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1. INTRODUCTION

In the full-scale measurement project, various data such as navigation data (main engine speed, ship speed, heading, etc.),
weather data (wind, waves, etc.), and ship motion data (acceleration, stresses on ship structure, etc.) are obtained and 
accumulated to understand the state of the ship during navigation. These data are used to assess structural strength, estimate life 
by fatigue strength assessment, and provide feedback for design 1-3). From the viewpoint of ensuring the safety of ships, it is 
important to understand the history of the stresses generated on ship structures. 

One of the problems of stress measurement in full-scale is that installation and maintenance of sensors are costly. Since it is 
difficult to measure all the measurement points that are in demand, it is desirable to have a method to grasp the stress of the 
whole ship with fewer measurement points. As an approach to understand the stress history, which is different from the full-
scale measurement, research on “load and structural consistent analysis” has been conducted to estimate the stress generated on 
ship structure by incorporating structural analysis. However, since there is no established method for stress estimation, there is 
room to consider new approaches. 

If the estimation of stress generated on ship structure is considered as a regression problem, an approach using machine 
learning, which has been developed in recent years, is considered to be effective. Since machine learning can make estimations 
considering various factors related to the problem, the stresses generated on the ship structure can be estimated by using the 
stress-related data obtained from full-scale measurements. 

The data obtained from full-scale measurements include data that are affected by the natural environment such as wind, waves, 
and currents. It is difficult to grasp the weather and ocean conditions accurately, and the full-scale measurement data contains 
many uncertain measurement values. In the field of machine learning, Natural Gradient Boosting (NGBoost) 4), a method for 
estimating probability distributions, has been proposed as an effective method for making numerical estimations based on such 
data. By using NGBoost, it is expected to make reasonable numerical estimations considering probability distributions. 
Therefore, in order to confirm the feasibility of stress estimation using a new approach, research on stress estimation on ship 
structures using full-scale measurement data and NGBoost has been conducted. In this paper, the contents of our research is 
introduced. 

2. OVERVIEW OF FULL-SCALE MEASUREMENT

In this study, from the viewpoint of the measurement items and the number of data, the data for about two years obtained in
the full-scale measurement project on the 8,600 TEU container ship is used. Table 1 shows the main particulars of the ship and 
Table 2 shows the measurement items of the ship. 

The Sensors to measure acceleration and stress are installed on the ship. The locations of the sensors are shown in Fig. 1. The 
Optical Strand Monitoring System (OSMOS) sensors, which uses optical fiber to measure the strain of structural members, was 
used to measure the stress. And OSMOS sensors were installed in 12 locations, four in each of the three cross sections of the 
ship. Three-axis (x, y, z) accelerometers were used to measure acceleration, and were installed in three locations: fore part, 
midship part, and aft part. ERA-5 wave hindcast data provided by the European Centre for Medium-Range Weather Forecasts 
(ECMWF) is used for the wave data. Note that the ship's regular route was changed during the measurement period. 
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Table 1 Main particulars of the ship 
Length overall (LOA) Abt. 334.5 m 

Breadth 45.6 m 
Depth 24.4 m 

Design draft 14.0 m 
Gross tonnage Abt. 97,000 GT 

Table 2 Measurement items 
Data Contents 

Navigation 
Ship’s speed (through water, over the ground), Course over ground, Main engine speed, 
Power of main engine 

Weather Wind direction, Wind speed 
Acceleration 3-axis (x, y, z) for fore, midship and aft part 
Stress Hull girder stress 

Wave 
Wave height, Wave direction, Wave period, Directional width of wave, Kurtosis of wave, 
Relative width of wave frequency spectrum, Water depth 

 
Figure 1 The positions of OSMOS sensors and acceleration sensors 

3. STRESS ESTIMATION METHOD 

3.1 Estimation Target 
It is important to estimate the stress generated on the upper structure because container ships have large openings that cause 

high stress in the ship structure. In addition, the midship part of the ship is important because the stress is relatively high among 
the measurement points. Therefore, in this study, the stress measured at the midship part and on the port side of the deck (No. 6 
in Fig. 1) is used as the estimation target. 
3.2 NGBoost 

In this study, considering the uncertainty of the full-scale measurement data, NGBoost, which is a method that can estimate 
the probability distribution, is used to estimate the stress generated on the ship structure. NGBoost is a regression model adapted 
gradient boosting for estimation of probability distributions. Gradient boosting is a type of ensemble learning method that creates 
one learner by combining multiple weak learners with low estimation accuracy. A feature of NGBoost is that it uses natural 
gradients 5) to improve the learning efficiency of the weak learner in order to estimate the multiple parameters of probability 
distributions simultaneously. 
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In this study, the log-likelihood 𝐿𝐿�𝜃𝜃,𝑦𝑦� shown in Equation (1) is used as the loss function which is optimized in the training 
phase of NGBoost. The natural gradient ∇�𝐿𝐿�𝜃𝜃,𝑦𝑦� is shown in Equation (2). Here, the parameters of the probability distribution 
are 𝜃𝜃, the correct answer label is 𝑦𝑦, and the probability distribution 𝑃𝑃, and 𝐼𝐼�(𝜃𝜃) is the Fisher Information matrix. The normal 
distribution is used as the probability distribution, and the decision tree is used as the weak learner. 

𝐿𝐿(𝜃𝜃,𝑦𝑦) = −𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃�(𝑦𝑦) (1) 
∇�𝐿𝐿(𝜃𝜃,𝑦𝑦) ∝ −𝐼𝐼�(𝜃𝜃)��𝐿𝐿(𝜃𝜃,𝑦𝑦) (2) 

4. STATISTICAL PROCESSING OF FULL-SCALE MEASUREMENT DATA 

In this study, using the full-scale measurement data processed as hourly statistics, the data set for stress estimation was created. 
The processing of each data and the data set created are described in this chapter. 
4.1 Navigational Data, Weather Data, Wave Data 

Navigational data and weather data were processed as hourly averages. For wave data, hourly wave hindcast data were used. 
The data representing the angle of wave direction, wind direction, etc., takes the value of 360 degrees clockwise with the bow 
direction as 0 degrees. Therefore, the amount of change in angle from the bow direction was added as the variables. 
4.2 Stress Data 

The stresses in the ship structure can be separated into two major components by frequency analysis: wave response 
component and elastic response component, with peaks around 0.1 Hz and 0.5 Hz, respectively. In this study, the wave response 
component from 1/60 to 0.3 Hz, the elastic response component from 0.3 Hz to 1.0 Hz, and the wave and elastic response 
component from 1/60 to 1.0 Hz were separated from the hourly stress time series data. Then the stress range per wave was 
calculated by the zero-up crossing method, and the standard deviation was calculated. 
4.3 Acceleration Data 

Frequency analysis showed peaks at around 0.1Hz and 0.6~0.8Hz. These components are wave response component and 
mainly elastic response component, respectively 2). In this study, the wave response component from 1/60 to 0.3 Hz, the elastic 
response component from 0.3 Hz to 1.0 Hz, and the wave and elastic response component from 1/60 to 1.0 Hz were separated 
to include the peaks, and the maximum values and standard deviations for each hour were calculated and used as variables. The 
maximum value and standard deviation for each hour were used as the features. 
4.4 Data Set for Stress Estimation 

After the above process, the data set consisting of one objective variable (the measured value of stress at No. 6) and 108 
explanatory variables was created. Table 3 shows the number of data points, and Fig. 2 shows the time series plot and histogram 
of the objective variable. 

From Fig. 2 (b), it was confirmed that there were few data where high stress was measured. In the case of machine learning 
using such imbalanced data, there is a concern that the accuracy of estimation model will decrease in the areas where the number 
of data is small. Therefore, in order to compensate for the bias of the imbalance data, oversampling using SMOTE 6), a method 
of oversampling that increases the data with a small number of samples, is conducted. 

SMOTE is a method of increasing data using the k-nearest neighbor method, which interpolates new data using specific data 
belonging to a minority group and randomly selected data from k of its neighbors. In this study, a threshold was set for the stress 
as the objective variable, and the data were labeled as above and below the threshold, and oversampling was performed so that 
the majority and minority groups had the same number of data. 
4.5 Stress Estimation Model 

In this study, two estimation models were developed, one using all explanatory variables (Case 1) and the other using only 
navigation, weather, and wave data (Case 2), as shown in Table 4. Note that, in Case 2, oversampling was not performed because 
it tended to reduce the estimation accuracy. The number of explanatory variables in Case 2 is smaller than in Case 1. Therefore, 
the pattern of data included in the training data decreased, and the number of similar data increased, which may have caused 
this problem. 
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of the objective variable. 
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(a) Time series plot (b) Histogram 

Figure 2 Time series plot and histogram of the stress at No. 6 

Table 3 Number of data in the data set 
 Number of data 

Training data 11,435 
Validation data 2,614 

Test data 2,288 
Total 16,337 

 

Table 4 Explanatory variables to use 
Data Case 1 Case 2 

Navigation 〇 〇 
Weather 〇 〇 

Acceleration 〇 〇 
Stress 〇 － 
Wave 〇 － 

 

5. ESTIMATION RESULTS 

5.1 Comparison of Estimation Results in Case 1 and Case 2 
Figure 3 and Fig. 4 show the results of stress estimation for the test data in Case 1 and Case 2, respectively. The mean of the 

normal distribution is plotted with the x-axis as the measured value and the y-axis as the estimated value. When the measured 
and estimated values of stress are equal, they are plotted on a reference line drawn diagonally. The 2σ confidence interval of the 
estimated normal distribution is also shown. Table 5 shows the mean squared error and correlation coefficient of the measured 
and estimated values, and the mean value of the estimated standard deviation. 

For Case 1, Fig. 3 shows that the plots of the estimation results are distributed along the reference line, and the value of the 
correlation coefficient is about 0.99. Therefore, the measured values and estimated values are considered to be in good agreement 
with each other. 

For Case 2, Fig. 4 shows that the plots are distributed near the reference line. On the other hand, from Table 5, it is confirmed 
that the value of the correlation coefficient decreased, and the value of the mean squared error and standard deviation increased 
in Case 2 compared to Case 1, which means that the estimation accuracy decreased. In Case2, the estimated value tended to be 
lower than the measured value in the high stress areas. From the viewpoint of the strength of the ship structure, it is not desirable 
for the estimated values to underestimate the stress, so it is also important to improve the estimation accuracy in the high stress 
areas. 

The reason for the lower estimation accuracy in the high stress areas of Case 2 may be due to the lack of data measuring the 
high stress. The frequency of measuring high stress in full-scale measurements is low, and the weather and sea conditions that 
ships encounter vary depending on the route. In order to improve the estimation accuracy of high stress areas using only 
navigation, weather and wave data, it may be effective to collect measurement data for a longer period of time, and to create 
estimation model for each route. 
5.2 Calculating the Importance of Explanatory Variables 

When using decision tree-based machine learning methods, the importance of each explanatory variable to the estimation 
results of the created estimation model can be calculated. Since the stress estimation model using NGBoost outputs the mean 
and standard deviation, which are parameters of the normal distribution, as estimation results, the importance can be calculated 
for each of them. As part of the importance of the explanatory variables, Table 6 and Table 7 show the top five in Case 1 and 
Case 2, respectively. 
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In Case 1, the importance of stresses at No. 1, No. 5, No. 9, and No. 10, which were measured near the objective variable 
(stress at No. 6) or at the upper part of the ship, were high. On the other hand, the importance of the stresses at No.3, No.4, and 
No.7, which are located in the lower part of the ship and bow side, was lower than other measurement points. In this study, the 
measurement point No. 6 was targeted. The accumulation of knowledge on other measurement points and on ships for estimation 
is expected to lead to the clarification of measurement points necessary for stress estimation and to the accurate estimation of 
stress at multiple points with a small number of measurement points. 

In Case 2, the importance of wave height, wave period, and wave direction related to wave load increased. In particular, the 
wave height has a linear relationship with the stress at the measurement location No. 6, as shown in Fig. 5, and is considered to 
contribute significantly to the estimation. 

       

Figure 3 Measured value and estimated value: Case 1 Figure 4 Measured value and estimated value: Case 2 

Table 5 Summary of estimation results 
 Case 1 Case 2 

Mean squared error 0.13 1.10 
Correlation coefficient 0.99 0.91 

Standard deviation (mean) 0.19 0.74 

Table 6 Importance of explanatory variables: Case 1 
 Mean Standard deviation 

1 
Stress (No.5) 

wave and elastic response component 
Stress (No.5) 

wave response component 

2 
Stress (No.1) 

wave and elastic response component 
Stress (No.5) 

wave and elastic response component 

3 
Stress (No.9) 

wave and elastic response component 
Stress (No.10) 

wave and elastic response component 

4 
Stress (No.10) 

wave and elastic response component 
Stress (No.12) 

wave and elastic response component 

5 
Stress (No.10) 

wave response component 
Stress (No.9) 

wave and elastic response component 
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Table 7 Importance of explanatory variables: Case 2 
 Mean Standard deviation 

1 Wave height Wave height 
2 Wave period Wind speed 
3 Wind speed Wave direction 
4 Ship’s speed through water Main engine speed 
5 Power of main engine Ship’s speed through water 

 

Figure 5 Time series data of the stress at No. 6 and wave height 

6. CONCLUSION 

In this paper, research on estimation of stress generated on ship structures using full-scale measurement data and machine 
learning. 

Since this study was conducted for one specific ship, it is necessary to confirm the effectiveness and versatility of this method 
through comparison and verification with the stress estimation results when this method is applied to other ships. In addition, 
through such efforts, it is expected to obtain knowledge about the number of data required to secure a certain estimation accuracy 
and the explanatory variables that are effective in improving the estimation accuracy. 

In this study, stress estimation was conducted for the point where stress was measured in full-scale measurement, using the 
measured values as the correct data. On the other hand, there are many areas where there is a need to estimate stress generated 
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Table 7 Importance of explanatory variables: Case 2 
 Mean Standard deviation 

1 Wave height Wave height 
2 Wave period Wind speed 
3 Wind speed Wave direction 
4 Ship’s speed through water Main engine speed 
5 Power of main engine Ship’s speed through water 

 

Figure 5 Time series data of the stress at No. 6 and wave height 
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Consideration of Utilization of Autonomous Drone for Ship 
Surveys/Inspections 

― Demonstration Experiment in Non-GNSS and Dark Environments ― 
 

Junji TOKUNAGA* 

1. INTRODUCTION 

1.1 Background 
In recent years, the application of robotics technologies, such as drones, has become increasingly active in various fields. This 

trend is also occurring in the maritime industry, and expectations are rising for the effective utilization of these latest technologies 
in surveys by classification surveyors and in inspections by crew. For this reason, the classification societies were quick to revise 
IACS UR Z17 in January 2018 to allow the use of Remote Inspection Techniques (RIT) for the inspection of hull structures. 
Considering this situation, ClassNK also issued the “Guidelines for Use of Drones in Class Surveys” (hereinafter referred to as 
“the guidelines”), in April 2018 1). The guidelines summarize the applicable range and procedures for applying drones to class 
surveys, the technical considerations for safe operation and the requirements for drone service suppliers. The use of drones for 
surveys in high places, narrow places, and dark environments such as cargo holds is expected to improve the safety, efficiency, 
and quality of surveys. 

There are two types of drone operation methods. One is “manual flight,” in which the operator operates the drone manually, 
and the other is “autonomous flight,” in which the drone flies autonomously by sensing the surrounding environment and 
estimating self-localization and direction. In the guidelines, the former method of drone operation is covered. This is because 
the use of autonomous drones onboard a ship requires technologies such as SLAM (Simultaneous Localization and Mapping), 
but at the time the guidelines were issued, the technology was still in the development stage and it was considered difficult to 
use them for ship surveys. In recent years, however, technological developments have led to the emergence of drones that can 
fly autonomously even inside the building 2) 3). In other industries, the utilization of such drones for infrastructure inspection 
and patrol security are being considered 4) 5). 
1.2 Research Objective 

Currently, in an environment surrounded by steel plates such as cargo holds, GNSS do not penetrate and the geomagnetic 
field is not stable, so ship surveys/inspections by manual flight require operators with advanced piloting skills. On the other 
hand, autonomous drone can be operated without depending on the skill of the operator. However, as mentioned above, the 
guidelines do not cover autonomous drones, so technical requirements for the use of autonomous drones for ship surveys need 
to be developed. 

The inside of a ship is a non-GNSS environment and has many dark sections. Therefore, in addition to the technical 
requirements for autonomous flight, it is important requirement to be able to perform surveys/inspections even in dark 
environments where no lighting is provided. Therefore, it is important to install lighting, select a camera, and tune the camera 
so that it can photograph images of sufficient quality even in dark environments. 

In recent years, there has also been progress in the development of technology to make effective utilization of the images 
photographed by the camera. For example, the technology to process camera images into 3D point cloud data and orthophoto 
has already been established, and the effective utilization of such technology is expected to improve the efficiency and quality 
of surveys/inspections. 

In order to maximize the benefits of using autonomous drones, it is important to use them flexibly without sticking to the 
existing survey/inspection scheme. Therefore, the Society has been extracting technical requirements for drones that can fly 
autonomously and stably in non-GNSS and dark environments such as cargo holds and has been studying survey/inspection 
schemes suitable for ship survey when using autonomous drones. 

In this paper, we describe the results of flight experiments conducted in inside of building where is non-GNSS and dark 
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