decks for dry spaces	P_{stat}	$P_{stat} + P_{dk-dyn}$	-
P_{dk}	Decks for heavy units	F_{stat}	$F_{stat} + F_{dk-dyn}$	-

Design Load Combinati

Note:

1. Separate load requirements may be specified in strength assessment (FEM) and scantling requirements.

Where:		
$M_{v-total}$: design vertical bending moment, in kNm	
$M_{sw-perm-harb}$: permissible hull girder hogging and sagging still water bending moment envelopes for harbour/sheltered water operation, in <i>kNm</i>	see 2.1.1
M _{sw-perm-sea}	: permissible hull girder hogging and sagging still water bending moment envelopes for seagoing operation, in <i>kNm</i>	see 2.1.1
M_{wv}	: vertical wave bending moment for a considered dynamic load case, in kNm	see 6.3.2.1
$M_{h-total}$: design horizontal bending moment, in kNm	
M_h	: horizontal wave bending moment for a considered dynamic load case, in kNm	see 6.3.3.1
Q	: design vertical shear force, in kN	
$Q_{sw-perm-harb}$: permissible hull girder positive and negative still water shear force limits for harbour/sheltered water operation, in <i>kN</i>	see 2.1.3
$Q_{sw-perm-sea}$: permissible hull girder positive and negative still water shear force limits for	see 2.1.3

	seagoing operation, in kN	
Q_{wv}	: vertical wave shear force for a considered dynamic load case, in kN	see 6.3.4.1
\tilde{P}_{ex}	: design sea pressure, in kN/m^2	
P_{hvs}	: static sea pressure at considered draught, in kN/m^2	see 2.2.2.1
P _{wv-dvn}	: dynamic wave pressure for a considered dynamic load case, in kN/m^2	see 6.3.5
P _{wdk-dyn}	: green sea load for a considered dynamic load case, in kN/m^2	see 6.3.6
P_{in}	: design tank pressure, in kN/m^2	
P _{in-test}	: tank testing pressure, in kN/m^2	see 2.2.3.5
P _{in-air}	: static tank pressure in the case of overfilling or filling during flow through	see 2.2.3.2
	ballast water exchange, in kN/m^2	
P_{drop}	: added overpressure due to liquid flow through air pipe or overflow pipe, in kN/m^2	see 2.2.3.3
P_{valve}	: setting of pressure relief valve, in kN/m^2	see 2.2.3.5
P _{in-tk}	: static tank pressure, in kN/m^2	see 2.2.3.1
P_{in-dyn}	: dynamic tank pressure for a considered dynamic load case, in kN/m^2	see 6.3.7
$P_{in-flood}$: pressure in compartments and tanks in flooded or damaged condition, in kN/m^2	see 2.2.3.4
P_{stat}	: static pressure on decks and inner bottom, in kN/m^2	see 2.2.4.1
P_{dk}	: design deck pressure, in kN/m^2	
P_{dk-dyn}	: dynamic deck pressure on decks, inner bottom and hatch covers for a considered	see 6.3.8.1
	dynamic load case, in kN/m^2	500 0.5.0.1
F_{stat}	: load acting on supporting structures and securing systems for heavy units of	see 2.2.5.1
	cargo, equipment or structural components, in kN	500 2.2.3.1
F _{dk-dyn}	: dynamic load acting on supporting structures and securing systems for heavy	see 6.3.8.2
	units of cargo, equipment or structural components, in kN	500 0.3.0.2

Section 8 SCANTLING REQUIREMENTS

1. Longitudinal Strength

1.1 Loading Guidance

1.1.2 Loading Manual

Paragraph 1.1.2.2 has been amended as follows.

1.1.2.2 The following loading conditions and design loading and ballast conditions upon which the approval of the hull scantlings is based are, as a minimum, to be included in the Loading Manual:

- (a) Seagoing conditions including both departure and arrival conditions
 - homogeneous loading conditions including a condition at the scantling draft (homogeneous loading conditions shall not include filling of dry and clean ballast tanks <u>at departure condition</u>)
 - a normal ballast condition where:
 - * the ballast tanks may be full, partially full or empty. Where partially full options are exercised, the conditions in **1.1.2.5** are to be complied with
 - * all cargo tanks are to be empty including cargo tanks suitable for the carriage of water ballast at sea
 - * the propeller is to be fully immersed, and
 - * the trim is to be by the stern and is not to exceed $0.015L_{CSR-T}$, where L_{CSR-T} is as defined in Section 4/1.1.1
 - a heavy ballast condition where:
 - * the draught at the forward perpendicular is not to be less than that for the normal ballast condition
 - * ballast tanks in the cargo tank region or aft of the cargo tank region may be full, partially full or empty. Where the partially full options are exercised, the conditions in **1.1.2.5** are to be complied with
 - * the fore peak water ballast tank is to be full. If upper and lower fore peak water ballast tanks are fitted, the lower is required to be full. The upper fore peak tank may be full, partially full or empty. If upper and lower fore peak tanks are fitted and only one of them is designated as water ballast tank, the other may be empty.
 - * all cargo tanks are to be empty including cargo tanks suitable for the carriage of water ballast at sea
 - * the propeller is to be fully immersed
 - * the trim is to be by the stern and is not to exceed $0.015L_{CSR-T}$, where L_{CSR-T} is as defined in **Section 4/1.1.1**
 - · any specified non-uniform distribution of loading
 - conditions with high density cargo including the maximum design cargo density, when applicable
 - mid-voyage conditions relating to tank cleaning or other operations where these differ significantly from the ballast conditions

- conditions covering ballast water exchange procedures with the calculations of the intermediate condition just before and just after ballasting and/or deballasting any ballast tank
- (b) Harbour/sheltered water conditions
 - conditions representing typical complete loading and unloading operations
 - docking condition afloat
 - propeller inspection afloat condition, in which the propeller shaft centre line is at least $D_{prop}/4$ above the waterline in way of the propeller, where D_{prop} is the propeller diameter
- (c) Additional design conditions
 - a design ballast condition in which all segregated ballast tanks in the cargo tank region are full and all other tanks are empty including fuel oil and fresh water tanks.

Guidance Note

The design condition specified in (c) is for assessment of hull strength and is not intended for ship operation. This condition will also be covered by the **IMO 73/78 SBT** condition provided the corresponding condition in the Loading Manual only includes ballast in segregated ballast tanks in the cargo tank region.

1.2 Hull Girder Bending Strength

1.2.2 Minimum requirements

 Z_{v-}

Paragraph 1.2.2.2 has been amended as follows.

1.2.2.2 At the midship cross section the net vertical hull girder section modulus, Z_{v-min} , at the deck and keel is not to be less than the rule minimum hull girder section modulus, Z_{v-min} , defined as:

$$\begin{array}{ll} \min = 0.9kC_{wv}L_{CSR-T}^{2}B(C_{b}+0.7)\cdot10^{-6} \qquad (m^{3})\\ \text{Where:}\\ k \qquad : \text{ higher strength steel factor, as defined in Section 6/1.1.4}\\ C_{wv} \qquad : \text{ wave coefficient as defined in Table 8.1.2}\\ L_{CSR-T} \qquad : \text{ rule length, in } m, \text{ as defined in Section 4/1.1.1.1}\\ B \qquad : \text{ moulded breadth, in } m, \text{ as defined in Section 4/1.1.3.1}\\ C_{b} \qquad : \text{ block coefficient, as defined in Section 4/1.1.1.1}\\ \text{but is not to taken as less than 0.70} \end{array}$$

be

1.6 Tapering and Structural Continuity of Longitudinal Hull Girder Elements

1.6.3 Vertical extent of higher strength steel

Paragraph 1.6.3.1 has been amended as follows.

1.6.3.1 The vertical extent of higher strength steel, z_{hts} , used in the deck or bottom and measured from the moulded deck line at side or keel is not to be taken less than the following, see also **Fig. 8.1.10.**

$\underline{z_{hts}} = z_1 \left(1 - \frac{1}{2} \right)$	$\frac{190}{\sigma_1 k_i}$ (m)
$z_{hts} = z_1 \left(1 - \frac{c_1}{c_1} \right)$	$\left(\frac{\sigma_{\text{perm}}}{\sigma_1}\right)$ (m)
Where:	
Z_{I}	: distance from horizontal neutral axis to moulded deck line or keel respectively, in <i>m</i>
σ_l	: to be taken as σ_{dk} or σ_{kl} for the hull girder deck and keel respectively, in N/mm^2
σ_{dk}	: hull girder bending stress at moulded deck line given by:
	$=\frac{\left M_{sw-perm-sea} + M_{wv-v}\right }{I_{v-net50}} (z_{dk-side} - z_{NA-net50}) \cdot 10^{-3} $ (N/mm ²)
σ_{kl}	: hull girder bending stress at keel given by:
	$= \frac{\left M_{sw-perm-sea} + M_{wv-v}\right }{I_{v-net50}} (z_{NA-net50} - z_{kl}) \cdot 10^{-3} \qquad (N/mm^2)$
<u> </u>	: permissible hull girder bending stress as given in Table 8.1.3 for design load combination S+D, in <i>N/mm</i> ²
$M_{sw-perm-sea}$: permissible hull girder still water bending moment for seagoing operation, in <i>kNm</i> , as defined in Section 7/2.1.1
M_{wv-v}	: hogging and sagging vertical wave bending moments, in <i>kNm</i> , as defined in Section 7/3.4.1
	M_{WV-V} is to be taken as:
	M_{wv-hog} for assessment with respect to hogging vertical wave
	bending moment M_{wv-sag} for assessment with respect to sagging vertical wave
	bending moment
I _{v-net50}	: net vertical hull girder moment of inertia, in m^4 , as defined in Section $4/2.6.1.1$
Z_{dk} -side	: distance from baseline to moulded deck line at side, in m
z_{kl}	: vertical distance from the baseline to the keel, in m
Z _{NA} -net50	: distance from baseline to horizontal neutral axis, in m
<i>k</i> _i	: higher strength steel factor for the area <i>i</i> defined in Fig. 8.1.10 . The factor, <i>k</i> , is defined in Section 6/1.1.4

2. Cargo Tank Region

2.5 Bulkheads

2.5.7 Vertically corrugated bulkheads

Paragraph 2.5.7.9 has been amended as follows.

2.5.7.9 For ships with a moulded depth, see Section 4/1.1.4, less than 16*m*, the lower stool may be eliminated provided the following requirements, in addition to the requirements of 2.5.7.6, are complied with:

- (a) general:
 - double bottom floors or girders are to be fitted in line with the corrugation flanges for transverse or longitudinal bulkheads, respectively
 - brackets/carlings are to be fitted below the inner bottom and hopper tank in line with corrugation webs. Where this is not practicable gusset plates with shedder plates are to be fitted, see item (c) below and Fig. 8.2.3
 - the corrugated bulkhead and its supporting structure is to be assessed by Finite Element (FE) analysis in accordance with Section 9/2. In addition the local scantlings requirements of 2.5.6.4 and 2.5.6.5 and the minimum corrugation depth requirement of 2.5.7.4 are to be applied.
- (b) inner bottom and hopper tank plating:
 - the inner bottom and hopper tank in way of the corrugation is to be of at least the same material yield strength as the attached corrugation, and 'Z' grade steels as given in Section 6/1.1.5 are to be used unless plate through thickness properties are documented for approval.
- (c) supporting structure:
 - within the region of the corrugation depth below the inner bottom the net thickness of the supporting double bottom floors or girders is not to be less than the net thickness of the corrugated bulkhead flange at the lower end and is to be of at least the same material yield strength
 - the upper ends of vertical stiffeners on supporting double bottom floors or girders are to be bracketed to adjacent structure
 - brackets/carlings arranged in line with the corrugation web are to have a depth of not less than 0.5 *times* the corrugation depth and a net thickness not less than 80% of the net thickness of the corrugation webs and are to be of at least the same material yield strength
 - cut outs for stiffeners in way of supporting double bottom floors and girders in line with corrugation flanges are to be fitted with full collar plates
 - where support is provided by gussets with shedder plates, the height of the gusset plate, see h_g in **Fig. 8.2.3**, is to be at least equal to the corrugation depth, and gussets with shedder plates are to be arranged in every corrugation. The gusset plates are to be fitted in line with and between the corrugation flanges. The net thickness of the gusset and shedder plates are not to be less than 100% and 80%, respectively, of the net thickness of the corrugation flanges and are to be of at least the same material yield strength. Also see **2.5.7.11**.

• scallops in brackets, gusset plates and shedder plates in way of the connections to the inner bottom or corrugation flange and web are not permitted.

Table 8.2.3 has been amended as follows.

ower end of l_{cg} C_1 C_3 o be taken as less the rse bulkhead with no	At mid length of l_{cg} C_{m1} C_{m3} an 0.60 o lower stool, but is not to be ta	At upper end of l_{cg} $0.80C_{ml}$ $0.65C_{ml}$ $0.65C_{m3}$
C ₃ o be taken as less the	C _{m3}	0.65C _{m3}
o be taken as less th	an 0.60	
		skap og lagg than 0.55
		skan og lagg than 0.55
rse bulkhead with n	o lower stool, but is not to be ta	then as less than 0.55
		iken as iess man 0.55
rse bulkhead with no	o lower stool	
rse bulkhead with n	o lower stool	
o be taken as less th	an 0.55	
rse bulkhead with no	o lower stool, but is not to be ta	iken as less than 0.60
rse bulkhead with no	o lower stool	
rse bulkhead with no	o lower stool	
o be taken as less the	an 0.60	
dinal bulkhead with	no lower stool, but is not to be	taken as less than 0.55
dinal bulkhead with	no lower stool	
dinal bulkhead with	no lower stool	
o be taken as less th	an 0.55	
dinal bulkhead with	no lower stool, but is not to be	taken as less than 0.60
	rse bulkhead with n o be taken as less th rse bulkhead with n rse bulkhead with n o be taken as less th dinal bulkhead with dinal bulkhead with o be taken as less th	rse bulkhead with no lower stool rse bulkhead with no lower stool o be taken as less than 0.55 rse bulkhead with no lower stool, but is not to be ta rse bulkhead with no lower stool o be taken as less than 0.60 dinal bulkhead with no lower stool, but is not to be dinal bulkhead with no lower stool o be taken as less than 0.55 dinal bulkhead with no lower stool, but is not to be

<i>a</i> _{<i>m</i>3}	$= 0.32 + \frac{0.24}{R_{bl}}$
	$= \frac{0.9}{0.85}$ for longitudinal bulkhead with no lower stool
<i>b</i> _{<i>m</i>3}	$=-0.12-\frac{0.10}{R_{bl}}$
	= 0.19 for longitudinal bulkhead with no lower stool
R _{bt}	$= \frac{A_{bt}}{b_{ib}} \left(1 + \frac{l_{ib}}{b_{ib}} \right) \left(1 + \frac{b_{av-t}}{h_{st}} \right) $ for transverse bulkheads
R_{bl}	$= \frac{A_{bl}}{l_{ib}} \left(1 + \frac{l_{ib}}{b_{ib}} \right) \left(1 + \frac{b_{av-l}}{h_{sl}} \right) $ for longitudinal bulkheads
A_{dt}	: cross sectional area enclosed by the moulded lines of the transverse bulkhead upper stool, in m^2
	= 0 if no upper stool is fitted
A_{dl}	: cross sectional area enclosed by the moulded lines of the longitudinal bulkhead upper stool, in m^2
	= 0 if no upper stool is fitted
A_{bt}	: cross sectional area enclosed by the moulded lines of the transverse bulkhead lower stool, in m^2
A_{bl}	: cross sectional area enclosed by the moulded lines of the longitudinal bulkhead lower stool, in m^2
b _{av-t}	: average width of transverse bulkhead lower stool, in <i>m</i> . See Fig. 8.2.3
b _{av-l}	: average width of longitudinal bulkhead lower stool, in <i>m</i> . See Fig. 8.2.3
h_{st}	: height of transverse bulkhead lower stool, in <i>m</i> . See Fig. 8.2.3
h_{sl}	: height of longitudinal bulkhead lower stool, in <i>m</i> . See Fig. 8.2.3
b_{ib}	: breadth of cargo tank at the inner bottom level between hopper tanks, or between the hopper tank and
	centreline lower stool, in <i>m</i> . See Fig. 8.2.3
b_{dk}	: breadth of cargo tank at the deck level between upper wing tanks, or between the upper wing tank and centreline deck box or between the corrugation flanges if no upper stool is fitted, in <i>m</i> . See Fig. 8.2.3
l _{ib}	: length of cargo tank at the inner bottom level between transverse lower stools, in m. See Fig. 8.2.3
l_{dk}	: length of cargo tank at the deck level between transverse upper stools or between the corrugation flanges if no upper stool is fitted, in <i>m</i> . See Fig. 8.2.3

6. Evaluation of Structure for Sloshing and Impact Loads

6.4 Bow Impact

6.4.5 Side shell stiffeners

Paragraph 6.4.5.1 has been amended as follows.

6.4.5.1 The effective net plastic section modulus, Z_{pl-net} , of each stiffener, in association with the effective plating to which it is attached, is not to be less than:

$$Z_{pl-net} = \frac{P_{im} s l_{bdg}^{2}}{f_{bdg} C_{s} \sigma_{yd}} \qquad (cm^{3})$$
Where:

$$P_{im} \qquad : \text{bow impact pressure as given in Section 7/4.4 and calculated at the load calculation point defined in Section 3/5.2.2, in kN/m^{2}
 $s \qquad : \text{stiffener spacing, in } mm$, as defined in Section 4/2.2
 $l_{bdg} \qquad : \text{effective bending span, as defined in Section 4/2.1.1, in } m$
 $f_{bdg} \qquad : \text{bending moment factor}$
 $= 8 \left(1 + \frac{n_{s}}{2} \right)$
 $n_{s} \qquad = 2.0 \text{ for continuous stiffeners or where stiffeners are bracketed at both ends see $\frac{6.3.3.1}{6.4.3.2}$ for alternative arrangements
 $C_{s} \qquad : \text{permissible bending stress coefficient}$
 $= 0.9 \text{ for acceptance criteria set AC3}$
 $\sigma_{yd} \qquad : \text{specified minimum yield stress of the material, in } N/mm^{2}$$$$

6.4.7 Primary support members

Paragraph 6.4.7.5 has been amended as follows.

6.4.7.5 The net section modulus of each primary support member, Z_{net50} , is not to be less than:

$$Z_{net50} = 1000 \frac{f_{bdg-pt} P_{im} b_{slm} f_{slm} l_{bdg}^2}{f_{bdg} C_s \sigma_{yd}} \qquad (cm^3)$$

Where:

fbdg-pt	: correction factor for the bending moment at the ends and considering the patch load
	$=3f_{slm}^{3}-8f_{slm}^{2}+6f_{slm}$
f_{slm}	: patch load modification factor
	$=\frac{l_{slm}}{l_{bdg}}$
l _{slm}	: extent of bow impact load area along the span
	$=\sqrt{A_{slm}}$ (m), but not to be taken as greater than l_{bdg}
A_{slm}	: bow impact load area, in m^2 , as defined in 6.4.6.1
l_{bdg}	: effective bending span, as defined in Section 4/2.1.4, in m
P_{im}	: bow impact pressure as given in Section 7/4.4 and calculated at the load calculation point defined in Section $3/5 \cdot 3 \cdot 3 \cdot 5 \cdot 3 \cdot 1$, in kN/m^2
b _{slm}	: breadth of impact load area supported by the primary support member, to be taken as the spacing between primary support members as defined in Section 4/2.2.2 , but not to be taken as greater than l_{slm} , in m
f_{bdg}	: bending moment factor
y oug	= 12 for primary support members with end fixed continuous face plates, stiffeners or where stiffeners are bracketed in accordance with Section 4/3.3 at both ends
C_s	: permissible bending stress coefficient = 0.8
σ_{yd}	: specified minimum yield stress of the material, in N/mm^2

Section 9 DESIGN VERIFICATION

1. Hull Girder Ultimate Strength

1.1 General

1.1.1 Application

Paragraph 1.1.1.2 has been amended as follows.

1.1.1.2 The scantling requirements in this Sub-Section are to be applied within $0.4L_{CSR-T}$ -amidships to any cross section along the entire vessel's length and are in addition to all other requirements within the rules.

2. Strength Assessment (FEM)

2.3 Local Fine Mesh Structural Strength Analysis

2.3.1 Objective and scope

Paragraph 2.3.1.1 has been amended as follows.

2.3.1.1 For tankers of conventional arrangements, as a minimum requirement, the following areas in the midship cargo region are to be investigated:

- (a) main bracket toes and openings at critical locations and upper hopper knuckle joint of a typical transverse web frame located in the midship tank. Where a wash bulkhead is fitted, main bracket toes and openings at critical locations of transverse and vertical webs
- (b) main bracket toes and openings at critical locations on a typical transverse web frame adjacent to a transverse bulkhead in way of the transverse bulkhead horizontal stringers
- (c) main bracket toes, heels and openings at critical locations of horizontal stringers, connection of transverse bulkhead to double bottom girder or buttress of a typical transverse bulkhead
- (d) connections of transverse and longitudinal corrugated bulkheads to bottom stool or inner bottom and double bottom supporting structure if a lower stool is not fitted. If a gusset plate is fitted the connection between the corrugation and the upper corners of the gusset are to be assessed
- (e) end brackets and attached web stiffeners of typical longitudinal stiffeners of double bottom and deck, and adjoining vertical stiffener of transverse bulkhead. <u>If longitudinal</u> <u>stiffeners are fitted above the deck then the connection in way of the transverse bulkhead</u> <u>are to be assessed.</u>

2.4 Application of Scantlings in Cargo Tank Region

2.4.5 Application of scantlings to side shell, longitudinal bulkheads and inner hull longitudinal bulkheads

Paragraph 2.4.5.5 has been added as follows.

2.4.5.5 The plate thickness required for strengthening against hull girder shear loads of the side shell, longitudinal bulkheads and inner hull longitudinal bulkheads in way of a transverse bulkhead is to be taken as the greater from the corresponding vertical location of the forward and aft transverse bulkhead of the middle tanks of the cargo tank finite element model as required by **Appendix B/1.1.1.5**. All relevant requirements in other sections of the Rules are also to be complied with.

Section 11 GENERAL REQUIREMENTS

1. Hull Openings and Closing Arrangements

1.4 Deck Houses and Companionways

Table 11.1.6 has been amended as follows.

Table 11.1.6 Value	es of ' C_4 '
Bulkhead location	Value of ' C_4 '
Unprotected front, lowest tier	$2.0 + L_2/120$
Unprotected front, 2 nd tier	$1.0 + L_2/120$
Unprotected front, 3rd tier and above	$0.5 + L_2/150$
Protected front, all tiers	$0.5 + L_2/150$
Sides, all tiers	$0.5 + L_2/150$
Aft ends, aft of amidships, all tiers	$0.7 + (L_2/1000) - 0.8x/L_{CSR-T}$
Aft ends, forward of amidships, all tiers	$0.5 + (L_2/1000) - 0.4x/L_{CSR-T}$

Table 11.1.6 Values of (C_{i})

4. Equipment

4.1 Equipment Number Calculation

4.1.1 Requirements

Paragraph 4.1.1.1 has been amended as follows.

4.1.1.1 Anchors and chains are to be in accordance with **Table 11.4.1** and the quantity, mass and sizes of these are to be determined by the equipment number (*EN*), given by:

 $EN = \varDelta^{2/3} + 2Bh_{dk} + 0.1A$

Where:

- Δ : moulded displacement, in *tonnes*, as defined in Section 4/1.1.7.1
- *B* : moulded breadth, in *m*, as defined in Section 4/1.1.3.1
- h_{dk} : $h_{FB} + h_1 + h_2 + h_3 + \dots$, as shown in **Fig. 11.4.1**. In the calculation of *h*, sheer, camber and trim may be neglected
- h_{FB} : freeboard from the summer load waterline amidships, in *m*
- h_1, h_2 , : height on the centreline of each tier of houses having a breadth greater than B/4, in m
- $h_3 ... h_n$
- A : profile area of the hull, superstructure and houses above the summer load waterline which are within the length L_{CSR-T} , in m^2 . Superstructures or deck houses having a breadth equal to or less than B/4 at any point may be excluded. With regard to determining A, when a screen or bulwark is more than 1.5m high, the area shown in **Fig. 11.4.2** as A_2 is to be included in A

 L_{CSR-T} : rule length, as defined in Section 4/1.1.1.1

- Note :
- (a) Screens or Screens or bulwarks 1.5*m* or more in height are to be regarded as parts of houses when determining *h* and *A*.
- (b) If a house having a breadth greater than B/4 is above a house with a breadth of B/4 or less then the wide house is to be included but the narrow house ignored.

5. Testing Procedures

5.1 Tank Testing

5.1.5 Leak testing

Paragraph 5.1.5.1 has been amended as follows.

5.1.5.1 All boundary welds, erection joints, and penetrations including pipe connections, <u>except</u> welds made by automatic processes are to be examined in accordance with the approved procedure and under a pressure of at least 0.15*bar* with a leak indicating solution (e.g. soapy water solution). Pressures greater than 0.20*bar* are not recommended.

Table 11.5.1 has been amended as follows.

	Table 11.5.	υ	Requirements for Tanks and Bou	
1	Structures to be tested	Type of testing	Hydrostatic testing head or pressure	Remarks
1	Double Bottom Tanks	Structural ⁽¹⁾	The greater of	Tank boundaries tested
			- to the top of overflow, or	from at least one side
			- to the bulkhead deck	
2	Double Side Tanks	Structural ⁽¹⁾	The greater of	Tank boundaries tested
			- to the top of overflow, or	from at least one side
			- to 2.4 <i>m</i> above top of tank ⁽²⁾	
3	Cargo Tanks	Structural ⁽¹⁾	The greatest of	Tank boundaries tested
			- to the top of overflow,	from at least one side
			- to 2.4 <i>m</i> above top of $tank^{(2)}$, or	
	Fuel Oil Bunkers	Structural ⁽¹⁾	- to the top of tank ⁽²⁾ plus setting	
			of any pressure relief valve	
4	Cofferdams	Structural ⁽³⁾	The greater of	
			- to the top of overflow, or	
			- to 2.4 <i>m</i> above top of	
			cofferdam	
5a	Peak Tanks	Structural	The greater of	Aft peak tank test to
			- to the top of overflow, or	be carried out after
			- to 2.4 <i>m</i> above top of tank ⁽²⁾	installation of stern tube.
5b	Fore Peak not used as a	Refer to SOLAS		
	tank	II.1 Reg.14		
5c	Aft Peak not used as a	Leak		
	tank			
6	Watertight Bulkheads in	Hose ⁽⁴⁾		Including steps and
	way of dry space			recesses
7	Watertight Doors below	Hose		For testing before
	freeboard or bulkhead			installation ⁽⁵⁾
	deck			
8	(void)			
9	Watertight hatch covers of	Structural	The greater of:	At least every second
	tanks on combination	testing	- to 2.4 <i>m</i> above the top of	hatch cover is to be tested
	carriers	-	hatch cover, or	
			- setting pressure of the pressure relief	
			valve	
10	Weathertight Hatch	Hose ⁽⁴⁾		
	Covers, Doors and			
	other Closing			
	Appliances			
11	Shell plating in way of	Visual		To be carefully examined
	pump room	examination		with the vessel afloat
12	Chain Locker (aft	Structural	To the top of chain locker spurling pipe	
	Collision Bulkhead)		pipe	
13	Independent Tanks	Structural	The greater of	
15	mappindent Tunks	Succura	- to the top of overflow, or	
			- to 0.9 <i>m</i> above top of tank	
14	Ballast Ducts	Structural	Ballast pump maximum pressure or	
14	Bullust Ducts	Suuctural	setting of any relief valve for the ballast	
			duct if that is less	
15	Hawse Dines	Hose		
IJ	Hawse Pipes	11050		l

Table 11.5.1Testing Requirements for Tanks and Boundaries

Notes :

- 1. Leak or hydropneumatic testing may be accepted under the conditions specified in **5.1.5**, provided that at least one tank for each type is structurally tested, and selected in connection with the approval of the design. In general, the structural testing need not be repeated for subsequent vessels of a series of identical new buildings unless the Surveyor deems the repetition necessary. The structural testing of cargo space boundaries and tanks for segregated cargoes or pollutants on subsequent vessels of a series of identical new buildings are to be in accordance with the requirements of the Society.
- 2. Top of tank is defined as the deck forming the top of the tank excluding hatchways.
- 3. Leak testing in accordance with **5.1.5** may be accepted, except that hydropneumatic testing may be required in consideration of the construction techniques and welding procedures employed.
- 4. Where hose testing is impractical due to the stage of outfitting (machinery, cables, switchboard, insulation etc.), it may be replaced at the Society's discretion, by a careful visual examination of all the crossings and welded joints. A dye penetrant test, leak test or ultrasonic leak test may be required.
- 5. Before installation (i.e. normally at manufacture) the watertight access doors or hatches are to be hydrostatically tested with a head of water equivalent to the bulkhead deck at centre, from the side which is most prone to leakage. The acceptance criteria are as follows:
 - \cdot no leakage for doors or hatches with gaskets
 - a maximum water leakage of one litre per minute for doors or hatches with metallic sealing.
- 6. If leak or hydropneumatic testing is carried out, arrangements are to be made to ensure that no pressure in excess of 0.30 *bar* is applied.

Appendix A HULL GIRDER ULTIMATE STRENGTH

2. Calculation of Hull Girder Ultimate Capacity

2.2 Simplified Method Based on an Incremental-iterative Approach

Paragraph 2.2.2 has been amended as follows.

2.2.2 Assumptions and modelling of the hull girder cross-section

- 2.2.2.1 In applying the procedure described in **2.2.1**, the following assumptions are to be made:
 - (a) The ultimate strength is calculated at a hull girder transverse section between two adjacent transverse webs.
 - (b) The hull girder transverse section remains plane during each curvature increment.
 - (c) The material properties of steel are assumed to be elastic, perfectly plastic.
 - (d) The hull girder transverse section can be divided into a set of elements which act independently of each other.
- 2.2.2.2 The elements making up the hull girder transverse section are:
 - (a) longitudinal stiffeners with attached plating, the structural behaviour is given in **2.3.1**
 - (b) transversely stiffened plate panels, the structural behaviour is given in 2.3.1
 - (c) hard corners, as defined in 2.2.2.3, the structural behaviour is given in 2.3.2
- 2.2.2.3 The following structural areas are to be defined as hard corners:
 - (a) the plating area adjacent to intersecting plates
 - (b) the plating area adjacent to knuckles in the plating with an angle greater than 30 *degrees*.
 - (c) plating comprising rounded gunwales

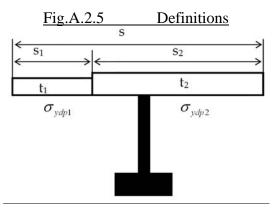
An illustration of hard corner definition for girders on longitudinal bulkheads is given in **Fig. A.2.3.** The hard corner size is defined in **2.2.2.4.**

- 2.2.2.4 The size and modelling of hard corner elements is to be as follows:
 - (a) it is to be assumed that the hard corner extends up to s/2 from the plate intersection for longitudinally stiffened plate, where s is the stiffener spacing
 - (b) it is to be assumed that the hard corner extends up to $20t_{grs}$ from the plate intersection for transversely stiffened plates, where t_{grs} is the gross plate thickness. Note :
 - (a) For transversely stiffened plate, the effective breadth of plate for the load shortening portion of the stress-strain curve is to be taken as the full plate breadth, i.e. to the intersection of other plates not from the end of the hard corner if any. The area on which the value of σ_{CR5} defined in **2.3.8.1** applies is to be taken as the breadth between the hard corners, i.e. excluding the end of the hard corner if any.
 - (b) For longitudinally stiffened plate, the effective breadth of attached plate is equal to the mean spacing of the ordinary stiffener when the panels on both sides of the stiffener are longitudinally stiffened, or equal to the breadth of the longitudinally stiffened panel when the panel on one side of the stiffener is longitudinally stiffened and the other panel is of the transversely stiffened.

2.2.2.5 Where the plate members are stiffened by non-continuous longitudinal stiffeners, the non-continuous stiffeners are considered only as dividing a plate into various elementary plate panels.

2.2.2.6 Openings are to be considered in accordance with Section 4/2.6.3.

2.2.2.7 Where attached plating is made of steels having different thicknesses and/or yield stresses, an average thickness and/or average yield stress obtained by the following formula are to be used


for the calculation:

$$\underbrace{(a) \quad t = \frac{t_1 s_1 + t_2 s_2}{s}}_{(b) \quad \sigma_{ydp}} = \frac{\sigma_{ydp1} t_1 s_1 + \sigma_{ydp2} t_2 s_2}{ts}$$

$$\underbrace{(b) \quad \sigma_{ydp} = \frac{\sigma_{ydp1} t_1 s_1 + \sigma_{ydp2} t_2 s_2}{ts}}_{ts}$$

$$\underbrace{Where:}_{\underline{t_1, s_1, t_2, s_2, \sigma_{ydp1}, \sigma_{ydp2}, s, see Fig.A.2.5.}}$$

Fig.A.2.5 has been added as follows.

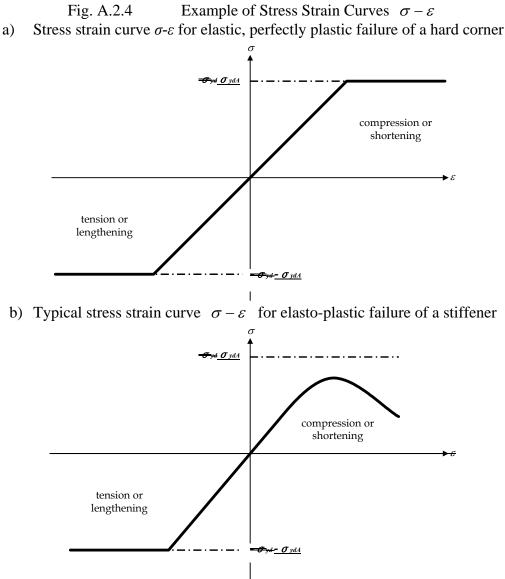
2.3 Stress-strain Curves σ - ε (or Load-end Shortening Curves)

2.3.1 Plate panels and stiffeners

Paragraphs 2.3.1.2 and 2.3.1.3 have been added as follows.

2.3.1.2 Where the plate members are stiffened by non-continuous longitudinal stiffeners, the stress of the element is to be obtained in accordance with **2.3.3** to **2.3.7**, taking into account the non-continuous longitudinal stiffener. In calculating the total forces for checking the hull girder ultimate strength, the area of non-continuous longitudinal stiffener is to be assumed as zero. 2.3.1.3 Where openings are provided in the plate panel, the considered area of the element is to be obtained by deducting the opening area from the plating in calculating the total force for checking the hull girder ultimate strength. Openings are to be considered in accordance with **Section 4/2.6.3**.

2.3.3 Elasto-plastic failure of structural elements


Paragraph 2.3.3.1 has been amended as follows.

2.3.3.1 The equation describing the stress-strain curve σ - ε or the elasto-plastic failure of structural elements is to be obtained from the following formula, valid for both positive (compression or shortening) of hard corners and negative (tension or lengthening) strains of all elements (see **Fig. A.2.4**):

$\sigma = \Phi \sigma_{vd}$	
$\sigma = \Phi \sigma_{ydA}$	
Where:	
${\Phi}$: edge function
	$\Phi = \varepsilon$ for $-1 < \varepsilon < 1$
	$\Phi = 1$ for $\varepsilon > 1$
ε	: relative strain
	$\varepsilon = \frac{\varepsilon_E}{\varepsilon_E}$
	$\mathcal{E} = \frac{\mathcal{E}_{yd}}{\mathcal{E}_{yd}}$
	: element strain
\mathcal{E}_E	
${\cal E}_{yd}$: strain corresponding to yield stress in the element
	$\frac{\sigma_{yd}}{F}$
	E
	$\varepsilon_{yd} = \frac{\sigma_{ydA}}{E}$
G_{yd}	: specified minimum yield stress of the material, in <i>N/mm</i>²
$\underline{\sigma}_{ydA}$: equivalent minimum yield stress of the considered element, in
	N/mm^2
	$\sigma_{vdp}A_{p-net50} + \sigma_{vds}A_{s-net50}$
	$\sigma_{ydA} = \frac{\sigma_{ydp}A_{p-net50} + \sigma_{yds}A_{s-net50}}{A_{p-net50} + A_{s-net50}}$
	$p-net50$ $r_s-net50$
σ_{ydp}	: specified minimum yield stress of the material of the plate, in
	<u>N/mm²</u>
$\underline{\sigma}_{yds}$: specified minimum yield stress of the material of the stiffener,
	<u>in N/mm²</u>
$\underline{A}_{p-net50}$: net sectional area of attached plating, in cm ²
$\underline{A}_{s-net50}$: net sectional area of stiffener without attached plating, in cm ²
Note :	
The signs of	the stresses and strains in this Annendix are opposite to those in

The signs of the stresses and strains in this Appendix are opposite to those in the rest of this Part

Fig.A2.4 has been amended as follows.

2.3.4 Beam column buckling

Paragraph 2.3.4.1 has been amended as follows.

2.3.4.1 The equation describing the shortening portion of the stress strain curve σ_{CR1} - ε for the beam column buckling of stiffeners is to be obtained from the following formula:

$$\begin{split} \sigma_{CR1} &= \Phi \sigma_{C1} \left(\frac{A_{1-mers0} + 10^{-2} b_{eff-p} f_{mers0}}{A_{2-mers0} + 10^{-2} s t_{mers0}} \right) \qquad (N/mm^2) \\ \text{Where:} \\ \varphi & : \text{edge function defined in 2.3.3.1} \\ A_{snec50} & : \text{net area of the stiffener, in } cm^2, \text{ without attached plating} \\ \sigma_{C1} & : \text{critical stress, in } N/mm^2 \\ & -\sigma_{C1} = \frac{\sigma_{E1}}{c} \qquad for -\sigma_{E1} \leq \frac{\sigma_{yd}}{2} \varepsilon \\ \sigma_{C1} = \frac{\sigma_{e1}}{s} \qquad for -\sigma_{E1} \leq \frac{\sigma_{yd}}{2} \varepsilon \\ \sigma_{C1} = \frac{\sigma_{e1}}{s} \qquad for -\sigma_{E1} \leq \frac{\sigma_{yd}}{2} \varepsilon \\ \sigma_{C1} = \frac{\sigma_{ydg}}{s} \left(1 - \frac{\sigma_{ydg}}{4\sigma_{E1}} \right) \qquad for -\sigma_{E1} \leq \frac{\sigma_{yd}}{2} \varepsilon \\ \sigma_{C1} = \sigma_{ydg} \left(1 - \frac{\sigma_{ydg}}{4\sigma_{E1}} \right) \qquad for -\sigma_{E1} \leq \frac{\sigma_{ydg}}{2} \varepsilon \\ \sigma_{C1} = \sigma_{ydg} \left(1 - \frac{\sigma_{ydg}}{4\sigma_{E1}} \right) \qquad for -\sigma_{E1} \leq \frac{\sigma_{ydg}}{2} \varepsilon \\ \sigma_{C1} = \sigma_{ydg} \left(1 - \frac{\sigma_{ydg}}{4\sigma_{E1}} \right) \qquad for -\sigma_{E1} \leq \frac{\sigma_{ydg}}{2} \varepsilon \\ \sigma_{C1} = \sigma_{ydg} \left(1 - \frac{\sigma_{ydg}}{4\sigma_{E1}} \right) \qquad for -\sigma_{E1} \leq \frac{\sigma_{ydg}}{2} \varepsilon \\ \varepsilon & : \text{relative strain defined in 2.3.3.1} \\ \sigma_{E1} & : \text{Euler column buckling stress, in } N/mm^2 \\ \sigma_{E1} = \pi^2 E \frac{I_{E-mers0}}{I_{E-mers0}^2 t_{eff}^2} \qquad for -\sigma_{eff} \leq \frac{\sigma_{eff}}{2} \varepsilon \\ \vdots \text{ notulus of elasticity, } 2.06 \times 10^5 \quad (N/mm^2) \\ I_{E-mers0} & : \text{ net moment of inertia of stiffeners, in } cm^4, \text{ with attached plating of width } b_{eff,s} \\ b_{eff-s} & : \text{effective width, in } mm, \text{ of the attached plating for the stiffener} \\ b_{eff-s} & = \frac{s}{\beta_{\rho}} \qquad \text{for } \beta_{\rho} > 1.0 \\ b_{eff-s} & = \frac{s}{t_{mers0}} \sqrt{\frac{\sigma_{cyd}}{E}}} \\ s & : \text{ plate breadth, in } mm, \text{ taken as the spacing between the stiffeners, as defined in Section 4/2.2.1 \\ t_{mers0} & : \text{ net thickness of attached plating, in } mm \\ A_{E-mers0} & : \text{ net thickness of attached plating, in } mm \end{cases}$$

31

members

$b_{e\!f\!f\!-\!p}$: effective width, in <i>mm</i> , of the plating
	$b_{eff-p} = \left(\frac{2.25}{\beta_p} - \frac{1.25}{\beta_p^2}\right) s \text{for} \beta_p > 1.25$
	$b_{eff-p} = s$ for $\beta_p \le 1.25$
σ_{ydB}	equivalent minimum yield stress of the considered element, in N/mm^2
	$\sigma_{ydB} = \frac{\sigma_{ydp} A_{pE-net50} l_{pE} + \sigma_{yds} A_{s-net50} l_{sE}}{A_{pE-net50} l_{pE} + A_{s-net50} l_{sE}}$
<u>ApE-net50</u>	effective area, in cm^2
	$A_{pE-net50} = 10^{-2} b_{eff-s} t_{net50}$
σ_{ydp}	: specified minimum yield stress of the material of the plate, in N/mm^2
$\underline{\sigma}_{yds}$: specified minimum yield stress of the material of the stiffener, in $\frac{N/mm^2}{2}$
\underline{l}_{pE}	: distance, in mm, measured from the neutral axis of the stiffener with
	attached plate of width, b_{eff-s} , to the bottom of the attached plate
<u>l_{sE}</u>	: distance, in <i>mm</i> , measured from the neutral axis of the stiffener with
	attached plate of width, b_{eff-s} , to the top of the stiffener

2.3.5 Torsional buckling of stiffeners

Paragraph 2.3.5.1 has been amended as follows.

2.3.5.1 The equation describing the shortening portion of the stress-strain curve σ_{CR2} - ε for the lateral-flexural buckling of stiffeners is to be obtained according to the following formula:

plating

$$\sigma_{CR2} = \Phi \frac{A_{s-net50} \sigma_{C2} + 10^{-2} st_{net50} \sigma_{CP}}{A_{s-net50} + 10^{-2} st_{net50}}$$
(N/mm²)
Where:

$$\Phi \qquad : \text{ edge function defined in 2.3.3.1}$$

$$A_{s-net50} \qquad : \text{ net area of the stiffener, in } cm^2, \text{ without attached}$$

$$\sigma_{C2} = \frac{\sigma_{E2}}{\varepsilon} \qquad \text{ for } \sigma_{E2} \leq \frac{\sigma_{yd}}{2}\varepsilon$$

$$\sigma_{C2} = \frac{\sigma_{E2}}{\varepsilon} \qquad \text{ for } \sigma_{E2} \leq \frac{\sigma_{yd}}{2}\varepsilon$$

$$\frac{\sigma_{C2} = \sigma_{yd} \left(1 - \frac{\sigma_{yd}\varepsilon}{4\sigma_{E2}}\right) \qquad \text{ for } \sigma_{E2} \leq \frac{\sigma_{yd}}{2}\varepsilon}{2}\varepsilon$$

$$\frac{\sigma_{C2} = \frac{\sigma_{E2}}{\varepsilon} \qquad for \quad \sigma_{E2} \leq \frac{\sigma_{yd}}{2}\varepsilon}{2}\varepsilon$$

$$\sigma_{C2} = \sigma_{yds} \left(1 - \frac{\sigma_{yd}\varepsilon}{4\sigma_{E2}}\right) \qquad \text{for } \sigma_{E2} > \frac{\sigma_{yds}}{2}\varepsilon$$

$$\frac{\sigma_{C2} = \sigma_{yds} \left(1 - \frac{\sigma_{yds}\varepsilon}{4\sigma_{E2}}\right) \qquad for \quad \sigma_{E2} > \frac{\sigma_{yds}}{2}\varepsilon}{2}\varepsilon$$

 σ_{E2} : Euler torsional buckling stress, in *N/mm²* $\sigma_{E2} = \sigma_{ET}$

 σ_{ET} : reference stress for torsional buckling, in N/mm^2 , defined in Section 10/3.3.3.1, calculated based on gross thickness minus the corrosion

$$\mathcal{E}$$
addition 0.5*t_{corr}*.
$$\mathcal{E}$$
: relative strain defined in **2.3.3.1**
s
: plate breadth, in *mm*, taken as the spacing between the stiffeners, as defined in **Section 4/2.2.1**
t_{net50}
: net thickness of attached plating, in *mm*

$$\sigma_{CP}$$
: ultimate strength of the attached plating for the stiffener, in *N/mm*²

$$\frac{\sigma_{CP} = \left(\frac{2.25}{\beta_p} - \frac{1.25}{\beta_p^2}\right) \sigma_{yd} \quad \text{for } \beta_p > 1.25$$

$$\frac{\sigma_{CP} = \sigma_{yd}}{\sigma_{CP} = \sigma_{yd}} \quad \text{for } \beta_p > 1.25$$

$$\frac{\sigma_{CP} = \sigma_{yd}}{\sigma_{CP} = \sigma_{ydp}} \quad \text{for } \beta_p > 1.25$$

$$\frac{\sigma_{CP} = \sigma_{ydp}}{\sigma_{CP} = \sigma_{ydp}} \quad \text{for } \beta_p > 1.25$$

$$\frac{\sigma_{CP} = \sigma_{ydp}}{\sigma_{CP} = \sigma_{ydp}} \quad \text{for } \beta_p > 1.25$$

$$\frac{\sigma_{CP} = \sigma_{ydp}}{\sigma_{ydp}} \quad \text{for } \beta_p > 1.25$$

2.3.6 Web local buckling of stiffeners with flanged profiles

Paragraph 2.3.6.1 has been amended as follows.

2.3.6.1 The equation describing the shortening portion of the stress strain curve σ_{CR3} - ε for the web local buckling of flanged stiffeners is to be obtained from the following formula:

$$\sigma_{CR3} = \Phi \sigma_{yd} \left(\frac{b_{eff-p} t_{net50} + d_{w-eff} t_{w-net50} + b_f t_{f-net50}}{s t_{net50} + d_w t_{w-net50} + b_f t_{f-net50}} \right)$$

$$\sigma_{CR3} = \Phi \frac{b_{eff-p} t_{net50} \sigma_{ydp} + (d_{w-eff} t_{w-net50} + b_f t_{f-net50}) \sigma_{yds}}{s t_{net50} + d_w t_{w-net50} + b_f t_{f-net50}}$$
(N/mm²)

Where:

-

: edge function defined in 2.3.3.1 Φ : effective width, in *mm*, of the plating, defined in 2.3.4 b_{eff-p} : net thickness of plate, in mm t_{net50} : depth of the web, in *mm* d_w : net thickness of web, in mm $t_{w-net50}$: breadth of the flange, in mm b_f : net thickness of flange, in mm $t_{f-net50}$: plate breadth, in *mm*, taken as the spacing between the stiffeners, as defined S in Section 4/2.2.1 d_{w-eff} : effective depth of the web, in mm $d_{w-eff} = \left(\frac{2.25}{\beta_w} - \frac{1.25}{\beta_w^2}\right) d_w \quad \text{for} \quad \beta_w > 1.25$ $d_{w-eff} = d_w$

2.3.7 Web local buckling of flat bar stiffeners

Paragraph 2.3.7.1 has been amended as follows.

2.3.7.1 The equation describing the shortening portion of the stress-strain curve σ_{CR4} - ε for the web local buckling of flat bar stiffeners is to be obtained from the following formula:

$$\sigma_{CR4} = \phi \left(\frac{st_{net50} \sigma_{CP} + 10^{-2} A_{s-net50} \sigma_{C4}}{st_{net50} + 10^{-2} A_{s-net50}} \right)$$
Where:

$$\phi \qquad : \text{edge function defined in 2.3.3.1}$$

$$\sigma_{CP} \qquad : \text{ultimate strength of the attached plating, in N/mm^2, defined in 2.3.5}$$

$$\sigma_{C4} = \frac{\sigma_{E4}}{\varepsilon} \qquad \text{for } -\sigma_{E4} \leq \frac{\sigma_{yd}}{2} \varepsilon$$

$$-\frac{\sigma_{C4} - \sigma_{yd} \left(1 - \frac{\sigma_{yd} \varepsilon}{4 \sigma_{E4}}\right) \qquad \text{for } -\sigma_{E4} \geq \frac{\sigma_{yd}}{2} \varepsilon}{\sigma_{C4} - \sigma_{yd} \left(1 - \frac{\sigma_{yd} \varepsilon}{4 \sigma_{E4}}\right) \qquad \text{for } -\sigma_{E4} \geq \frac{\sigma_{yd}}{2} \varepsilon}{2} \varepsilon}$$

$$\sigma_{C4} = \frac{\sigma_{yd} \left(1 - \frac{\sigma_{yd} \varepsilon}{4 \sigma_{E4}}\right) \qquad \text{for } -\sigma_{E4} \geq \frac{\sigma_{yds}}{2} \varepsilon}{2} \varepsilon}$$

$$\sigma_{C4} = \sigma_{yds} \left(1 - \frac{\sigma_{yds} \varepsilon}{4 \sigma_{E4}}\right) \qquad \text{for } -\sigma_{E4} \geq \frac{\sigma_{yds}}{2} \varepsilon}{2} \varepsilon$$

$$\sigma_{C4} = \sigma_{yds} \left(1 - \frac{\sigma_{yds} \varepsilon}{4 \sigma_{E4}}\right) \qquad \text{for } -\sigma_{E4} \geq \frac{\sigma_{yds}}{2} \varepsilon}{2} \varepsilon$$

$$\sigma_{E4} \qquad : \text{Euler buckling stress, in N/mm^2}$$

$$\sigma_{E4} = 160000 \left(\frac{t_{w-net50}}{d_w}\right)^2$$

$$\varepsilon \qquad : \text{relative strain defined in 2.3.3.1.}$$

$$A_{s-net50} \qquad : \text{ net thickness of web, in mm}$$

$$s \qquad : \text{ plate breadth, in mm, taken as the spacing between the stiffeners, as defined in Section 4/2.2.1$$

$$t_{net50} \qquad : \text{ net thickness of attached plating, in mm}$$

$$\sigma_{yds} \qquad : \text{ specified minimum yield stress of the material of the stiffener, in $\frac{N/mm^2}{N/mm^2}$$$

2.3.8 Buckling of transversely stiffened plate panels

Paragraph 2.3.8.1 has been amended as follows.

2.3.8.1 The equation describing the shortening portion of the stress-strain curve σ_{CR5} - ε for the buckling of transversely stiffened panels is to be obtained from the following formula:

$$\sigma_{CR5} = \min \left\{ \begin{array}{l} \Phi \sigma_{yd} \left[\frac{s}{1000l_{stf}} \left(\frac{2.25}{\beta_p} - \frac{1.25}{\beta_w^2} \right) + 0.1 \left(1 - \frac{s}{1000l_{stf}} \right) \left(1 + \frac{1}{\beta_p^2} \right)^2 \right] \\ \sigma_{CR5} = \min \left\{ \begin{array}{l} \Phi \sigma_{ydp} \left[\frac{s}{1000l_{stf}} \left(\frac{2.25}{\beta_p} - \frac{1.25}{\beta_p^2} \right) + 0.1 \left(1 - \frac{s}{1000l_{stf}} \right) \left(1 + \frac{1}{\beta_p^2} \right)^2 \right] \\ \sigma_{CR5} = \min \left\{ \begin{array}{l} \Phi \sigma_{ydp} \left[\frac{s}{1000l_{stf}} \left(\frac{2.25}{\beta_p} - \frac{1.25}{\beta_p^2} \right) + 0.1 \left(1 - \frac{s}{1000l_{stf}} \right) \left(1 + \frac{1}{\beta_p^2} \right)^2 \right] \\ \sigma_{ydp} \Phi \end{array} \right.$$
(N/mm²)
Where:

β_p	: coefficient defined in 2.3.4.1
Φ	: edge function defined in 2.3.3.1
S	: plate breadth, in <i>mm</i> , taken as the spacing between the stiffeners, as
	defined in Section 4/2.2.1
lstf	: stiffener span, in <i>m</i> , equal to spacing between primary support members
G_{yd}	specified minimum yield stress of the material, in N/mm ²
σ_{ydp}	:specified minimum yield stress of the material of the plate, in N/mm^2

Appendix B STRUCTURAL STRENGTH ASSESSMENT

2. Cargo Tank Structural Strength Analysis

2.4 Application of Loads

2.4.7 Pressure in cargo and ballast tanks

Paragraph 2.4.7.7 has been amended as follows.

2.4.7.7 The following are to be considered when calculating the static tank pressure in cargo tanks for harbour/tank testing load cases (design combination S) as required by **Section 7/Table 7.6.1**:

Maximum setting of pressure relief valve, P_{walve} as defined in Section 7/2.2.3.5, of all cargo tanks and, where applicable, mMaximum h_{air} , as defined in Section 7/2.2.3.2 and Fig. 7.2.3, of all cargo tanks in the cargo region are to be considered in the calculation of $P_{in-test}$, see Section 7/2.2.3.5.

Paragraph 2.4.7.9 has been added as follows.

2.4.7.9 Maximum setting of pressure relief valve, P_{valve} , as defined in Section 7/2.2.3.5 are to be considered in design combination S and S+D as required by Section 7/Table 7.6.1.

2.5 Procedure to Adjust Hull Girder Shear Forces and Bending Moments

2.5.1 General

Paragraph 2.5.1.2 has been amended as follows.

2.5.1.2 Vertical distributed loads are applied to each frame position, together with a vertical bending moment applied to the model ends to produce the required value of vertical shear force at <u>both</u> the forward <u>and aft</u> bulkhead of the middle tank of the FE model, and the required value of vertical bending moment at a section within the length of the middle tank of the FE model. The required values are specified in **2.4.5**.

2.5.2 Shear force and bending moment due to local loads

Paragraph 2.5.2.1 has been amended as follows.

2.5.2.1 The vertical shear forces generated by the local loads are to be calculated at the transverse bulkhead positions of the middle tank of the FE model. The maximum absolute shear force at the bulkhead position of the middle tank of the FE model is to be used to obtain the required adjustment in shear forces at the transverse bulkhead, see **2.5.3**. The vertical bending moment distribution generated by the local loads is to be calculated along the length of the middle tank of the three cargo tank FE model. The FE model can be used to calculate the shear forces and bending moments. Alternatively, a simple beam model representing the length of the 3-tank FE model with simply supported ends may be used to determine the shear force and bending moment values.

2.5.3 Procedure to adjust vertical shear force distribution

Paragraph 2.5.3.2 has been added as follows.

2.5.3.2 The required adjustment in shear forces at the aft and forward transverse bulkheads of the middle tank of the FE model in order to generate the required shear forces at the bulkheads are given by:

$$\Delta Q_{aft} = -Q_{targ} - Q_{aft}$$

$$\Delta Q_{fwd} = Q_{targ} - Q_{fwd}$$

Where:

- ΔQ_{aft} : required adjustment in shear force at aft bulkhead of middle tank <u>based</u> on the maximum absolute shear force at the bulkhead
- ΔQ_{fwd} : required adjustment in shear force at fore bulkhead of the middle tank based on the maximum absolute shear force at the bulkhead
- Q_{targ} : required shear force value to be achieved at forward bulkhead of middle tank, see **2.4.5**.
- Q_{aft} : shear force due to local loads at aft bulkhead of middle tank, see 2.5.2
- Q_{fwd} : shear force due to local loads at fore bulkhead of middle tank, see 2.5.2

EFFECTIVE DATE AND APPLICATION (Amendment 1-1)

- **1.** The effective date of the amendments is 1 July 2012.
- 2. Notwithstanding the amendments to the Rules, the current requirements may apply to ships for which the date of contract for construction* is before the effective date. *"contract for construction" is defined in the latest version of IACS Procedural Requirement(PR) No.29.

IACS PR No.29 (Rev.0, July 2009)

- 1. The date of "contract for construction" of a vessel is the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. This date and the construction numbers (i.e. hull numbers) of all the vessels included in the contract are to be declared to the classification society by the party applying for the assignment of class to a newbuilding.
- 2. The date of "contract for construction" of a series of vessels, including specified optional vessels for which the option is ultimately exercised, is the date on which the contract to build the series is signed between the prospective owner and the shipbuilder.
 - For the purpose of this Procedural Requirement, vessels built under a single contract for construction are considered a "series of vessels" if they are built to the same approved plans for classification purposes. However, vessels within a series may have design alterations from the original design provided:
 - (1) such alterations do not affect matters related to classification, or
 - (2) If the alterations are subject to classification requirements, these alterations are to comply with the classification requirements in effect on the date on which the alterations are contracted between the prospective owner and the shipbuilder or, in the absence of the alteration contract, comply with the classification requirements in effect on the date on which the alterations are submitted to the Society for approval.

The optional vessels will be considered part of the same series of vessels if the option is exercised not later than 1 year after the contract to build the series was signed.

- **3.** If a contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction" for such vessels is the date on which the amendment to the contract, is signed between the prospective owner and the shipbuilder. The amendment to the contract is to be considered as a "new contract" to which **1.** and **2.** above apply.
- 4. If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessel, or vessels, is the date on which revised contract or new contract is signed between the Owner, or Owners, and the shipbuilder.

Note:

This Procedural Requirement applies from 1 July 2009.

Section 6 MATERIALS AND WELDING

2. Corrosion Protection Including Coatings

2.1 Hull Protection

2.1.1 General

Paragraph 2.1.1.8 has been added as follows.

2.1.1.8 The corrosion protection for all cargo oil tanks is to be in accordance with **Chapter 25**, **Part C**.

EFFECTIVE DATE AND APPLICATION (Amendment 1-2)

- **1.** The effective date of the amendments is 1 January 2013.
- **2.** Notwithstanding the amendments to the Rules, the current requirements may apply to ships other than ships that fall under the following:
 - (1) for which the building contract is placed on or after 1 January 2013; or
 - (2) in the absence of a building contract, the keels of which are laid or which are at *a similar stage of construction* on or after 1 July 2013; or

(Note) The term "*a similar stage of construction*" means the stage at which the construction identifiable with a specific ship begins and the assembly of that ship has commenced comprising at least 50 *tonnes* or 1% of the estimated mass of all structural material, whichever is the less.

(3) the delivery of which is on or after 1 January 2016