RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

Part CSR-T

Common Structural Rules for Double Hull Oil Tankers

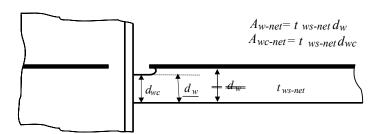
Rules for the Survey and Construction of Steel Ships
Part CSR-T2008AMENDMENT NO.2

Rule No.605th September 2008Resolved by Technical Committee on 25th June 2008Approved by Board of Directors on 22nd July 2008

Rule No.605th September 2008AMENDMENT TO THE RULES FOR THE SURVEY AND CONSTRUCTION OF STEEL SHIPS

"Rules for the survey and construction of steel ships" has been partly amended as follows:

Part CSR-T Common Structural Rules for Double Hull Oil Tankers


Section 4 Basic Information

3. Structural Design Details

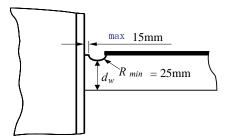
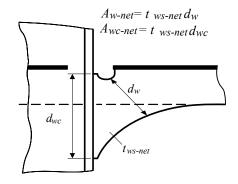
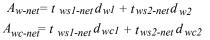
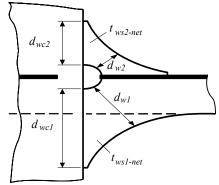

3.4 Intersection of Continuous Local Support Members and Primary Support Members

Fig.4.3.6 has been amended as follows.


Fig. 4.3.6 Primary Support Member Web Stiffener Details


(a) straight heel no bracket



(c) keyhole in way of soft heel

(b) soft toe and soft heel

(d) symmetrical soft heel toe brackets

Section 8 SCANTLING REQUIREMENTS

1. Longitudinal Strength

1.3 Hull Girder Shear Strength

1.3.2 Shear force correction for longitudinal bulkheads between cargo tanks

Paragraph 1.3.3.4 has been amended as follows.

1.3.3.4 For ships with a centreline bulkhead between the cargo tanks, the correction factor, K_3 , in way of transverse bulkheads is to be taken as:

$$K_3 = \left\lfloor 0.40 \left(1 - \frac{1}{1+n} \right) - f_3 \right\rfloor$$

Where:

- *n* : number of floors between transverse bulkheads, excluding the floor in line with the wash bulkhead
- f_3 : shear force distribution factor, see **Fig. 8.1.2**

Paragraph 1.3.3.6 has been amended as follows.

1.3.3.6 For ships with two longitudinal bulkheads between the cargo tanks, the correction factor, K_3 , in way of transverse bulkhead is to be taken as:

$$K_{3} = \left\lfloor 0.5 \left(1 - \frac{1}{1+n} \right) \left(\frac{1}{\gamma+1} \right) - f_{3} \right\rfloor$$

Where:

: number of floors between transverse bulkheads, excluding the floor in line with the wash bulkhead

r

п

: ratio of the part load carried by the wash bulkheads and floors from longitudinal bulkhead to the double side and is given by

$$r = \frac{1}{\left[\frac{A_{3-net50}}{A_{1-net50} + A_{2-net50}} + \frac{2 \times 10^4 b_{80} (n_s + 1) A_{3-net50}}{l_{tk} (n_s A_{T-net50} + R)}\right]}$$

1

	Note: for preliminary calculations, r may be taken as 0.5
l_{tk}	: length of cargo tank, between transverse bulkheads in the side
	cargo tank, in <i>m</i>
b_{80}	: 80% of the distance from longitudinal bulkhead to the inner
	hull longitudinal bulkhead side, in <i>m</i> , at tank mid length
$A_{T-net50}$: net shear area of the transverse wash bulkhead, including the
	double bottom floor directly below, in the side cargo tank, in
	cm^2 , taken as the smallest area in a vertical section. $A_{T-net50}$ is to
	be calculated with net thickness given by t_{grs} - 0.5 t_{corr}
A _{1-net50}	: net area, as shown in Fig. 8.1.2 , in m^2

A2-net50	: net area, as shown in Fig. 8.1.2 , in m^2
----------	--

- $A_{3-net50}$: net area, as shown in **Fig. 8.1.2**, in m^2
- f_3 : shear force distribution factor, as shown in **Fig. 8.1.2**
- n_S : number of wash bulkheads in the side cargo tank
- *R* : total efficiency of the transverse primary support members in the side tank

$$\frac{R - \binom{n}{2} \frac{A_{Q-net50}}{\gamma}}{\gamma} R = \left(\frac{n - n_s}{2} - 1\right) \frac{A_{Q-net50}}{\gamma} (cm^2)$$

$$\gamma = 1 + \frac{300b_{80}^2 A_{Q-net50}}{I_{nsm-net50}}$$

 $A_{Q-net50}$: net shear area, in cm^2 , of a transverse primary support member in the wing cargo tank, taken as the sum of the net shear areas of floor, cross ties and deck transverse webs.

 $A_{Q-net50}$ is to be calculated using the net thickness given by t_{grs} - 0.5 t_{corr} . The net shear area is to be calculated at the mid span of the members.

 $I_{psm-net50}$: net moment of inertia for primary support members, in cm^4 , of a transverse primary support member in the wing cargo tank, taken as the sum of the moments of inertia of transverses and cross ties.

It is to be calculated using the net thickness given by t_{grs} - 0.5 t_{corr} . The net moment of inertia is to be calculated at the mid span of the member including an attached plate width equal to the primary <u>support</u> member spacing

- t_{grs} : gross plate thickness, in mm
- t_{corr} : corrosion addition, in *mm*, as defined in Section 6/3.2

1.4 Hull Girder Buckling Strength

1.4.2 Buckling assessment

Paragraph 1.4.2.6 has been amended as follows.

1.4.2.6 The compressive buckling strength, of plate panels, is to satisfy the following criteria:

$\eta \leq \eta_{allow}$	
Where:	
η	: buckling utilisation factor
	$\sigma_{hg-net50}$
	σ_{cr}
$\sigma_{hg-net50}$: hull girder compressive stress based on net hull girder sectional properties, in <i>N/mm</i> ² as defined in 1.4.2.3

σ_{cr}	: critical compressive buckling stress, σ_{xcr} or σ_{ycr} as appropriate, in N/mm^2 , as specified in Section 10/3.2.1.3 . The critical compressive buckling stress is to be calculated for the effects of hull girder
	compressive stress only. The effects of other membrane stresses and lateral pressure are to be ignored. The net thickness given as
	$t_{\rm grs} - t_{\rm corr}$ as described in Section 6/3.3.2.2 is to be used for
	calculation of σ_{cr}
η_{allow}	: allowable buckling utilisation factor:
	= 1.0 for plate panels <u>at or above $0.5D$</u>
	= 0.90 for plate panels below $0.5D$
t _{grs}	gross plate thickness, in mm
$t_{\rm corr}$	corrosion addition, in <i>mm</i> , as defined in Section 6/3.2

Paragraph 1.4.2.8 has been amended as follows.

1.4.2.8 The compressive buckling strength of longitudinal stiffeners is to satisfy the following criteria:

$\eta \leq \eta_{allo}$	w
Where:	
η	: greater of the buckling utilisation factors given in Section 10/3.3.2.1 and Section 10/3.3.3.1 . The buckling utilisation factor is to be calculated for the effects of hull girder compressive stress only. The effects of other membrane stresses and lateral pressure are to be ignored.
η_{allow}	 allowable buckling utilisation factor = 1.0 for stiffeners <u>at or above 0.5D</u> = 0.90 for stiffeners below 0.5D

2. Cargo Tank Region

2.1 General

2.1.4 General scantling requirements

Paragraph 2.1.4.8 has been added as follows.

2.1.4.8 Enlarged stiffeners (with or without web stiffening) used for Permanent Means of Access (*PMA*) are to comply with the following requirements:

(a) Buckling strength including proportion (slenderness ratio) requirements for primary support members as follows:

• For stiffener web, see Section 10/2.3.1.1(a), 10/3.2.

• For stiffener flange, see Section 10/2.3.1.1(b), 10/2.3.3.1.

• For web stiffeners, see Section 10/2.3.2.1, 10/2.3.2.2, 10/3.3.

Note: Note 1 of table 10.2.1 is not applicable.

(b) Buckling strength of longitudinal *PMA* platforms without web stiffeners may also be ensured using the criteria for local support members in **Section 10/2.2** and **Section 10/3.3**.

including Note 1 of Table 10.2.1, provided shear buckling strength of web is verified in line with Section 10/3.2.

(c) All other requirements for local support members as follows:

· Corrosion additions: requirements for local support members

· Minimum thickness: requirements for local support members

• Fatigue: requirements for local support members

Note: For primary support members (or part of it) used as a *PMA* platform the requirements for primary support members are to be applied.

6. Evaluation of Structure for Sloshing and Impact Loads

6.4 Bow Impact

6.4.7 Primary support members

Paragraph 6.4.7.6 has been amended as follows.

6.4.7.6 The net <u>shear</u> area of the web, $A_{mshr-net50}$, of each primary support member at the support/toe of end brackets is not to be less than:

$$\frac{5f_{pt}P_{im}b_{slm}l_{shr}}{C_t\tau_{yd}} \qquad A_{shr-net50} = \frac{5f_{pt}P_{im}b_{slm}l_{shr}}{C_t\tau_{yd}} \quad (cm^2)$$

Where:

$$f_{pt}$$
 : patch load modification factor
= $\frac{l_{slm}}{l_{shr}}$
: extent of bow impact load area alon

: extent of bow impact load area along the span

 $=\sqrt{A_{slm}}$ (*m*), but not to be taken as greater than l_{shr}

- l_{shr} : effective shear span, as defined in Section 4/2.1.25, in m
- P_{im} : bow impact pressure as given in Section 7/4.4 and calculated at the load calculation point defined in Section 3/5.3.2, in kN/m^2

 b_{slm} : breadth of impact load area supported by the primary support member, to be taken as the spacing between primary support members as defined in **Section 4/2.2.2**, but not to be taken as greater than l_{slm} , in m

- C_t : permissible shear stress coefficient = 0.75 for acceptance criteria set AC3 $\tau_{yd} = \frac{\sigma_{yd}}{\sqrt{3}}$ (N/mm²)
- σ_{vd} : specified minimum yield stress of the material, in N/mm^2

BUCKLING AND ULTIMATE STRENGTH Section 10

2. Stiffness and Proportions

Plates and Local Support Members 2.2

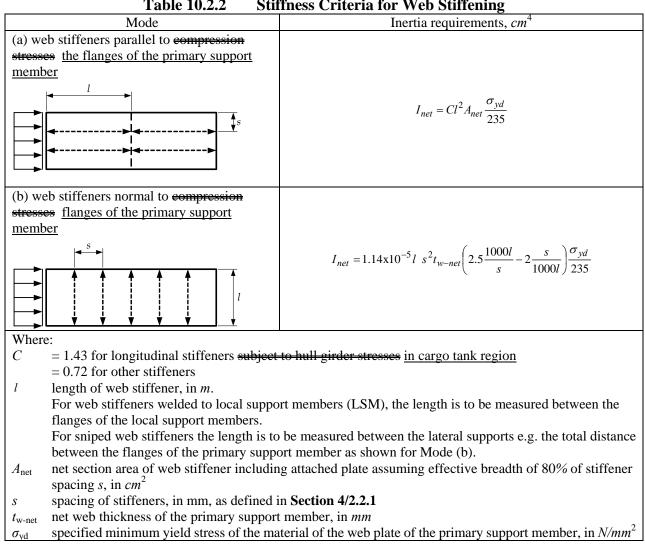

2.2.1 Proportions of plate panels and local support members

Table 10.2.1 has been amended as follows.

	Item		Coefficient	
1	hull envelope and	hull envelope and tank boundaries		
plate panel, C	other structure	-		
	angle and T profile	angle and T profiles		
stiffener web plate, C_w	bulb profiles		41	
-	flat bars		22	
lange/face plate ⁽¹⁾ , C_f	angle and T profile	es	12	
Where:	of plate, in <i>mm</i> plate, in <i>mm</i>	ross scantlings as described	-in Section 4/2.4.1.2 .	
	nge outstands, in <i>mm</i> ckness, in <i>mm</i>			
d_w	d_w			
Flat bars	Bulb flats	Angles	T bars	

Fable 10.2.1	Slenderness	Coefficients

Table 10.2.2 has been amended as follows.

Table 10.2.2 **Stiffness Criteria for Web Stiffening**

2.4.3 Requirements to edge reinforcements in way of openings and bracket edges

Paragraph 2.4.3.1 has been amended as follows.

2.4.3.1 The depth of stiffener web, d_w , of edge stiffeners in way of openings and bracket edges is not to be less than:

$$\frac{\overline{\sigma_{yd}}}{\overline{d_w} = Cl_{stf} \sqrt{235}} \qquad d_w = Cl_v \sqrt{\frac{\sigma_{yd}}{235}} \quad (mm), \text{ or } 50 \text{ } mm, \text{ whichever is greater}$$

Where:

C

- : length of <u>edge</u> stiffener between effective supports, in *m* l_{stf}
- : specified minimum yield stress of the material, in N/mm^2 σ_{vd}
 - : slenderness coefficient
 - 75 for end brackets
 - 50 for tripping brackets
 - 50 for edge reinforcements in way of openings

3. Prescriptive Buckling Requirements

3.3 Buckling of Stiffeners

3.3.3 Torsional buckling mode

Table 10.3.2 has been amended as follows.

Section property	Flat bars	Bulb flats, angles and T bars
I _{P-net}	$\frac{d_w^3 t_{w-net}}{3 \times 10^4}$	$\left(\frac{A_{w-net}(e_f - 0.5t_{f-net})^2}{3} + A_{f-net} e_f^2\right) 10^{-4}$
I _{T-net}	$\frac{d_{w}t_{w-net}^{3}}{3x10^{4}} \left(1 - 0.63\frac{t_{w-net}}{d_{w}}\right)$	$\frac{\frac{(e_{f}-0.5t_{f-net})t_{w-net}^{3}\left(1-0.63\frac{t_{f-net}}{e_{f}-0.5t_{f-net}}\right)}{3x10^{4}\left(1-0.63\frac{t_{f-net}}{e_{f}}\right)} + \frac{\frac{b_{f}t_{f-net}^{3}\left(1-0.63\frac{t_{f-net}}{b_{f}}\right)}{3x10^{4}\left(1-0.63\frac{t_{w-net}}{e_{f}}\right)}}$
		$\frac{b_f t_{f-net}^3}{3x10^4} \left(1 - 0.63 \frac{t_{f-net}}{b_f}\right)$
I _{ω-net}	$\frac{d_w^3 t_{w-net}^3}{36 \mathrm{x} 10^6}$	for bulb flats and angles: $\frac{A_{f-net} e_f^2 b_f^2}{12 \times 10^6} \left(\frac{A_{f-net} + 2.6A_{w-net}}{A_{f-net} + A_{w-net}} \right)$
		for T bars: $\frac{b_f^3 t_{f-net} e_f^2}{12 \times 10^6}$

Appendix A HULL GIRDER ULTIMATE STRENGTH

2. Calculation of Hull Girder Ultimate Capacity

2.2 Simplified Method Based on an Incremental-iterative Approach

2.2.2 Assumptions and modelling of the hull girder cross-section

Paragraph 2.2.2.4 has been amended as follows.

- 2.2.2.4 The size and modelling of hard corner elements is to be as follows:
 - (a) it is to be assumed that the hard corner extends up to s/2 from the plate intersection for longitudinally stiffened plate, where s is the stiffener spacing
 - (b) it is to be assumed that the hard corner extends up to $20t_{grs}$ from the plate intersection for transversely stiffened plates, where t_{grs} is the gross plate thickness. Note :

For transversely stiffened plate, the effective breadth of plate for the load shortening portion of the stress-strain curve is to be taken as the full plate breadth, i.e. to the intersection of other plates – not from the end of the hard corner <u>if any</u>. The area is to be taken as the breadth between the intersecting plates. The area on which the value of σ_{CR5} defined in **2.3.8.1** applies is to be taken as the breadth between the hard corners, i.e. excluding the end of the hard corner if any.

Appendix C – FATIGUE STRENGTH ASSESSMENT

2. Hot Spot Stress (FE Based) Approach

2.4. Fatigue Damage Calculation

2.4.2 Stresses to be used

Paragraph 2.4.2.6 has been amended as follows.

2.4.2.6 The hot spot stress is defined as the surface stress at 0.5t away from the weld toe location, as shown in **Fig. C.2.1**. This stress may be <u>The hot spot stress is to be</u> obtained by linear interpolation using the respective stress at the 1st and 2nd element from the structure intersection.

Appendix D - Buckling Strength Assessment

1. Advanced Buckling Analysis

1.1 General

1.1.2 Alternative procedures

Paragraph 1.1.2.3 has been added as follows.

<u>1.1.2.3</u> Use of alternative buckling procedures to the reference advanced buckling procedure is acceptable provided that the alternative procedure is verified against the test cases specified in the **Background to Appendix D** and where the permissible utilisation buckling factor for the alternative method, $\eta_{all-alt}$, complies with:

$$\eta_{all-alt} \leq \eta_{all} \cdot \left(\frac{\eta_{alt-i}}{\eta_{reft-i}}\right)_{\min}$$

Where:

n	permissible utilisation factor against buckling for plate and stiffened
$\underline{\eta}_{all}$	panels as specified in Section 9/Table 9.2.2
10	utilisation factor for reference advanced buckling procedure for test
<u> η_{ref-i}</u>	case <i>i</i> specified in Background to Appendix D
<u> Malt-i</u>	utilisation factor for alternative buckling procedure for test case i
	specified in Background to Appendix D

5. Strength Assessment (FEM) – Buckling Procedure

5.2 Structural Modelling and Capacity Assessment Method

5.2.3 Un-stiffened panels

Table D.5.1 has been amended as follows.

Table D.5.1Structure	tural Eleme	nts for the	Strength Assessment (FEM)
Structural Elements	Idealisation	Assessmen t method ⁽¹⁾	Normal panel definition ⁽²⁾
Le	ongitudinal str	ucture, see I	Fig. D.5.1
Longitudinally stiffened panels	Stiffened	Method 1	Length: between web frames
Shell envelope	panel		Width: between primary support members
Deck			(PSM) ⁽²⁾
Inner hull			
Hopper tank side			
Longitudinal bulkheads			
Centreline bulkheads			
Double bottom longitudinal girders in	Stiffened	Method 1	Length: between web frames
line with longitudinal bulkhead or	panel		Width: full web depth
connected to hopper tank side			
Web of horizontal girders in double side	Stiffened	Method 1	Length: between web frames
tank connected to hopper tank side	panel		Width: full web depth
Web of double bottom longitudinal	Stiffened	Method 2	Length: between web frames
girders not in line with longitudinal	panel		Width: full web depth
bulkhead or not connected to hopper	-		
tank side			
Web of horizontal girders in double side	Stiffened	Method 2	Length: between web frames
tank not connected to hopper tank side	panel		Width: full web depth
Web of single skin longitudinal girders	Un-stiffened	Method 2	Between local stiffeners/face plate/PSM
	panel		
Т	'ransverse stru	icture, see Fi	ig. D.5.2
Web of transverse deck girders	Un-stiffened	Method 2	Between local stiffeners/face plate/PSM
including brackets	panel		
Vertical web in double side tank	Stiffened	Method 2	Length: full web depth
	panel		Width: between primary support members
All irregularly stiffened panels, e.g.	Un-stiffened	Method 2	Between local stiffeners/face plate/PSM
Web panels in way of hopper tank and	panel		
bilge			
Double bottom floors	Stiffened	Method 2	Length: full web depth
	panel		Width: between primary support members
Vertical web frame including brackets	Un-stiffened	Method 2	Between vertical web stiffeners/face
	panel		plate/PSM
Cross tie web plate	Un-stiffened	Method 2	Between vertical web stiffeners/face
	panel		plate/PSM
Transverse Oi	l-tight and Wa	tertight bul	kheads, see Fig. D.5.3
and Tr	ansverse wash	bulkheads,	see Fig. D.5.4

All regularly stiffened bulkhead panels	Stiffened	Method 1	Length: between primary support members
	panel		Width: between primary support members
Regularly stiffened bulkhead with	Stiffened	Method 1	Length: between primary support members
secondary buckling stiffeners	<u>panel</u>		Width: between primary support members
perpendicular to regular stiffeners ⁽³⁾			
All irregularly stiffened bulkhead	Un-stiffened	Method 2	Between local stiffeners/face plate
panels, e.g. web panels in way of hopper	panel		
tank and bilge			
Web plate of bulkhead stringers	Un-stiffened	Method 2	Between web stiffeners /face plate
including brackets	panel		
]	Fransverse Co	rrugated bu	lkheads
Upper/lower stool including stiffeners	Stiffened	Method 1	Length: between internal web diaphragms
	panel		Width: length of stool side
Stool internal web diaphragm	Un-stiffened	Method 2	Between local stiffeners /face plate / PSM
	panel		
Note:			
1. The assessment method specifies which buckling strength assessment method is to be used, see 4.1			
2. See structural idealisation, 3.1.3 .			
The secondary stiffener can be modelled as "snined" or "continuous". The stiffener is considered "snined"			

 3.
 The secondary stiffener can be modelled as "sniped" or "continuous". The stiffener is considered "sniped" unless rotational end supports are provided at both ends.

 An area stiffened by irregular buckling stiffeners only should be assessed by considering each plate in the panel as Unstiffened panel using Method 2.

EFFECTIVE DATE AND APPLICATION

- **1.** The effective date of the amendments is 1 April 2006.
- 2. Notwithstanding the amendments to the Rules, the current requirements may apply to ships for which the date of contract for construction* is before the effective date. *"contract for construction" is defined in the latest version of IACS Procedural Requirement(PR) No.29.

IACS PR No.29 (Rev.4)

- 1. The date of "contract for construction" of a vessel is the date on which the contract to build the vessel is signed between the prospective owner and the shipbuilder. This date and the construction numbers (i.e. hull numbers) of all the vessels included in the contract are to be declared to the classification society by the party applying for the assignment of class to a newbuilding.
- 2. The date of "contract for construction" of a series of vessels, including specified optional vessels for which the option is ultimately exercised, is the date on which the contract to build the series is signed between the prospective owner and the shipbuilder. For the purpose of this Procedural Requirement, vessels built under a single contract for construction are considered a "series of vessels" if they are built to the same approved plans for classification purposes. However, vessels within a series may have design alterations from the original design provided:
 - (1) such alterations do not affect matters related to classification, or
 - (2) If the alterations are subject to classification requirements, these alterations are to comply with the classification requirements in effect on the date on which the alterations are contracted between the prospective owner and the shipbuilder or, in the absence of the alteration contract, comply with the classification requirements in effect on the date on which the alterations are submitted to the Society for approval.

The optional vessels will be considered part of the same series of vessels if the option is exercised not later than 1 year after the contract to build the series was signed.

- **3.** If a contract for construction is later amended to include additional vessels or additional options, the date of "contract for construction" for such vessels is the date on which the amendment to the contract, is signed between the prospective owner and the shipbuilder. The amendment to the contract is to be considered as a "new contract" to which **1**. and **2**. above apply.
- 4. If a contract for construction is amended to change the ship type, the date of "contract for construction" of this modified vessel, or vessels, is the date on which revised contract or new contract is signed between the Owner, or Owners, and the shipbuilder.

Notes:

- 1. This Procedural Requirement applies to all IACS Members and Associates.
- 2. This Procedural Requirement is effective for ships "contracted for construction" on or after 1 January 2005.
- 3. Revision 2 of this Procedural Requirement is effective for ships "contracted for construction" on or after 1 April 2006.
- 4. Revision 3 of this Procedural Requirement was approved on 5 January 2007 with immediate effect.
- 5. Revision 4 of this Procedural Requirement was adopted on 21 June 2007 with immediate effect.